Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion

In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operati...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 360; no. 2; pp. 1454 - 1477
Main Authors Tao, Hongfeng, Qiu, Jier, Chen, Yiyang, Stojanovic, Vladimir, Cheng, Long
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2023
Online AccessGet full text

Cover

Loading…
Abstract In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operating conditions. This makes it difficult to obtain bearing data labels, and the distribution of the collected samples varies widely. To address these problems, an unsupervised cross-domain fault diagnosis method based on time-frequency information fusion is proposed in this paper. Firstly, wavelet packet decomposition and reconstruction are carried out on the bearing vibration signal, and the energy eigenvectors of each sub-band are extracted to obtain a 2-D time-frequency map of fault features. Secondly, an unsupervised cross-domain fault diagnosis model is constructed, the improved maximum mean discrepancy algorithm is used as the measurement standard, and the joint distribution distance is calculated with the help of pseudo-labels to reduce data distribution differences. Finally, the model is applied to the motor bearing for comparison and verification. The results demonstrate its high diagnosis accuracy and strong robustness.
AbstractList In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operating conditions. This makes it difficult to obtain bearing data labels, and the distribution of the collected samples varies widely. To address these problems, an unsupervised cross-domain fault diagnosis method based on time-frequency information fusion is proposed in this paper. Firstly, wavelet packet decomposition and reconstruction are carried out on the bearing vibration signal, and the energy eigenvectors of each sub-band are extracted to obtain a 2-D time-frequency map of fault features. Secondly, an unsupervised cross-domain fault diagnosis model is constructed, the improved maximum mean discrepancy algorithm is used as the measurement standard, and the joint distribution distance is calculated with the help of pseudo-labels to reduce data distribution differences. Finally, the model is applied to the motor bearing for comparison and verification. The results demonstrate its high diagnosis accuracy and strong robustness.
Author Chen, Yiyang
Cheng, Long
Qiu, Jier
Tao, Hongfeng
Stojanovic, Vladimir
Author_xml – sequence: 1
  givenname: Hongfeng
  surname: Tao
  fullname: Tao, Hongfeng
  email: taohongfeng@jiangnan.edu.cn
  organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
– sequence: 2
  givenname: Jier
  surname: Qiu
  fullname: Qiu, Jier
  email: 1070416230@vip.jiangnan.edu.cn
  organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
– sequence: 3
  givenname: Yiyang
  surname: Chen
  fullname: Chen, Yiyang
  email: yiyang.chen@soton.ac.uk
  organization: Department of Civil, Maritime and Environmental Engineering, University of Southampton, Southampton, SO16 7QF, United Kingdom
– sequence: 4
  givenname: Vladimir
  surname: Stojanovic
  fullname: Stojanovic, Vladimir
  email: vladostojanovic@mts.rs
  organization: Faculty of Mechanical and Civil Engineering,Department of Automatic Control, Robotics and Fluid Technique, University of Kragujevac, 36000 Kraljevo, Serbia
– sequence: 5
  givenname: Long
  surname: Cheng
  fullname: Cheng, Long
  email: 13032212876@163.com
  organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
BookMark eNqNkMtOwzAQRS1UJNrCN5AfSLAdN2kWLKqKl4TEpqyt8atySOxiJ5X697gtYsEGVlfWzLnynBmaOO80QrcEFwST6q4tWhPAfXTWFRRTWhBSYMwu0JQs6yanVVNO0BSn1Rzjkl6hWYxtetYE4ylS7y6OOx32NmqVyeBjzJXvwbos-C51bjOhIRzTwNgNmbKwdT7amAk4It5lg-11boL-HLWTh8w640MPg00jM8YU1-jSQBf1zXfO0ebxYbN-zl_fnl7Wq9dcUrYYcgmMUagYbUDgpiJ1A7AwQgm6NMuSiTSQjZKUNLoyRjJiKmaqUmqJWSlEOUf359rTGUEbLu1w-scQwHacYH40xlv-Y4wfjXFCeDKW-PoXvwu2h3D4B7k6kzpdt7c68ChtkqGVDVoOXHn7Z8cX8CmRRg
CitedBy_id crossref_primary_10_1007_s40747_023_01268_0
crossref_primary_10_1109_TASE_2023_3340726
crossref_primary_10_1038_s41598_024_81118_2
crossref_primary_10_1007_s42417_024_01358_4
crossref_primary_10_1016_j_isatra_2025_01_012
crossref_primary_10_1016_j_ress_2024_110641
crossref_primary_10_1016_j_engappai_2024_109756
crossref_primary_10_1016_j_ins_2023_119808
crossref_primary_10_1016_j_aei_2024_102912
crossref_primary_10_1016_j_neunet_2023_06_015
crossref_primary_10_1007_s40747_023_01054_y
crossref_primary_10_1016_j_conengprac_2023_105714
crossref_primary_10_1007_s00170_023_12060_2
crossref_primary_10_1109_TASE_2024_3374759
crossref_primary_10_32604_sdhm_2023_029428
crossref_primary_10_3390_pr12122845
crossref_primary_10_1007_s10846_023_02009_8
crossref_primary_10_1007_s11071_023_08412_y
crossref_primary_10_1007_s11760_025_03939_6
crossref_primary_10_1109_TASE_2024_3381068
crossref_primary_10_1007_s40747_023_01155_8
crossref_primary_10_1088_1361_6501_ada632
crossref_primary_10_1016_j_measurement_2024_114191
crossref_primary_10_1007_s40747_024_01362_x
crossref_primary_10_1016_j_compeleceng_2025_110117
crossref_primary_10_1016_j_engappai_2023_107508
crossref_primary_10_1016_j_postharvbio_2025_113495
crossref_primary_10_1016_j_ins_2023_120001
crossref_primary_10_1016_j_engappai_2023_107226
crossref_primary_10_1016_j_conengprac_2023_105725
crossref_primary_10_1007_s40747_023_01167_4
crossref_primary_10_1016_j_engappai_2024_109477
crossref_primary_10_1155_2024_9071328
crossref_primary_10_1007_s00521_023_08964_5
crossref_primary_10_1016_j_neucom_2024_127862
crossref_primary_10_1016_j_jfranklin_2024_107475
crossref_primary_10_1016_j_knosys_2023_111101
crossref_primary_10_1016_j_ins_2024_120378
crossref_primary_10_1016_j_jfranklin_2025_107535
crossref_primary_10_1007_s00521_023_09150_3
crossref_primary_10_1016_j_nahs_2023_101435
crossref_primary_10_1016_j_knosys_2024_111604
crossref_primary_10_1016_j_engappai_2024_107918
crossref_primary_10_1016_j_fraope_2025_100228
crossref_primary_10_1007_s00034_023_02432_0
crossref_primary_10_1007_s40747_024_01439_7
crossref_primary_10_1016_j_knosys_2025_112982
crossref_primary_10_1016_j_engappai_2024_108211
crossref_primary_10_1016_j_neunet_2024_106518
crossref_primary_10_3390_mi14071467
crossref_primary_10_1016_j_eswa_2023_121893
crossref_primary_10_1007_s00034_023_02455_7
crossref_primary_10_1007_s40747_024_01769_6
crossref_primary_10_3390_s24134356
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1016_j_engappai_2023_107608
crossref_primary_10_1007_s00170_023_12515_6
crossref_primary_10_1016_j_eswa_2024_123225
crossref_primary_10_1109_ACCESS_2024_3431040
crossref_primary_10_1109_ACCESS_2024_3447573
crossref_primary_10_1007_s12555_023_0059_6
crossref_primary_10_1007_s40747_024_01462_8
crossref_primary_10_1007_s00521_023_08704_9
crossref_primary_10_2118_221463_PA
crossref_primary_10_1016_j_conengprac_2024_105846
crossref_primary_10_1016_j_conengprac_2024_105845
crossref_primary_10_1016_j_engappai_2023_106912
crossref_primary_10_1088_1361_6501_ad9bd0
crossref_primary_10_1109_JSEN_2024_3365297
crossref_primary_10_1016_j_engappai_2024_108286
crossref_primary_10_1016_j_engappai_2024_108043
crossref_primary_10_1016_j_engappai_2024_108285
crossref_primary_10_1016_j_engappai_2024_108046
crossref_primary_10_1016_j_engappai_2024_108287
crossref_primary_10_3390_machines12110787
crossref_primary_10_1016_j_ins_2023_119594
crossref_primary_10_1016_j_measurement_2024_116187
crossref_primary_10_1016_j_jfranklin_2024_107452
crossref_primary_10_1007_s40747_023_01283_1
crossref_primary_10_1016_j_engappai_2023_107052
crossref_primary_10_1016_j_knosys_2024_112396
crossref_primary_10_1109_ACCESS_2023_3324054
crossref_primary_10_1016_j_engappai_2023_106201
crossref_primary_10_3390_app15021001
crossref_primary_10_1007_s40747_024_01415_1
crossref_primary_10_1109_TASE_2023_3314757
crossref_primary_10_1016_j_aei_2024_102833
crossref_primary_10_1109_JSEN_2023_3326439
crossref_primary_10_1109_JSEN_2024_3496693
crossref_primary_10_1016_j_istruc_2024_107971
crossref_primary_10_3390_electronics13193946
crossref_primary_10_1088_1361_6501_ad73f9
crossref_primary_10_1109_ACCESS_2025_3540907
crossref_primary_10_1016_j_engappai_2023_107662
crossref_primary_10_1016_j_ins_2024_120288
crossref_primary_10_1016_j_eswa_2023_122686
crossref_primary_10_1016_j_inffus_2024_102427
crossref_primary_10_1177_14759217241276019
crossref_primary_10_1088_1361_6501_ad204c
crossref_primary_10_1007_s40747_024_01529_6
crossref_primary_10_1016_j_ins_2023_119455
crossref_primary_10_1109_TASE_2023_3282844
crossref_primary_10_1007_s40747_023_01278_y
crossref_primary_10_1007_s13042_023_01945_z
crossref_primary_10_1016_j_engappai_2023_106859
crossref_primary_10_1109_OJIES_2024_3417401
crossref_primary_10_1109_TASE_2023_3291716
crossref_primary_10_1016_j_engappai_2024_109433
crossref_primary_10_1109_JAS_2023_123828
crossref_primary_10_1016_j_ymssp_2025_112438
crossref_primary_10_3390_s23135989
crossref_primary_10_1016_j_engappai_2023_106061
crossref_primary_10_1016_j_ipm_2024_103677
crossref_primary_10_1007_s12206_024_1018_8
crossref_primary_10_1016_j_ins_2023_118976
crossref_primary_10_1016_j_engappai_2023_107510
crossref_primary_10_3390_s23239368
crossref_primary_10_1088_1361_6501_ad5222
crossref_primary_10_1007_s00500_023_08558_2
crossref_primary_10_1016_j_conengprac_2023_105736
crossref_primary_10_1016_j_dsp_2023_104345
crossref_primary_10_1007_s00521_023_09004_y
crossref_primary_10_1007_s40747_023_01320_z
crossref_primary_10_3934_mbe_2024338
crossref_primary_10_1016_j_engappai_2023_107407
crossref_primary_10_1016_j_compind_2024_104169
crossref_primary_10_1109_JIOT_2024_3466916
crossref_primary_10_1016_j_engappai_2023_106796
crossref_primary_10_1016_j_ins_2023_119798
crossref_primary_10_1016_j_conengprac_2023_105588
crossref_primary_10_1016_j_engappai_2024_108236
crossref_primary_10_1016_j_engappai_2024_109603
crossref_primary_10_1016_j_engappai_2023_107643
crossref_primary_10_1016_j_oceaneng_2024_117211
crossref_primary_10_1088_1361_6501_ad4380
crossref_primary_10_1007_s40747_023_01063_x
crossref_primary_10_1080_10589759_2025_2452364
crossref_primary_10_1088_1361_6501_ad0f07
crossref_primary_10_1016_j_engappai_2024_108361
crossref_primary_10_1007_s40747_023_01311_0
crossref_primary_10_1007_s10845_023_02249_3
crossref_primary_10_1016_j_ins_2023_119672
crossref_primary_10_1016_j_ins_2024_120314
crossref_primary_10_1016_j_eswa_2024_125441
Cites_doi 10.1016/j.apenergy.2020.114499
10.1007/s00521-019-04097-w
10.1016/j.mechmachtheory.2019.03.036
10.1109/TVCG.2016.2570755
10.1016/j.aei.2021.101321
10.1016/j.ymssp.2017.06.022
10.1109/TNNLS.2020.2988928
10.1016/j.engappai.2021.104415
10.1016/j.imavis.2019.103853
10.1016/j.knosys.2020.106440
10.1016/j.isatra.2018.04.005
10.1109/ICREST.2019.8644089
10.3390/s21072524
10.1016/j.ymssp.2018.02.016
10.1016/j.isatra.2018.12.025
10.1109/TIE.2016.2627020
10.1016/j.knosys.2018.12.019
10.1109/JSEN.2020.3030910
10.1088/1361-6501/abeddd
10.1016/j.sigpro.2018.12.005
10.3390/s130608013
10.1109/TIE.2018.2877090
10.1016/j.patcog.2018.03.005
10.1016/j.ymssp.2015.10.007
10.1016/j.aei.2017.02.005
10.1115/1.4036350
10.1007/s11668-016-0080-7
10.1007/s40430-015-0458-6
10.1016/j.ress.2020.107050
10.1016/j.isatra.2019.07.001
10.1109/TCBB.2018.2822803
10.1016/j.jfranklin.2020.04.024
10.1109/JSEN.2019.2949057
ContentType Journal Article
Copyright 2022 The Franklin Institute
Copyright_xml – notice: 2022 The Franklin Institute
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2022.11.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
EndPage 1477
ExternalDocumentID 10_1016_j_jfranklin_2022_11_004
S0016003222008055
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AHPAA
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c245t-ca442a6429ab096179aa5fbdb28f834b429c9dc219e6ffc41f64f63cec043bb3
IEDL.DBID .~1
ISSN 0016-0032
IngestDate Thu Apr 24 23:08:48 EDT 2025
Tue Jul 01 01:38:26 EDT 2025
Fri Feb 23 02:39:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-ca442a6429ab096179aa5fbdb28f834b429c9dc219e6ffc41f64f63cec043bb3
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_jfranklin_2022_11_004
crossref_primary_10_1016_j_jfranklin_2022_11_004
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2022_11_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang (bib0007) 2016; 70
Pan, Hong, Chen, Singh, Jia (bib0013) 2019; 137
Wang, Ma, Hu, Wang (bib0019) 2021
Liu, Yang, Zio, Chen (bib0005) 2018; 108
Li, Ping, Wang, Chen, Cao (bib0036) 2013; 13
Zhu, He, Wei, Wang, Zhou (bib0033) 2021; 21
Wen, Li, Gao (bib0027) 2020; 32
Guo, Lei, Xing, Yan, Li (bib0026) 2018; 66
Cui, Wang, Ling, Zhong (bib0009) 2021; 21
Sikder, Bhakta, Nahid, Islam (bib0018) 2019
Li, Grandvalet, Davoine, Cheng, Cui, Zhang, Belongie, Tsai, Yang (bib0024) 2020; 93
Ma, Hu, Wang, Li, Wang (bib0002) 2021; 70
Schwendemann, Amjad, Sikora (bib0022) 2021; 105
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (bib0040) 2016; 17
Tayachi, Gabzili, Lachiri (bib0016) 2022; 22
Liu, Zhou, Zheng, Jiang, Zhang (bib0012) 2018; 77
Sevakula, Singh, Verma, Kumar, Cui (bib0025) 2018; 16
Boudiaf, Moussaoui, Dahane, Atoui (bib0015) 2016; 16
Katsifarakis, Riga, Voukantsis, Karatzas (bib0003) 2016; 38
Long, Cao, Wang, Jordan (bib0035) 2018; 31
Fan, Sun, Xiao, Ma, Lee, Wang, Tseng (bib0030) 2020; 262
Li, Wang, Shi, Liu, Hou (bib0038) 2018; 80
Wu, Jennings, Terpenny, Gao, Kumara (bib0008) 2017; 139
Lu, Liang, Cheng, Meng, Yang, Zhang (bib0031) 2017; 64
Pezzotti, Lelieveldt, Maaten, Hollt, Eisemann, Vilanova (bib0041) 2016; 23
Han, Liu, Yang, Jiang (bib0006) 2019; 165
Wang, Luo, Tang, Yang (bib0017) 2021; 49
Habic, Semenov, Pasiliao (bib0023) 2020; 209
Sun, Saenko (bib0039) 2016
Zhao, Zhang, Yu, Sun, Wang, Yan, Chen (bib0032) 2021; 70
Yan, Shen, Sun, Chen (bib0001) 2019; 20
Zhang, Li, Ding (bib0004) 2019; 95
Wang, Pan, Yuan, Yang, Gui (bib0011) 2020; 96
Zhou, Cao, Zhang, Liu (bib0020) 2021; 32
Li, Zhang, Ding, Sun (bib0021) 2019; 157
Yosinski, Clune, Bengio, Lipson (bib0034) 2014; 27
Zhang, Li, Peng, Chen, Zhang (bib0010) 2018; 100
Lu, Wang, Zhou (bib0037) 2017; 32
Tao, Wang, Chen, Stojanovic, Yang (bib0014) 2020; 357
Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong, He (bib0029) 2020; 32
Wang, Shen, Xia, Wang, Zhu, Zhu (bib0028) 2020; 202
Li (10.1016/j.jfranklin.2022.11.004_bib0024) 2020; 93
Boudiaf (10.1016/j.jfranklin.2022.11.004_bib0015) 2016; 16
Lu (10.1016/j.jfranklin.2022.11.004_bib0031) 2017; 64
Wu (10.1016/j.jfranklin.2022.11.004_bib0008) 2017; 139
Yan (10.1016/j.jfranklin.2022.11.004_bib0001) 2019; 20
Ganin (10.1016/j.jfranklin.2022.11.004_bib0040) 2016; 17
Lu (10.1016/j.jfranklin.2022.11.004_bib0037) 2017; 32
Katsifarakis (10.1016/j.jfranklin.2022.11.004_bib0003) 2016; 38
Guo (10.1016/j.jfranklin.2022.11.004_bib0026) 2018; 66
Zhu (10.1016/j.jfranklin.2022.11.004_bib0029) 2020; 32
Habic (10.1016/j.jfranklin.2022.11.004_bib0023) 2020; 209
Ma (10.1016/j.jfranklin.2022.11.004_bib0002) 2021; 70
Sikder (10.1016/j.jfranklin.2022.11.004_bib0018) 2019
Zhang (10.1016/j.jfranklin.2022.11.004_bib0004) 2019; 95
Cui (10.1016/j.jfranklin.2022.11.004_bib0009) 2021; 21
Wang (10.1016/j.jfranklin.2022.11.004_bib0028) 2020; 202
Zhang (10.1016/j.jfranklin.2022.11.004_bib0010) 2018; 100
Li (10.1016/j.jfranklin.2022.11.004_bib0038) 2018; 80
Wang (10.1016/j.jfranklin.2022.11.004_bib0011) 2020; 96
Li (10.1016/j.jfranklin.2022.11.004_bib0021) 2019; 157
Tao (10.1016/j.jfranklin.2022.11.004_bib0014) 2020; 357
Li (10.1016/j.jfranklin.2022.11.004_bib0036) 2013; 13
Han (10.1016/j.jfranklin.2022.11.004_bib0006) 2019; 165
Pan (10.1016/j.jfranklin.2022.11.004_bib0013) 2019; 137
Zhu (10.1016/j.jfranklin.2022.11.004_bib0033) 2021; 21
Schwendemann (10.1016/j.jfranklin.2022.11.004_bib0022) 2021; 105
Wang (10.1016/j.jfranklin.2022.11.004_bib0017) 2021; 49
Zhou (10.1016/j.jfranklin.2022.11.004_bib0020) 2021; 32
Yosinski (10.1016/j.jfranklin.2022.11.004_bib0034) 2014; 27
Wang (10.1016/j.jfranklin.2022.11.004_bib0007) 2016; 70
Tayachi (10.1016/j.jfranklin.2022.11.004_bib0016) 2022; 22
Wen (10.1016/j.jfranklin.2022.11.004_bib0027) 2020; 32
Long (10.1016/j.jfranklin.2022.11.004_bib0035) 2018; 31
Sevakula (10.1016/j.jfranklin.2022.11.004_bib0025) 2018; 16
Fan (10.1016/j.jfranklin.2022.11.004_bib0030) 2020; 262
Liu (10.1016/j.jfranklin.2022.11.004_bib0005) 2018; 108
Wang (10.1016/j.jfranklin.2022.11.004_bib0019) 2021
Liu (10.1016/j.jfranklin.2022.11.004_bib0012) 2018; 77
Zhao (10.1016/j.jfranklin.2022.11.004_bib0032) 2021; 70
Sun (10.1016/j.jfranklin.2022.11.004_bib0039) 2016
Pezzotti (10.1016/j.jfranklin.2022.11.004_bib0041) 2016; 23
References_xml – volume: 32
  start-page: 6111
  year: 2020
  end-page: 6124
  ident: bib0027
  article-title: A transfer convolutional neural network for fault diagnosis based on resnet-50
  publication-title: Neural Comput. Appl.
– volume: 64
  start-page: 2296
  year: 2017
  end-page: 2305
  ident: bib0031
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 70
  start-page: 201
  year: 2016
  end-page: 208
  ident: bib0007
  article-title: K-Nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: revisited
  publication-title: Mech. Syst. Signal Process
– volume: 16
  start-page: 271
  year: 2016
  end-page: 284
  ident: bib0015
  article-title: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data
  publication-title: J. Fail. Anal. Prev.
– volume: 32
  start-page: 1713
  year: 2020
  end-page: 1722
  ident: bib0029
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 17
  start-page: 2096
  year: 2016
  end-page: 2130
  ident: bib0040
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 100
  start-page: 439
  year: 2018
  end-page: 453
  ident: bib0010
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process.
– volume: 95
  start-page: 295
  year: 2019
  end-page: 305
  ident: bib0004
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA Trans.
– volume: 139
  start-page: 179
  year: 2017
  end-page: 187
  ident: bib0008
  article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests
  publication-title: J. Manuf. Sci. Eng.
– volume: 13
  start-page: 8013
  year: 2013
  end-page: 8041
  ident: bib0036
  article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis
  publication-title: Sensors
– volume: 70
  start-page: 1
  year: 2021
  end-page: 28
  ident: bib0032
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans Instrum Meas
– volume: 49
  start-page: 101321
  year: 2021
  ident: bib0017
  article-title: Automatic representation and detection of fault bearings in-wheel motors under variable load conditions
  publication-title: Adv. Eng. Inf.
– volume: 32
  start-page: 139
  year: 2017
  end-page: 151
  ident: bib0037
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv. Eng. Inf.
– volume: 21
  start-page: 4927
  year: 2021
  end-page: 4937
  ident: bib0009
  article-title: Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine
  publication-title: IEEE Sens. J.
– volume: 209
  start-page: 106440
  year: 2020
  ident: bib0023
  article-title: Multitask deep learning for native language identification
  publication-title: Knowl. Based Syst.
– volume: 157
  start-page: 180
  year: 2019
  end-page: 197
  ident: bib0021
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process.
– volume: 27
  start-page: 1792
  year: 2014
  ident: bib0034
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 8374
  year: 2019
  end-page: 8393
  ident: bib0001
  article-title: Knowledge transfer for rotary machine fault diagnosis
  publication-title: IEEE Sens. J.
– volume: 357
  start-page: 7286
  year: 2020
  end-page: 7307
  ident: bib0014
  article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
  publication-title: J. Franklin Inst.
– volume: 22
  start-page: 123
  year: 2022
  end-page: 130
  ident: bib0016
  article-title: A new approach for detection of gear defects using a discrete wavelet transform and fast empirical mode decomposition
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 96
  start-page: 457
  year: 2020
  end-page: 467
  ident: bib0011
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
– start-page: 564
  year: 2019
  end-page: 569
  ident: bib0018
  article-title: Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing
  publication-title: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE
– volume: 202
  start-page: 107050
  year: 2020
  ident: bib0028
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 443
  year: 2016
  end-page: 450
  ident: bib0039
  article-title: Deep Coral: Correlation Alignment for Deep Domain Adaptation
  publication-title: European conference on computer vision
– volume: 93
  start-page: 103853
  year: 2020
  ident: bib0024
  article-title: Transfer learning in computer vision tasks: remember where you come from
  publication-title: Image Vis. Comput.
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0019
  article-title: Gear fault diagnosis based on variational modal decomposition and wide+narrow visual field neural networks
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 66
  start-page: 7316
  year: 2018
  end-page: 7325
  ident: bib0026
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Ind. Electron.
– volume: 77
  start-page: 167
  year: 2018
  end-page: 178
  ident: bib0012
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Trans.
– volume: 137
  start-page: 509
  year: 2019
  end-page: 526
  ident: bib0013
  article-title: Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion
  publication-title: Mech. Mach. Theory
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: bib0005
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
– volume: 23
  start-page: 1739
  year: 2016
  end-page: 1752
  ident: bib0041
  article-title: Approximated and user steerable tSNE for progressive visual analytics
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 16
  start-page: 2089
  year: 2018
  end-page: 2100
  ident: bib0025
  article-title: Transfer learning for molecular cancer classification using deep neural networks
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 31
  start-page: 10667
  year: 2018
  ident: bib0035
  article-title: Conditional adversarial domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 32
  start-page: 095105
  year: 2021
  ident: bib0020
  article-title: Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
– volume: 105
  start-page: 104415
  year: 2021
  ident: bib0022
  article-title: Bearing fault diagnosis with intermediate domain based layered maximum mean discrepancy: a new transfer learning approach
  publication-title: Eng. Appl. Artif. Intell.
– volume: 80
  start-page: 109
  year: 2018
  end-page: 117
  ident: bib0038
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 1565
  year: 2016
  end-page: 1574
  ident: bib0003
  article-title: Computational intelligence methods for rolling bearing fault detection
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
– volume: 262
  start-page: 114499
  year: 2020
  ident: bib0030
  article-title: Statistical investigations of transfer learning-based methodology for short-term building energy predictions
  publication-title: Appl. Energy
– volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: bib0006
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl. Based Syst.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib0002
  article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 2524
  year: 2021
  ident: bib0033
  article-title: Bearing fault feature extraction and fault diagnosis method based on feature fusion
  publication-title: Sensors
– volume: 262
  start-page: 114499
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0030
  article-title: Statistical investigations of transfer learning-based methodology for short-term building energy predictions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114499
– volume: 32
  start-page: 6111
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0027
  article-title: A transfer convolutional neural network for fault diagnosis based on resnet-50
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04097-w
– volume: 137
  start-page: 509
  year: 2019
  ident: 10.1016/j.jfranklin.2022.11.004_bib0013
  article-title: Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.03.036
– volume: 23
  start-page: 1739
  year: 2016
  ident: 10.1016/j.jfranklin.2022.11.004_bib0041
  article-title: Approximated and user steerable tSNE for progressive visual analytics
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2016.2570755
– volume: 49
  start-page: 101321
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0017
  article-title: Automatic representation and detection of fault bearings in-wheel motors under variable load conditions
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101321
– volume: 100
  start-page: 439
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0010
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.022
– volume: 32
  start-page: 1713
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0029
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2988928
– volume: 105
  start-page: 104415
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0022
  article-title: Bearing fault diagnosis with intermediate domain based layered maximum mean discrepancy: a new transfer learning approach
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104415
– volume: 27
  start-page: 1792
  year: 2014
  ident: 10.1016/j.jfranklin.2022.11.004_bib0034
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 93
  start-page: 103853
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0024
  article-title: Transfer learning in computer vision tasks: remember where you come from
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2019.103853
– volume: 209
  start-page: 106440
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0023
  article-title: Multitask deep learning for native language identification
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106440
– volume: 31
  start-page: 10667
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0035
  article-title: Conditional adversarial domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 123
  year: 2022
  ident: 10.1016/j.jfranklin.2022.11.004_bib0016
  article-title: A new approach for detection of gear defects using a discrete wavelet transform and fast empirical mode decomposition
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 77
  start-page: 167
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0012
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.04.005
– start-page: 564
  year: 2019
  ident: 10.1016/j.jfranklin.2022.11.004_bib0018
  article-title: Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing
  publication-title: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE
  doi: 10.1109/ICREST.2019.8644089
– volume: 21
  start-page: 2524
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0033
  article-title: Bearing fault feature extraction and fault diagnosis method based on feature fusion
  publication-title: Sensors
  doi: 10.3390/s21072524
– volume: 108
  start-page: 33
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0005
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 95
  start-page: 295
  year: 2019
  ident: 10.1016/j.jfranklin.2022.11.004_bib0004
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.12.025
– volume: 64
  start-page: 2296
  year: 2017
  ident: 10.1016/j.jfranklin.2022.11.004_bib0031
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2627020
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.jfranklin.2022.11.004_bib0006
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.12.019
– volume: 21
  start-page: 4927
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0009
  article-title: Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3030910
– volume: 32
  start-page: 095105
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0020
  article-title: Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abeddd
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0032
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans Instrum Meas
– volume: 157
  start-page: 180
  year: 2019
  ident: 10.1016/j.jfranklin.2022.11.004_bib0021
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.12.005
– start-page: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0019
  article-title: Gear fault diagnosis based on variational modal decomposition and wide+narrow visual field neural networks
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 13
  start-page: 8013
  year: 2013
  ident: 10.1016/j.jfranklin.2022.11.004_bib0036
  article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis
  publication-title: Sensors
  doi: 10.3390/s130608013
– start-page: 443
  year: 2016
  ident: 10.1016/j.jfranklin.2022.11.004_bib0039
  article-title: Deep Coral: Correlation Alignment for Deep Domain Adaptation
– volume: 66
  start-page: 7316
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0026
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2877090
– volume: 80
  start-page: 109
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0038
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.005
– volume: 70
  start-page: 201
  year: 2016
  ident: 10.1016/j.jfranklin.2022.11.004_bib0007
  article-title: K-Nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: revisited
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2015.10.007
– volume: 17
  start-page: 2096
  year: 2016
  ident: 10.1016/j.jfranklin.2022.11.004_bib0040
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 139
  year: 2017
  ident: 10.1016/j.jfranklin.2022.11.004_bib0037
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2017.02.005
– volume: 139
  start-page: 179
  year: 2017
  ident: 10.1016/j.jfranklin.2022.11.004_bib0008
  article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4036350
– volume: 16
  start-page: 271
  year: 2016
  ident: 10.1016/j.jfranklin.2022.11.004_bib0015
  article-title: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-016-0080-7
– volume: 38
  start-page: 1565
  year: 2016
  ident: 10.1016/j.jfranklin.2022.11.004_bib0003
  article-title: Computational intelligence methods for rolling bearing fault detection
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-015-0458-6
– volume: 202
  start-page: 107050
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0028
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107050
– volume: 96
  start-page: 457
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0011
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.001
– volume: 16
  start-page: 2089
  year: 2018
  ident: 10.1016/j.jfranklin.2022.11.004_bib0025
  article-title: Transfer learning for molecular cancer classification using deep neural networks
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2018.2822803
– volume: 357
  start-page: 7286
  year: 2020
  ident: 10.1016/j.jfranklin.2022.11.004_bib0014
  article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.04.024
– volume: 20
  start-page: 8374
  year: 2019
  ident: 10.1016/j.jfranklin.2022.11.004_bib0001
  article-title: Knowledge transfer for rotary machine fault diagnosis
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2949057
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2022.11.004_bib0002
  article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning
  publication-title: IEEE Trans. Instrum. Meas.
SSID ssj0017100
Score 2.6430974
Snippet In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1454
Title Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
URI https://dx.doi.org/10.1016/j.jfranklin.2022.11.004
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlD-Sha4Akdh7dECqircoEEltkx7YEogEBGbr0t_cOOwjUgaFTpCQXRefLPZy77yPkOeFIQsWRgDgUHhNSehITOZFEXPtKa65wOPlzGA3G7H3CJzXSq2ZhsK3S-X7r07fe2p1pO222l9Mpzvj6EK3xTwGmPRwHzRmL0cpbP7s2Dx_Ra6w3hsoZ7j7o8ZoZx4wOhWIQtBDO0zG2_YlQe1Gnf0HOXbpIu_aNLklNF1fkbA9E8JqocbEul_jJr7Wi22d6avEFFT9dWcRtKsGc8WhEOd9QZbvrpmuKIUzRRUGRYd4zK9tW_U0dmiquGTUl7qfdkFH_ddQbeI47wcsDxjdeLhgLBBQXqZDI6hKnQnAjlQwSk4RMwoU8VTn4Kx0ZkzPfRMxEYa7zDgulDG9JvVgU-o7QDk9ExI0vYpMwnhoJdSxXMobnxFDb8QaJKnVlucMVR3qLeVY1kM2ynZ4z1DNUHRnouUE6O8GlhdY4LvJSrUd2YCUZBIBjwvf_EX4gp0g0bzdfHkl9syr1E6QjG9nc2luTnHTfPgbDX8As40o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYoHdoOVZ8qfXroGiCJnUe3ChXRFphAYovs2JZANCAgQ5f-9t4RB4E6MHSKlOSs6Hy-h3P-PkKeI44kVBwJiH3hMCGlIzGRE1HAtau05goPJ_f6QWfIPkZ8VCGt8iwMtlVa31_49LW3tncaVpuN-XiMZ3xdiNb4pwDTHs4PyCGD5Ys0BvWfTZ-Hi_A1hTuG0hle32nymhhLjQ6VoufVEc_TUrb9CVFbYad9Rk5tvkhfi086JxWdXZCTLRTBS6KG2TKf45pfakXXYzpq9gUlP10UkNtUgj3j1Yh8uqKqaK8bLynGMEVnGUWKeccsir7qb2rhVHHSqMlxQ-2KDNpvg1bHseQJTuoxvnJSwZgnoLqIhURalzAWghuppBeZyGcSHqSxSsFh6cCYlLkmYCbwU502mS-lf02q2SzTN4Q2eSQCblwRmojx2EgoZLmSIYwTQnHHayQo1ZWkFlgc-S2mSdlBNkk2ek5Qz1B2JKDnGmluBOcFtsZ-kZdyPpIdM0kgAuwTvv2P8BM56gx63aT73v-8I8fIOl_sxNyT6mqR6wfITVbycW17vwUk5Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+cross-domain+rolling+bearing+fault+diagnosis+based+on+time-frequency+information+fusion&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Tao%2C+Hongfeng&rft.au=Qiu%2C+Jier&rft.au=Chen%2C+Yiyang&rft.au=Stojanovic%2C+Vladimir&rft.date=2023-01-01&rft.issn=0016-0032&rft.volume=360&rft.issue=2&rft.spage=1454&rft.epage=1477&rft_id=info:doi/10.1016%2Fj.jfranklin.2022.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfranklin_2022_11_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon