Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operati...
Saved in:
Published in | Journal of the Franklin Institute Vol. 360; no. 2; pp. 1454 - 1477 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operating conditions. This makes it difficult to obtain bearing data labels, and the distribution of the collected samples varies widely. To address these problems, an unsupervised cross-domain fault diagnosis method based on time-frequency information fusion is proposed in this paper. Firstly, wavelet packet decomposition and reconstruction are carried out on the bearing vibration signal, and the energy eigenvectors of each sub-band are extracted to obtain a 2-D time-frequency map of fault features. Secondly, an unsupervised cross-domain fault diagnosis model is constructed, the improved maximum mean discrepancy algorithm is used as the measurement standard, and the joint distribution distance is calculated with the help of pseudo-labels to reduce data distribution differences. Finally, the model is applied to the motor bearing for comparison and verification. The results demonstrate its high diagnosis accuracy and strong robustness. |
---|---|
AbstractList | In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operating conditions. This makes it difficult to obtain bearing data labels, and the distribution of the collected samples varies widely. To address these problems, an unsupervised cross-domain fault diagnosis method based on time-frequency information fusion is proposed in this paper. Firstly, wavelet packet decomposition and reconstruction are carried out on the bearing vibration signal, and the energy eigenvectors of each sub-band are extracted to obtain a 2-D time-frequency map of fault features. Secondly, an unsupervised cross-domain fault diagnosis model is constructed, the improved maximum mean discrepancy algorithm is used as the measurement standard, and the joint distribution distance is calculated with the help of pseudo-labels to reduce data distribution differences. Finally, the model is applied to the motor bearing for comparison and verification. The results demonstrate its high diagnosis accuracy and strong robustness. |
Author | Chen, Yiyang Cheng, Long Qiu, Jier Tao, Hongfeng Stojanovic, Vladimir |
Author_xml | – sequence: 1 givenname: Hongfeng surname: Tao fullname: Tao, Hongfeng email: taohongfeng@jiangnan.edu.cn organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China – sequence: 2 givenname: Jier surname: Qiu fullname: Qiu, Jier email: 1070416230@vip.jiangnan.edu.cn organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China – sequence: 3 givenname: Yiyang surname: Chen fullname: Chen, Yiyang email: yiyang.chen@soton.ac.uk organization: Department of Civil, Maritime and Environmental Engineering, University of Southampton, Southampton, SO16 7QF, United Kingdom – sequence: 4 givenname: Vladimir surname: Stojanovic fullname: Stojanovic, Vladimir email: vladostojanovic@mts.rs organization: Faculty of Mechanical and Civil Engineering,Department of Automatic Control, Robotics and Fluid Technique, University of Kragujevac, 36000 Kraljevo, Serbia – sequence: 5 givenname: Long surname: Cheng fullname: Cheng, Long email: 13032212876@163.com organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China |
BookMark | eNqNkMtOwzAQRS1UJNrCN5AfSLAdN2kWLKqKl4TEpqyt8atySOxiJ5X697gtYsEGVlfWzLnynBmaOO80QrcEFwST6q4tWhPAfXTWFRRTWhBSYMwu0JQs6yanVVNO0BSn1Rzjkl6hWYxtetYE4ylS7y6OOx32NmqVyeBjzJXvwbos-C51bjOhIRzTwNgNmbKwdT7amAk4It5lg-11boL-HLWTh8w640MPg00jM8YU1-jSQBf1zXfO0ebxYbN-zl_fnl7Wq9dcUrYYcgmMUagYbUDgpiJ1A7AwQgm6NMuSiTSQjZKUNLoyRjJiKmaqUmqJWSlEOUf359rTGUEbLu1w-scQwHacYH40xlv-Y4wfjXFCeDKW-PoXvwu2h3D4B7k6kzpdt7c68ChtkqGVDVoOXHn7Z8cX8CmRRg |
CitedBy_id | crossref_primary_10_1007_s40747_023_01268_0 crossref_primary_10_1109_TASE_2023_3340726 crossref_primary_10_1038_s41598_024_81118_2 crossref_primary_10_1007_s42417_024_01358_4 crossref_primary_10_1016_j_isatra_2025_01_012 crossref_primary_10_1016_j_ress_2024_110641 crossref_primary_10_1016_j_engappai_2024_109756 crossref_primary_10_1016_j_ins_2023_119808 crossref_primary_10_1016_j_aei_2024_102912 crossref_primary_10_1016_j_neunet_2023_06_015 crossref_primary_10_1007_s40747_023_01054_y crossref_primary_10_1016_j_conengprac_2023_105714 crossref_primary_10_1007_s00170_023_12060_2 crossref_primary_10_1109_TASE_2024_3374759 crossref_primary_10_32604_sdhm_2023_029428 crossref_primary_10_3390_pr12122845 crossref_primary_10_1007_s10846_023_02009_8 crossref_primary_10_1007_s11071_023_08412_y crossref_primary_10_1007_s11760_025_03939_6 crossref_primary_10_1109_TASE_2024_3381068 crossref_primary_10_1007_s40747_023_01155_8 crossref_primary_10_1088_1361_6501_ada632 crossref_primary_10_1016_j_measurement_2024_114191 crossref_primary_10_1007_s40747_024_01362_x crossref_primary_10_1016_j_compeleceng_2025_110117 crossref_primary_10_1016_j_engappai_2023_107508 crossref_primary_10_1016_j_postharvbio_2025_113495 crossref_primary_10_1016_j_ins_2023_120001 crossref_primary_10_1016_j_engappai_2023_107226 crossref_primary_10_1016_j_conengprac_2023_105725 crossref_primary_10_1007_s40747_023_01167_4 crossref_primary_10_1016_j_engappai_2024_109477 crossref_primary_10_1155_2024_9071328 crossref_primary_10_1007_s00521_023_08964_5 crossref_primary_10_1016_j_neucom_2024_127862 crossref_primary_10_1016_j_jfranklin_2024_107475 crossref_primary_10_1016_j_knosys_2023_111101 crossref_primary_10_1016_j_ins_2024_120378 crossref_primary_10_1016_j_jfranklin_2025_107535 crossref_primary_10_1007_s00521_023_09150_3 crossref_primary_10_1016_j_nahs_2023_101435 crossref_primary_10_1016_j_knosys_2024_111604 crossref_primary_10_1016_j_engappai_2024_107918 crossref_primary_10_1016_j_fraope_2025_100228 crossref_primary_10_1007_s00034_023_02432_0 crossref_primary_10_1007_s40747_024_01439_7 crossref_primary_10_1016_j_knosys_2025_112982 crossref_primary_10_1016_j_engappai_2024_108211 crossref_primary_10_1016_j_neunet_2024_106518 crossref_primary_10_3390_mi14071467 crossref_primary_10_1016_j_eswa_2023_121893 crossref_primary_10_1007_s00034_023_02455_7 crossref_primary_10_1007_s40747_024_01769_6 crossref_primary_10_3390_s24134356 crossref_primary_10_1016_j_engappai_2023_106911 crossref_primary_10_1016_j_engappai_2023_107608 crossref_primary_10_1007_s00170_023_12515_6 crossref_primary_10_1016_j_eswa_2024_123225 crossref_primary_10_1109_ACCESS_2024_3431040 crossref_primary_10_1109_ACCESS_2024_3447573 crossref_primary_10_1007_s12555_023_0059_6 crossref_primary_10_1007_s40747_024_01462_8 crossref_primary_10_1007_s00521_023_08704_9 crossref_primary_10_2118_221463_PA crossref_primary_10_1016_j_conengprac_2024_105846 crossref_primary_10_1016_j_conengprac_2024_105845 crossref_primary_10_1016_j_engappai_2023_106912 crossref_primary_10_1088_1361_6501_ad9bd0 crossref_primary_10_1109_JSEN_2024_3365297 crossref_primary_10_1016_j_engappai_2024_108286 crossref_primary_10_1016_j_engappai_2024_108043 crossref_primary_10_1016_j_engappai_2024_108285 crossref_primary_10_1016_j_engappai_2024_108046 crossref_primary_10_1016_j_engappai_2024_108287 crossref_primary_10_3390_machines12110787 crossref_primary_10_1016_j_ins_2023_119594 crossref_primary_10_1016_j_measurement_2024_116187 crossref_primary_10_1016_j_jfranklin_2024_107452 crossref_primary_10_1007_s40747_023_01283_1 crossref_primary_10_1016_j_engappai_2023_107052 crossref_primary_10_1016_j_knosys_2024_112396 crossref_primary_10_1109_ACCESS_2023_3324054 crossref_primary_10_1016_j_engappai_2023_106201 crossref_primary_10_3390_app15021001 crossref_primary_10_1007_s40747_024_01415_1 crossref_primary_10_1109_TASE_2023_3314757 crossref_primary_10_1016_j_aei_2024_102833 crossref_primary_10_1109_JSEN_2023_3326439 crossref_primary_10_1109_JSEN_2024_3496693 crossref_primary_10_1016_j_istruc_2024_107971 crossref_primary_10_3390_electronics13193946 crossref_primary_10_1088_1361_6501_ad73f9 crossref_primary_10_1109_ACCESS_2025_3540907 crossref_primary_10_1016_j_engappai_2023_107662 crossref_primary_10_1016_j_ins_2024_120288 crossref_primary_10_1016_j_eswa_2023_122686 crossref_primary_10_1016_j_inffus_2024_102427 crossref_primary_10_1177_14759217241276019 crossref_primary_10_1088_1361_6501_ad204c crossref_primary_10_1007_s40747_024_01529_6 crossref_primary_10_1016_j_ins_2023_119455 crossref_primary_10_1109_TASE_2023_3282844 crossref_primary_10_1007_s40747_023_01278_y crossref_primary_10_1007_s13042_023_01945_z crossref_primary_10_1016_j_engappai_2023_106859 crossref_primary_10_1109_OJIES_2024_3417401 crossref_primary_10_1109_TASE_2023_3291716 crossref_primary_10_1016_j_engappai_2024_109433 crossref_primary_10_1109_JAS_2023_123828 crossref_primary_10_1016_j_ymssp_2025_112438 crossref_primary_10_3390_s23135989 crossref_primary_10_1016_j_engappai_2023_106061 crossref_primary_10_1016_j_ipm_2024_103677 crossref_primary_10_1007_s12206_024_1018_8 crossref_primary_10_1016_j_ins_2023_118976 crossref_primary_10_1016_j_engappai_2023_107510 crossref_primary_10_3390_s23239368 crossref_primary_10_1088_1361_6501_ad5222 crossref_primary_10_1007_s00500_023_08558_2 crossref_primary_10_1016_j_conengprac_2023_105736 crossref_primary_10_1016_j_dsp_2023_104345 crossref_primary_10_1007_s00521_023_09004_y crossref_primary_10_1007_s40747_023_01320_z crossref_primary_10_3934_mbe_2024338 crossref_primary_10_1016_j_engappai_2023_107407 crossref_primary_10_1016_j_compind_2024_104169 crossref_primary_10_1109_JIOT_2024_3466916 crossref_primary_10_1016_j_engappai_2023_106796 crossref_primary_10_1016_j_ins_2023_119798 crossref_primary_10_1016_j_conengprac_2023_105588 crossref_primary_10_1016_j_engappai_2024_108236 crossref_primary_10_1016_j_engappai_2024_109603 crossref_primary_10_1016_j_engappai_2023_107643 crossref_primary_10_1016_j_oceaneng_2024_117211 crossref_primary_10_1088_1361_6501_ad4380 crossref_primary_10_1007_s40747_023_01063_x crossref_primary_10_1080_10589759_2025_2452364 crossref_primary_10_1088_1361_6501_ad0f07 crossref_primary_10_1016_j_engappai_2024_108361 crossref_primary_10_1007_s40747_023_01311_0 crossref_primary_10_1007_s10845_023_02249_3 crossref_primary_10_1016_j_ins_2023_119672 crossref_primary_10_1016_j_ins_2024_120314 crossref_primary_10_1016_j_eswa_2024_125441 |
Cites_doi | 10.1016/j.apenergy.2020.114499 10.1007/s00521-019-04097-w 10.1016/j.mechmachtheory.2019.03.036 10.1109/TVCG.2016.2570755 10.1016/j.aei.2021.101321 10.1016/j.ymssp.2017.06.022 10.1109/TNNLS.2020.2988928 10.1016/j.engappai.2021.104415 10.1016/j.imavis.2019.103853 10.1016/j.knosys.2020.106440 10.1016/j.isatra.2018.04.005 10.1109/ICREST.2019.8644089 10.3390/s21072524 10.1016/j.ymssp.2018.02.016 10.1016/j.isatra.2018.12.025 10.1109/TIE.2016.2627020 10.1016/j.knosys.2018.12.019 10.1109/JSEN.2020.3030910 10.1088/1361-6501/abeddd 10.1016/j.sigpro.2018.12.005 10.3390/s130608013 10.1109/TIE.2018.2877090 10.1016/j.patcog.2018.03.005 10.1016/j.ymssp.2015.10.007 10.1016/j.aei.2017.02.005 10.1115/1.4036350 10.1007/s11668-016-0080-7 10.1007/s40430-015-0458-6 10.1016/j.ress.2020.107050 10.1016/j.isatra.2019.07.001 10.1109/TCBB.2018.2822803 10.1016/j.jfranklin.2020.04.024 10.1109/JSEN.2019.2949057 |
ContentType | Journal Article |
Copyright | 2022 The Franklin Institute |
Copyright_xml | – notice: 2022 The Franklin Institute |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfranklin.2022.11.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2693 |
EndPage | 1477 |
ExternalDocumentID | 10_1016_j_jfranklin_2022_11_004 S0016003222008055 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO ADXHL AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AHPAA AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c245t-ca442a6429ab096179aa5fbdb28f834b429c9dc219e6ffc41f64f63cec043bb3 |
IEDL.DBID | .~1 |
ISSN | 0016-0032 |
IngestDate | Thu Apr 24 23:08:48 EDT 2025 Tue Jul 01 01:38:26 EDT 2025 Fri Feb 23 02:39:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-ca442a6429ab096179aa5fbdb28f834b429c9dc219e6ffc41f64f63cec043bb3 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jfranklin_2022_11_004 crossref_primary_10_1016_j_jfranklin_2022_11_004 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2022_11_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the Franklin Institute |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang (bib0007) 2016; 70 Pan, Hong, Chen, Singh, Jia (bib0013) 2019; 137 Wang, Ma, Hu, Wang (bib0019) 2021 Liu, Yang, Zio, Chen (bib0005) 2018; 108 Li, Ping, Wang, Chen, Cao (bib0036) 2013; 13 Zhu, He, Wei, Wang, Zhou (bib0033) 2021; 21 Wen, Li, Gao (bib0027) 2020; 32 Guo, Lei, Xing, Yan, Li (bib0026) 2018; 66 Cui, Wang, Ling, Zhong (bib0009) 2021; 21 Sikder, Bhakta, Nahid, Islam (bib0018) 2019 Li, Grandvalet, Davoine, Cheng, Cui, Zhang, Belongie, Tsai, Yang (bib0024) 2020; 93 Ma, Hu, Wang, Li, Wang (bib0002) 2021; 70 Schwendemann, Amjad, Sikora (bib0022) 2021; 105 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (bib0040) 2016; 17 Tayachi, Gabzili, Lachiri (bib0016) 2022; 22 Liu, Zhou, Zheng, Jiang, Zhang (bib0012) 2018; 77 Sevakula, Singh, Verma, Kumar, Cui (bib0025) 2018; 16 Boudiaf, Moussaoui, Dahane, Atoui (bib0015) 2016; 16 Katsifarakis, Riga, Voukantsis, Karatzas (bib0003) 2016; 38 Long, Cao, Wang, Jordan (bib0035) 2018; 31 Fan, Sun, Xiao, Ma, Lee, Wang, Tseng (bib0030) 2020; 262 Li, Wang, Shi, Liu, Hou (bib0038) 2018; 80 Wu, Jennings, Terpenny, Gao, Kumara (bib0008) 2017; 139 Lu, Liang, Cheng, Meng, Yang, Zhang (bib0031) 2017; 64 Pezzotti, Lelieveldt, Maaten, Hollt, Eisemann, Vilanova (bib0041) 2016; 23 Han, Liu, Yang, Jiang (bib0006) 2019; 165 Wang, Luo, Tang, Yang (bib0017) 2021; 49 Habic, Semenov, Pasiliao (bib0023) 2020; 209 Sun, Saenko (bib0039) 2016 Zhao, Zhang, Yu, Sun, Wang, Yan, Chen (bib0032) 2021; 70 Yan, Shen, Sun, Chen (bib0001) 2019; 20 Zhang, Li, Ding (bib0004) 2019; 95 Wang, Pan, Yuan, Yang, Gui (bib0011) 2020; 96 Zhou, Cao, Zhang, Liu (bib0020) 2021; 32 Li, Zhang, Ding, Sun (bib0021) 2019; 157 Yosinski, Clune, Bengio, Lipson (bib0034) 2014; 27 Zhang, Li, Peng, Chen, Zhang (bib0010) 2018; 100 Lu, Wang, Zhou (bib0037) 2017; 32 Tao, Wang, Chen, Stojanovic, Yang (bib0014) 2020; 357 Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong, He (bib0029) 2020; 32 Wang, Shen, Xia, Wang, Zhu, Zhu (bib0028) 2020; 202 Li (10.1016/j.jfranklin.2022.11.004_bib0024) 2020; 93 Boudiaf (10.1016/j.jfranklin.2022.11.004_bib0015) 2016; 16 Lu (10.1016/j.jfranklin.2022.11.004_bib0031) 2017; 64 Wu (10.1016/j.jfranklin.2022.11.004_bib0008) 2017; 139 Yan (10.1016/j.jfranklin.2022.11.004_bib0001) 2019; 20 Ganin (10.1016/j.jfranklin.2022.11.004_bib0040) 2016; 17 Lu (10.1016/j.jfranklin.2022.11.004_bib0037) 2017; 32 Katsifarakis (10.1016/j.jfranklin.2022.11.004_bib0003) 2016; 38 Guo (10.1016/j.jfranklin.2022.11.004_bib0026) 2018; 66 Zhu (10.1016/j.jfranklin.2022.11.004_bib0029) 2020; 32 Habic (10.1016/j.jfranklin.2022.11.004_bib0023) 2020; 209 Ma (10.1016/j.jfranklin.2022.11.004_bib0002) 2021; 70 Sikder (10.1016/j.jfranklin.2022.11.004_bib0018) 2019 Zhang (10.1016/j.jfranklin.2022.11.004_bib0004) 2019; 95 Cui (10.1016/j.jfranklin.2022.11.004_bib0009) 2021; 21 Wang (10.1016/j.jfranklin.2022.11.004_bib0028) 2020; 202 Zhang (10.1016/j.jfranklin.2022.11.004_bib0010) 2018; 100 Li (10.1016/j.jfranklin.2022.11.004_bib0038) 2018; 80 Wang (10.1016/j.jfranklin.2022.11.004_bib0011) 2020; 96 Li (10.1016/j.jfranklin.2022.11.004_bib0021) 2019; 157 Tao (10.1016/j.jfranklin.2022.11.004_bib0014) 2020; 357 Li (10.1016/j.jfranklin.2022.11.004_bib0036) 2013; 13 Han (10.1016/j.jfranklin.2022.11.004_bib0006) 2019; 165 Pan (10.1016/j.jfranklin.2022.11.004_bib0013) 2019; 137 Zhu (10.1016/j.jfranklin.2022.11.004_bib0033) 2021; 21 Schwendemann (10.1016/j.jfranklin.2022.11.004_bib0022) 2021; 105 Wang (10.1016/j.jfranklin.2022.11.004_bib0017) 2021; 49 Zhou (10.1016/j.jfranklin.2022.11.004_bib0020) 2021; 32 Yosinski (10.1016/j.jfranklin.2022.11.004_bib0034) 2014; 27 Wang (10.1016/j.jfranklin.2022.11.004_bib0007) 2016; 70 Tayachi (10.1016/j.jfranklin.2022.11.004_bib0016) 2022; 22 Wen (10.1016/j.jfranklin.2022.11.004_bib0027) 2020; 32 Long (10.1016/j.jfranklin.2022.11.004_bib0035) 2018; 31 Sevakula (10.1016/j.jfranklin.2022.11.004_bib0025) 2018; 16 Fan (10.1016/j.jfranklin.2022.11.004_bib0030) 2020; 262 Liu (10.1016/j.jfranklin.2022.11.004_bib0005) 2018; 108 Wang (10.1016/j.jfranklin.2022.11.004_bib0019) 2021 Liu (10.1016/j.jfranklin.2022.11.004_bib0012) 2018; 77 Zhao (10.1016/j.jfranklin.2022.11.004_bib0032) 2021; 70 Sun (10.1016/j.jfranklin.2022.11.004_bib0039) 2016 Pezzotti (10.1016/j.jfranklin.2022.11.004_bib0041) 2016; 23 |
References_xml | – volume: 32 start-page: 6111 year: 2020 end-page: 6124 ident: bib0027 article-title: A transfer convolutional neural network for fault diagnosis based on resnet-50 publication-title: Neural Comput. Appl. – volume: 64 start-page: 2296 year: 2017 end-page: 2305 ident: bib0031 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Trans. Ind. Electron. – volume: 70 start-page: 201 year: 2016 end-page: 208 ident: bib0007 article-title: K-Nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: revisited publication-title: Mech. Syst. Signal Process – volume: 16 start-page: 271 year: 2016 end-page: 284 ident: bib0015 article-title: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data publication-title: J. Fail. Anal. Prev. – volume: 32 start-page: 1713 year: 2020 end-page: 1722 ident: bib0029 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 17 start-page: 2096 year: 2016 end-page: 2130 ident: bib0040 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 100 start-page: 439 year: 2018 end-page: 453 ident: bib0010 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process. – volume: 95 start-page: 295 year: 2019 end-page: 305 ident: bib0004 article-title: Deep residual learning-based fault diagnosis method for rotating machinery publication-title: ISA Trans. – volume: 139 start-page: 179 year: 2017 end-page: 187 ident: bib0008 article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests publication-title: J. Manuf. Sci. Eng. – volume: 13 start-page: 8013 year: 2013 end-page: 8041 ident: bib0036 article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis publication-title: Sensors – volume: 70 start-page: 1 year: 2021 end-page: 28 ident: bib0032 article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study publication-title: IEEE Trans Instrum Meas – volume: 49 start-page: 101321 year: 2021 ident: bib0017 article-title: Automatic representation and detection of fault bearings in-wheel motors under variable load conditions publication-title: Adv. Eng. Inf. – volume: 32 start-page: 139 year: 2017 end-page: 151 ident: bib0037 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Adv. Eng. Inf. – volume: 21 start-page: 4927 year: 2021 end-page: 4937 ident: bib0009 article-title: Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine publication-title: IEEE Sens. J. – volume: 209 start-page: 106440 year: 2020 ident: bib0023 article-title: Multitask deep learning for native language identification publication-title: Knowl. Based Syst. – volume: 157 start-page: 180 year: 2019 end-page: 197 ident: bib0021 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Process. – volume: 27 start-page: 1792 year: 2014 ident: bib0034 article-title: How transferable are features in deep neural networks? publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 8374 year: 2019 end-page: 8393 ident: bib0001 article-title: Knowledge transfer for rotary machine fault diagnosis publication-title: IEEE Sens. J. – volume: 357 start-page: 7286 year: 2020 end-page: 7307 ident: bib0014 article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks publication-title: J. Franklin Inst. – volume: 22 start-page: 123 year: 2022 end-page: 130 ident: bib0016 article-title: A new approach for detection of gear defects using a discrete wavelet transform and fast empirical mode decomposition publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 96 start-page: 457 year: 2020 end-page: 467 ident: bib0011 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Trans. – start-page: 564 year: 2019 end-page: 569 ident: bib0018 article-title: Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing publication-title: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE – volume: 202 start-page: 107050 year: 2020 ident: bib0028 article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis publication-title: Reliab. Eng. Syst. Saf. – start-page: 443 year: 2016 end-page: 450 ident: bib0039 article-title: Deep Coral: Correlation Alignment for Deep Domain Adaptation publication-title: European conference on computer vision – volume: 93 start-page: 103853 year: 2020 ident: bib0024 article-title: Transfer learning in computer vision tasks: remember where you come from publication-title: Image Vis. Comput. – start-page: 1 year: 2021 end-page: 12 ident: bib0019 article-title: Gear fault diagnosis based on variational modal decomposition and wide+narrow visual field neural networks publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 66 start-page: 7316 year: 2018 end-page: 7325 ident: bib0026 article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Ind. Electron. – volume: 77 start-page: 167 year: 2018 end-page: 178 ident: bib0012 article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders publication-title: ISA Trans. – volume: 137 start-page: 509 year: 2019 end-page: 526 ident: bib0013 article-title: Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion publication-title: Mech. Mach. Theory – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: bib0005 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech. Syst. Signal Process. – volume: 23 start-page: 1739 year: 2016 end-page: 1752 ident: bib0041 article-title: Approximated and user steerable tSNE for progressive visual analytics publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 16 start-page: 2089 year: 2018 end-page: 2100 ident: bib0025 article-title: Transfer learning for molecular cancer classification using deep neural networks publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 31 start-page: 10667 year: 2018 ident: bib0035 article-title: Conditional adversarial domain adaptation publication-title: Adv. Neural Inf. Process. Syst. – volume: 32 start-page: 095105 year: 2021 ident: bib0020 article-title: Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis publication-title: Meas. Sci. Technol. – volume: 105 start-page: 104415 year: 2021 ident: bib0022 article-title: Bearing fault diagnosis with intermediate domain based layered maximum mean discrepancy: a new transfer learning approach publication-title: Eng. Appl. Artif. Intell. – volume: 80 start-page: 109 year: 2018 end-page: 117 ident: bib0038 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit. – volume: 38 start-page: 1565 year: 2016 end-page: 1574 ident: bib0003 article-title: Computational intelligence methods for rolling bearing fault detection publication-title: J. Brazil. Soc. Mech. Sci. Eng. – volume: 262 start-page: 114499 year: 2020 ident: bib0030 article-title: Statistical investigations of transfer learning-based methodology for short-term building energy predictions publication-title: Appl. Energy – volume: 165 start-page: 474 year: 2019 end-page: 487 ident: bib0006 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowl. Based Syst. – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: bib0002 article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning publication-title: IEEE Trans. Instrum. Meas. – volume: 21 start-page: 2524 year: 2021 ident: bib0033 article-title: Bearing fault feature extraction and fault diagnosis method based on feature fusion publication-title: Sensors – volume: 262 start-page: 114499 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0030 article-title: Statistical investigations of transfer learning-based methodology for short-term building energy predictions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114499 – volume: 32 start-page: 6111 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0027 article-title: A transfer convolutional neural network for fault diagnosis based on resnet-50 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04097-w – volume: 137 start-page: 509 year: 2019 ident: 10.1016/j.jfranklin.2022.11.004_bib0013 article-title: Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.03.036 – volume: 23 start-page: 1739 year: 2016 ident: 10.1016/j.jfranklin.2022.11.004_bib0041 article-title: Approximated and user steerable tSNE for progressive visual analytics publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2016.2570755 – volume: 49 start-page: 101321 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0017 article-title: Automatic representation and detection of fault bearings in-wheel motors under variable load conditions publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101321 – volume: 100 start-page: 439 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0010 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.022 – volume: 32 start-page: 1713 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0029 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2988928 – volume: 105 start-page: 104415 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0022 article-title: Bearing fault diagnosis with intermediate domain based layered maximum mean discrepancy: a new transfer learning approach publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104415 – volume: 27 start-page: 1792 year: 2014 ident: 10.1016/j.jfranklin.2022.11.004_bib0034 article-title: How transferable are features in deep neural networks? publication-title: Adv. Neural Inf. Process. Syst. – volume: 93 start-page: 103853 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0024 article-title: Transfer learning in computer vision tasks: remember where you come from publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2019.103853 – volume: 209 start-page: 106440 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0023 article-title: Multitask deep learning for native language identification publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106440 – volume: 31 start-page: 10667 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0035 article-title: Conditional adversarial domain adaptation publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 123 year: 2022 ident: 10.1016/j.jfranklin.2022.11.004_bib0016 article-title: A new approach for detection of gear defects using a discrete wavelet transform and fast empirical mode decomposition publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 77 start-page: 167 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0012 article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.04.005 – start-page: 564 year: 2019 ident: 10.1016/j.jfranklin.2022.11.004_bib0018 article-title: Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing publication-title: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE doi: 10.1109/ICREST.2019.8644089 – volume: 21 start-page: 2524 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0033 article-title: Bearing fault feature extraction and fault diagnosis method based on feature fusion publication-title: Sensors doi: 10.3390/s21072524 – volume: 108 start-page: 33 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0005 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016 – volume: 95 start-page: 295 year: 2019 ident: 10.1016/j.jfranklin.2022.11.004_bib0004 article-title: Deep residual learning-based fault diagnosis method for rotating machinery publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.12.025 – volume: 64 start-page: 2296 year: 2017 ident: 10.1016/j.jfranklin.2022.11.004_bib0031 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2627020 – volume: 165 start-page: 474 year: 2019 ident: 10.1016/j.jfranklin.2022.11.004_bib0006 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.12.019 – volume: 21 start-page: 4927 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0009 article-title: Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3030910 – volume: 32 start-page: 095105 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0020 article-title: Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abeddd – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0032 article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study publication-title: IEEE Trans Instrum Meas – volume: 157 start-page: 180 year: 2019 ident: 10.1016/j.jfranklin.2022.11.004_bib0021 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.12.005 – start-page: 1 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0019 article-title: Gear fault diagnosis based on variational modal decomposition and wide+narrow visual field neural networks publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 13 start-page: 8013 year: 2013 ident: 10.1016/j.jfranklin.2022.11.004_bib0036 article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis publication-title: Sensors doi: 10.3390/s130608013 – start-page: 443 year: 2016 ident: 10.1016/j.jfranklin.2022.11.004_bib0039 article-title: Deep Coral: Correlation Alignment for Deep Domain Adaptation – volume: 66 start-page: 7316 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0026 article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2877090 – volume: 80 start-page: 109 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0038 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.03.005 – volume: 70 start-page: 201 year: 2016 ident: 10.1016/j.jfranklin.2022.11.004_bib0007 article-title: K-Nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: revisited publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2015.10.007 – volume: 17 start-page: 2096 year: 2016 ident: 10.1016/j.jfranklin.2022.11.004_bib0040 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 139 year: 2017 ident: 10.1016/j.jfranklin.2022.11.004_bib0037 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2017.02.005 – volume: 139 start-page: 179 year: 2017 ident: 10.1016/j.jfranklin.2022.11.004_bib0008 article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4036350 – volume: 16 start-page: 271 year: 2016 ident: 10.1016/j.jfranklin.2022.11.004_bib0015 article-title: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-016-0080-7 – volume: 38 start-page: 1565 year: 2016 ident: 10.1016/j.jfranklin.2022.11.004_bib0003 article-title: Computational intelligence methods for rolling bearing fault detection publication-title: J. Brazil. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-015-0458-6 – volume: 202 start-page: 107050 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0028 article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107050 – volume: 96 start-page: 457 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0011 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.07.001 – volume: 16 start-page: 2089 year: 2018 ident: 10.1016/j.jfranklin.2022.11.004_bib0025 article-title: Transfer learning for molecular cancer classification using deep neural networks publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2018.2822803 – volume: 357 start-page: 7286 year: 2020 ident: 10.1016/j.jfranklin.2022.11.004_bib0014 article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.04.024 – volume: 20 start-page: 8374 year: 2019 ident: 10.1016/j.jfranklin.2022.11.004_bib0001 article-title: Knowledge transfer for rotary machine fault diagnosis publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2949057 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.jfranklin.2022.11.004_bib0002 article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning publication-title: IEEE Trans. Instrum. Meas. |
SSID | ssj0017100 |
Score | 2.6430974 |
Snippet | In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1454 |
Title | Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion |
URI | https://dx.doi.org/10.1016/j.jfranklin.2022.11.004 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlD-Sha4Akdh7dECqircoEEltkx7YEogEBGbr0t_cOOwjUgaFTpCQXRefLPZy77yPkOeFIQsWRgDgUHhNSehITOZFEXPtKa65wOPlzGA3G7H3CJzXSq2ZhsK3S-X7r07fe2p1pO222l9Mpzvj6EK3xTwGmPRwHzRmL0cpbP7s2Dx_Ra6w3hsoZ7j7o8ZoZx4wOhWIQtBDO0zG2_YlQe1Gnf0HOXbpIu_aNLklNF1fkbA9E8JqocbEul_jJr7Wi22d6avEFFT9dWcRtKsGc8WhEOd9QZbvrpmuKIUzRRUGRYd4zK9tW_U0dmiquGTUl7qfdkFH_ddQbeI47wcsDxjdeLhgLBBQXqZDI6hKnQnAjlQwSk4RMwoU8VTn4Kx0ZkzPfRMxEYa7zDgulDG9JvVgU-o7QDk9ExI0vYpMwnhoJdSxXMobnxFDb8QaJKnVlucMVR3qLeVY1kM2ynZ4z1DNUHRnouUE6O8GlhdY4LvJSrUd2YCUZBIBjwvf_EX4gp0g0bzdfHkl9syr1E6QjG9nc2luTnHTfPgbDX8As40o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYoHdoOVZ8qfXroGiCJnUe3ChXRFphAYovs2JZANCAgQ5f-9t4RB4E6MHSKlOSs6Hy-h3P-PkKeI44kVBwJiH3hMCGlIzGRE1HAtau05goPJ_f6QWfIPkZ8VCGt8iwMtlVa31_49LW3tncaVpuN-XiMZ3xdiNb4pwDTHs4PyCGD5Ys0BvWfTZ-Hi_A1hTuG0hle32nymhhLjQ6VoufVEc_TUrb9CVFbYad9Rk5tvkhfi086JxWdXZCTLRTBS6KG2TKf45pfakXXYzpq9gUlP10UkNtUgj3j1Yh8uqKqaK8bLynGMEVnGUWKeccsir7qb2rhVHHSqMlxQ-2KDNpvg1bHseQJTuoxvnJSwZgnoLqIhURalzAWghuppBeZyGcSHqSxSsFh6cCYlLkmYCbwU502mS-lf02q2SzTN4Q2eSQCblwRmojx2EgoZLmSIYwTQnHHayQo1ZWkFlgc-S2mSdlBNkk2ek5Qz1B2JKDnGmluBOcFtsZ-kZdyPpIdM0kgAuwTvv2P8BM56gx63aT73v-8I8fIOl_sxNyT6mqR6wfITVbycW17vwUk5Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+cross-domain+rolling+bearing+fault+diagnosis+based+on+time-frequency+information+fusion&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Tao%2C+Hongfeng&rft.au=Qiu%2C+Jier&rft.au=Chen%2C+Yiyang&rft.au=Stojanovic%2C+Vladimir&rft.date=2023-01-01&rft.issn=0016-0032&rft.volume=360&rft.issue=2&rft.spage=1454&rft.epage=1477&rft_id=info:doi/10.1016%2Fj.jfranklin.2022.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfranklin_2022_11_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |