Iterative-learning-based tracking control of a two-wheeled mobile robot with model uncertainties and unknown periodic disturbances

In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots subject to model uncertainties and unknown disturbances. First, we derive the nonlinear velocity error dynamics. Then a parameterization-bas...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 361; no. 11; p. 106962
Main Authors Yu, Lin, Xiong, Junlin, Xie, Min
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN0016-0032
1879-2693
DOI10.1016/j.jfranklin.2024.106962

Cover

Loading…
Abstract In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots subject to model uncertainties and unknown disturbances. First, we derive the nonlinear velocity error dynamics. Then a parameterization-based adaptive iterative learning control scheme is adopted to achieve precise tracking, along with logic-based update law for the estimated period and bound of the disturbance. Moreover, the boundness of all the closed-loop signals is rigorously analyzed based on the Lyapunov stability theory to provide the theoretical foundation for the proposed method. The experimental results show the efficacy and viability of our results.
AbstractList In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots subject to model uncertainties and unknown disturbances. First, we derive the nonlinear velocity error dynamics. Then a parameterization-based adaptive iterative learning control scheme is adopted to achieve precise tracking, along with logic-based update law for the estimated period and bound of the disturbance. Moreover, the boundness of all the closed-loop signals is rigorously analyzed based on the Lyapunov stability theory to provide the theoretical foundation for the proposed method. The experimental results show the efficacy and viability of our results.
ArticleNumber 106962
Author Xie, Min
Xiong, Junlin
Yu, Lin
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0002-6572-6932
  surname: Yu
  fullname: Yu, Lin
  email: yulin98@mail.ustc.edu.cn
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Junlin
  orcidid: 0000-0002-0128-4960
  surname: Xiong
  fullname: Xiong, Junlin
  email: junlin.xiong@gmail.com
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Min
  surname: Xie
  fullname: Xie, Min
  email: minxie@cityu.edu.hk
  organization: Department of System Engineering, City University of Hong Kong, Kowloon, Hong Kong
BookMark eNqNUE1PAjEUbAwmAvob7B9Y7HY_yh48EOIHCYkXPTfd9q08WFrSFohXf7klGA9e9PTeTGYmmRmRgXUWCLnN2SRneX23nqw7r-ymRzvhjJeJrZuaX5BhPhVNxuumGJAhS9KMsYJfkVEI6wRFztiQfC4ieBXxAFkPylu071mrAhgavdKbBKl2NnrXU9dRRePRZccVQJ8UW9diD9S71kV6xLhKjIGe7q0GHxXaiBCosiYxG-uOlu7AozOoqcEQ975VSRmuyWWn-gA333dM3h4fXufP2fLlaTGfLTPNyypmuimEFpXITVemb1q0NRTAFNO8rgwoXgNvxRSYEMWUgWiFLirguqkU61jZFWNyf87V3oXgoZMaY6p-qqewlzmTp0HlWv4MKk-DyvOgyS9--Xcet8p__MM5Ozsh1TsgeBk0Qupu0IOO0jj8M-MLzGqb0A
CitedBy_id crossref_primary_10_1007_s40435_024_01518_0
crossref_primary_10_1177_01423312241283522
crossref_primary_10_1016_j_jfranklin_2024_107304
Cites_doi 10.1016/j.isatra.2021.06.012
10.1007/s12555-019-0814-x
10.1002/rnc.5473
10.1016/j.isatra.2021.10.017
10.1016/j.jfranklin.2022.03.043
10.1109/TAC.2011.2173414
10.1002/rnc.4396
10.1016/j.isatra.2021.12.039
10.1016/j.jfranklin.2023.05.004
10.1002/rnc.3485
10.1109/TSMC.2018.2819191
10.1109/TIE.2020.2989711
10.1109/TAC.2022.3151846
10.1109/CDC.1995.479190
10.1007/s12555-019-0643-y
10.1002/rnc.4750
10.1016/j.robot.2007.01.002
10.1002/rnc.3985
10.1016/j.isatra.2022.04.021
10.23919/CCC50068.2020.9188593
10.23919/ACC45564.2020.9147898
10.1016/j.sysconle.2022.105210
10.1109/TAI.2022.3207133
10.1002/rnc.5859
10.1109/TCSI.2022.3176930
10.1109/TSMC.2018.2870724
10.1016/j.jfranklin.2020.04.043
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2024.106962
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
ExternalDocumentID 10_1016_j_jfranklin_2024_106962
S0016003224003831
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPAA
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c245t-c937c7571df437c83b6e3e0a0c265dea26e2b78e077380e7b7c35e2c95a0f04f3
IEDL.DBID .~1
ISSN 0016-0032
IngestDate Thu Apr 24 22:55:31 EDT 2025
Tue Jul 01 03:53:25 EDT 2025
Sat Jul 06 15:30:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Robust control
Model uncertainty
Wheeled mobile robot
Adaptive control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-c937c7571df437c83b6e3e0a0c265dea26e2b78e077380e7b7c35e2c95a0f04f3
ORCID 0000-0002-6572-6932
0000-0002-0128-4960
ParticipantIDs crossref_citationtrail_10_1016_j_jfranklin_2024_106962
crossref_primary_10_1016_j_jfranklin_2024_106962
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2024_106962
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Fang, Zhang, Gao, Zhang (b8) 2022; 20
Fang, Zhu, Dian, Xiang, Guo, Li (b16) 2022; 128
Lu, Wu, Baldi, Yu (b32) 2022; 69
Ye, Wang (b27) 2020; 18
Chen, Liu, He, Qiao, Jiao (b17) 2020; 68
Li, Wang, Xia, Zhou (b24) 2020; 357
Zhang, Li, Xiao, Yang, Ling (b6) 2022
Dhaouadi, Hatab (b25) 2013; 2
Huang, Zhou, Di, Zhou, Li (b1) 2019; 29
Li, Ding, Gao, Liu, Li, Deng (b18) 2018; 50
Jin, Dai, Liang (b34) 2023; 68
Nath, Bera, Jagannathan (b23) 2023; 4
A. Arab, Y. Mousavi, Optimal control of wheeled mobile robots: From simulation to real world, in: Proc. American Control Conf, 2020, pp. 583–589.
K. Wang, Y. Liu, C. Huang, P. Cheng, Adaptive backstepping control with extended state observer for wheeled mobile robot, in: Proc. 39th Chinese Control Conf, 2020, pp. 1981–1986.
Martins, Bertol (b31) 2022; vol. 380
Shu, Oya, Zhao (b19) 2018; 28
Huang, Zhou, Di, Zhou, Li (b21) 2019; 29
Ye (b30) 2012; 57
R.B. Fierro, F.L. Lewis, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, in: Proc. 34th IEEE Conference on Decision and Control, Vol. 4, 1995, pp. 3805–3810.
Liu, Yue, Wen, Tian, Zhao (b4) 2021; 32
Yang, Guo, Xia, Sun (b9) 2020; 30
Courant, Hilbert (b29) 2008
Rudra, Barai, Maitra (b12) 2016; 26
Peng, Yang, Wang (b10) 2023; 360
Li, Wu, Wang, Li (b13) 2021; 31
Li, Zhai (b5) 2022
Wu, Wang, Fang (b22) 2022; 125
Singhal, Kumar, Rana (b7) 2022
Fang, Zhu, Dian, Xiang, Guo, Li (b15) 2022; 128
Lu, Baldi, Chen, Yu (b33) 2020; 67
Ding, Li, Gao, Chen, Deng (b14) 2018; 50
Lu, Chen, Wang, Zhang, Sun, Su (b3) 2022
Liu, Tang, Fu (b28) 2022; 163
Klančar, Škrjanc (b26) 2007; 55
Lu, Dai, Jin (b35) 2023
Dhaouadi (10.1016/j.jfranklin.2024.106962_b25) 2013; 2
Zhang (10.1016/j.jfranklin.2024.106962_b6) 2022
Fang (10.1016/j.jfranklin.2024.106962_b15) 2022; 128
Li (10.1016/j.jfranklin.2024.106962_b5) 2022
Ye (10.1016/j.jfranklin.2024.106962_b30) 2012; 57
Lu (10.1016/j.jfranklin.2024.106962_b3) 2022
Lu (10.1016/j.jfranklin.2024.106962_b35) 2023
Liu (10.1016/j.jfranklin.2024.106962_b4) 2021; 32
Huang (10.1016/j.jfranklin.2024.106962_b21) 2019; 29
Fang (10.1016/j.jfranklin.2024.106962_b16) 2022; 128
Li (10.1016/j.jfranklin.2024.106962_b18) 2018; 50
Peng (10.1016/j.jfranklin.2024.106962_b10) 2023; 360
Wu (10.1016/j.jfranklin.2024.106962_b22) 2022; 125
Shu (10.1016/j.jfranklin.2024.106962_b19) 2018; 28
10.1016/j.jfranklin.2024.106962_b20
Li (10.1016/j.jfranklin.2024.106962_b24) 2020; 357
Jin (10.1016/j.jfranklin.2024.106962_b34) 2023; 68
Chen (10.1016/j.jfranklin.2024.106962_b17) 2020; 68
Nath (10.1016/j.jfranklin.2024.106962_b23) 2023; 4
Klančar (10.1016/j.jfranklin.2024.106962_b26) 2007; 55
Ding (10.1016/j.jfranklin.2024.106962_b14) 2018; 50
Rudra (10.1016/j.jfranklin.2024.106962_b12) 2016; 26
Ye (10.1016/j.jfranklin.2024.106962_b27) 2020; 18
10.1016/j.jfranklin.2024.106962_b2
Li (10.1016/j.jfranklin.2024.106962_b13) 2021; 31
Martins (10.1016/j.jfranklin.2024.106962_b31) 2022; vol. 380
Zhang (10.1016/j.jfranklin.2024.106962_b8) 2022; 20
Yang (10.1016/j.jfranklin.2024.106962_b9) 2020; 30
Huang (10.1016/j.jfranklin.2024.106962_b1) 2019; 29
Courant (10.1016/j.jfranklin.2024.106962_b29) 2008
Liu (10.1016/j.jfranklin.2024.106962_b28) 2022; 163
Lu (10.1016/j.jfranklin.2024.106962_b32) 2022; 69
Lu (10.1016/j.jfranklin.2024.106962_b33) 2020; 67
10.1016/j.jfranklin.2024.106962_b11
Singhal (10.1016/j.jfranklin.2024.106962_b7) 2022
References_xml – reference: A. Arab, Y. Mousavi, Optimal control of wheeled mobile robots: From simulation to real world, in: Proc. American Control Conf, 2020, pp. 583–589.
– volume: 4
  start-page: 1514
  year: 2023
  end-page: 1525
  ident: b23
  article-title: Concurrent learning-based neuroadaptive robust tracking control of wheeled mobile robot: an event-triggered design
  publication-title: IEEE Trans. Artif. Intell.
– volume: 360
  start-page: 6669
  year: 2023
  end-page: 6692
  ident: b10
  article-title: Model predictive tracking control with disturbance compensation for wheeled mobile robots in an environment with obstacles
  publication-title: J. Franklin Inst.
– volume: 26
  start-page: 3018
  year: 2016
  end-page: 3035
  ident: b12
  article-title: Design and implementation of a block-backstepping based tracking control for nonholonomic wheeled mobile robot
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 29
  start-page: 375
  year: 2019
  end-page: 392
  ident: b21
  article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 50
  start-page: 2512
  year: 2018
  end-page: 2523
  ident: b14
  article-title: Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– reference: R.B. Fierro, F.L. Lewis, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, in: Proc. 34th IEEE Conference on Decision and Control, Vol. 4, 1995, pp. 3805–3810.
– volume: 125
  start-page: 22
  year: 2022
  end-page: 30
  ident: b22
  article-title: Full-state constrained neural control and learning for the nonholonomic wheeled mobile robot with unknown dynamics
  publication-title: ISA Trans.
– volume: 20
  start-page: 1640
  year: 2022
  end-page: 1651
  ident: b8
  article-title: Trajectory tracking control of nonholonomic wheeled mobile robots using model predictive control subjected to Lyapunov-based input constraints
  publication-title: Int. J. Control Autom.
– year: 2022
  ident: b7
  article-title: Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller
  publication-title: J. Franklin Inst.
– year: 2008
  ident: b29
  article-title: Methods of Mathematical Physics: Partial Differential Equations
– volume: 163
  year: 2022
  ident: b28
  article-title: Robust adaptive trajectory tracking for wheeled mobile robots based on Gaussian process regression
  publication-title: Systems Control Lett.
– volume: 57
  start-page: 1269
  year: 2012
  end-page: 1273
  ident: b30
  article-title: Nonlinear adaptive learning control with disturbance of unknown periods
  publication-title: IEEE Trans. Automat. Control
– reference: K. Wang, Y. Liu, C. Huang, P. Cheng, Adaptive backstepping control with extended state observer for wheeled mobile robot, in: Proc. 39th Chinese Control Conf, 2020, pp. 1981–1986.
– volume: 31
  start-page: 4306
  year: 2021
  end-page: 4323
  ident: b13
  article-title: Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 55
  start-page: 460
  year: 2007
  end-page: 469
  ident: b26
  article-title: Tracking-error model-based predictive control for mobile robots in real time
  publication-title: Robotics Auton. Syst.
– volume: 18
  start-page: 3015
  year: 2020
  end-page: 3022
  ident: b27
  article-title: Trajectory tracking control for nonholonomic wheeled mobile robots with external disturbances and parameter uncertainties
  publication-title: Int. J. Control, Autom. Syst.
– volume: 2
  start-page: 1
  year: 2013
  end-page: 7
  ident: b25
  article-title: Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler methodologies: a unified framework
  publication-title: Adv. Robotics Autom.
– volume: vol. 380
  year: 2022
  ident: b31
  publication-title: Background on Simulation and Experimentation Environments
– start-page: 1
  year: 2022
  end-page: 13
  ident: b5
  article-title: Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 32
  start-page: 851
  year: 2021
  end-page: 872
  ident: b4
  article-title: Globally exponentially convergent velocity observer design for mechanical systems with nonholonomic constraints
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 30
  start-page: 80
  year: 2020
  end-page: 99
  ident: b9
  article-title: Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 68
  start-page: 5057
  year: 2020
  end-page: 5067
  ident: b17
  article-title: Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints
  publication-title: IEEE Trans. Ind. Electron.
– volume: 128
  start-page: 123
  year: 2022
  end-page: 132
  ident: b16
  article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming
  publication-title: ISA Trans.
– year: 2022
  ident: b3
  article-title: Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances
  publication-title: ISA Trans.
– volume: 68
  start-page: 1700
  year: 2023
  end-page: 1707
  ident: b34
  article-title: Adaptive constrained formation-tracking control for a tractor-trailer mobile robot team with multiple constraints
  publication-title: IEEE Trans. Automat. Control
– year: 2023
  ident: b35
  article-title: Adaptive angle-constrained enclosing control for multirobot systems using bearing measurements
  publication-title: IEEE Trans. Automat. Control
– volume: 28
  start-page: 1789
  year: 2018
  end-page: 1807
  ident: b19
  article-title: A new adaptive tracking control scheme of wheeled mobile robot without longitudinal velocity measurement
  publication-title: Internat. J. Robust Nonlinear Control
– year: 2022
  ident: b6
  article-title: Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot
  publication-title: ISA Trans.
– volume: 29
  start-page: 375
  year: 2019
  end-page: 392
  ident: b1
  article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 50
  start-page: 4171
  year: 2018
  end-page: 4182
  ident: b18
  article-title: Reinforcement learning neural network-based adaptive control for state and input time-delayed wheeled mobile robots
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 128
  start-page: 123
  year: 2022
  end-page: 132
  ident: b15
  article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming
  publication-title: ISA Trans.
– volume: 67
  start-page: 3167
  year: 2020
  end-page: 3171
  ident: b33
  article-title: Neuro-adaptive cooperative tracking rendezvous of nonholonomic mobile robots
  publication-title: IEEE Trans. Circuits Syst. II Exp. Briefs
– volume: 357
  start-page: 8491
  year: 2020
  end-page: 8507
  ident: b24
  article-title: Trajectory tracking control for wheeled mobile robots based on nonlinear disturbance observer with extended Kalman filter
  publication-title: J. Franklin Inst.
– volume: 69
  start-page: 3762
  year: 2022
  end-page: 3771
  ident: b32
  article-title: Distributed disturbance-and-leader estimation for controlling networks of nonholonomic mobile robots
  publication-title: IEEE Trans. Circuits Syst. I Reg. Pap.
– volume: 125
  start-page: 22
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b22
  article-title: Full-state constrained neural control and learning for the nonholonomic wheeled mobile robot with unknown dynamics
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.06.012
– volume: 20
  start-page: 1640
  issue: 5
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b8
  article-title: Trajectory tracking control of nonholonomic wheeled mobile robots using model predictive control subjected to Lyapunov-based input constraints
  publication-title: Int. J. Control Autom.
  doi: 10.1007/s12555-019-0814-x
– start-page: 1
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b5
  article-title: Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 31
  start-page: 4306
  issue: 9
  year: 2021
  ident: 10.1016/j.jfranklin.2024.106962_b13
  article-title: Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.5473
– volume: 128
  start-page: 123
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b15
  article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.10.017
– volume: 67
  start-page: 3167
  issue: 12
  year: 2020
  ident: 10.1016/j.jfranklin.2024.106962_b33
  article-title: Neuro-adaptive cooperative tracking rendezvous of nonholonomic mobile robots
  publication-title: IEEE Trans. Circuits Syst. II Exp. Briefs
– year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b7
  article-title: Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.03.043
– volume: 57
  start-page: 1269
  year: 2012
  ident: 10.1016/j.jfranklin.2024.106962_b30
  article-title: Nonlinear adaptive learning control with disturbance of unknown periods
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2173414
– volume: 29
  start-page: 375
  issue: 2
  year: 2019
  ident: 10.1016/j.jfranklin.2024.106962_b1
  article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4396
– year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b3
  article-title: Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.12.039
– volume: 360
  start-page: 6669
  issue: 10
  year: 2023
  ident: 10.1016/j.jfranklin.2024.106962_b10
  article-title: Model predictive tracking control with disturbance compensation for wheeled mobile robots in an environment with obstacles
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2023.05.004
– volume: 29
  start-page: 375
  issue: 2
  year: 2019
  ident: 10.1016/j.jfranklin.2024.106962_b21
  article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4396
– volume: 26
  start-page: 3018
  issue: 14
  year: 2016
  ident: 10.1016/j.jfranklin.2024.106962_b12
  article-title: Design and implementation of a block-backstepping based tracking control for nonholonomic wheeled mobile robot
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3485
– volume: 50
  start-page: 2512
  issue: 7
  year: 2018
  ident: 10.1016/j.jfranklin.2024.106962_b14
  article-title: Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2819191
– volume: 68
  start-page: 5057
  issue: 6
  year: 2020
  ident: 10.1016/j.jfranklin.2024.106962_b17
  article-title: Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2989711
– volume: 68
  start-page: 1700
  issue: 3
  year: 2023
  ident: 10.1016/j.jfranklin.2024.106962_b34
  article-title: Adaptive constrained formation-tracking control for a tractor-trailer mobile robot team with multiple constraints
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2022.3151846
– ident: 10.1016/j.jfranklin.2024.106962_b2
  doi: 10.1109/CDC.1995.479190
– volume: 18
  start-page: 3015
  issue: 12
  year: 2020
  ident: 10.1016/j.jfranklin.2024.106962_b27
  article-title: Trajectory tracking control for nonholonomic wheeled mobile robots with external disturbances and parameter uncertainties
  publication-title: Int. J. Control, Autom. Syst.
  doi: 10.1007/s12555-019-0643-y
– volume: 30
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.1016/j.jfranklin.2024.106962_b9
  article-title: Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4750
– volume: 55
  start-page: 460
  issue: 6
  year: 2007
  ident: 10.1016/j.jfranklin.2024.106962_b26
  article-title: Tracking-error model-based predictive control for mobile robots in real time
  publication-title: Robotics Auton. Syst.
  doi: 10.1016/j.robot.2007.01.002
– volume: 28
  start-page: 1789
  issue: 5
  year: 2018
  ident: 10.1016/j.jfranklin.2024.106962_b19
  article-title: A new adaptive tracking control scheme of wheeled mobile robot without longitudinal velocity measurement
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3985
– year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b6
  article-title: Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.04.021
– ident: 10.1016/j.jfranklin.2024.106962_b11
  doi: 10.23919/CCC50068.2020.9188593
– year: 2008
  ident: 10.1016/j.jfranklin.2024.106962_b29
– ident: 10.1016/j.jfranklin.2024.106962_b20
  doi: 10.23919/ACC45564.2020.9147898
– volume: 163
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b28
  article-title: Robust adaptive trajectory tracking for wheeled mobile robots based on Gaussian process regression
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2022.105210
– volume: 4
  start-page: 1514
  issue: 6
  year: 2023
  ident: 10.1016/j.jfranklin.2024.106962_b23
  article-title: Concurrent learning-based neuroadaptive robust tracking control of wheeled mobile robot: an event-triggered design
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2022.3207133
– volume: 2
  start-page: 1
  issue: 2
  year: 2013
  ident: 10.1016/j.jfranklin.2024.106962_b25
  article-title: Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler methodologies: a unified framework
  publication-title: Adv. Robotics Autom.
– volume: 128
  start-page: 123
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b16
  article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.10.017
– year: 2023
  ident: 10.1016/j.jfranklin.2024.106962_b35
  article-title: Adaptive angle-constrained enclosing control for multirobot systems using bearing measurements
  publication-title: IEEE Trans. Automat. Control
– volume: 32
  start-page: 851
  issue: 2
  year: 2021
  ident: 10.1016/j.jfranklin.2024.106962_b4
  article-title: Globally exponentially convergent velocity observer design for mechanical systems with nonholonomic constraints
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.5859
– volume: 69
  start-page: 3762
  issue: 9
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b32
  article-title: Distributed disturbance-and-leader estimation for controlling networks of nonholonomic mobile robots
  publication-title: IEEE Trans. Circuits Syst. I Reg. Pap.
  doi: 10.1109/TCSI.2022.3176930
– volume: 50
  start-page: 4171
  issue: 11
  year: 2018
  ident: 10.1016/j.jfranklin.2024.106962_b18
  article-title: Reinforcement learning neural network-based adaptive control for state and input time-delayed wheeled mobile robots
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2870724
– volume: vol. 380
  year: 2022
  ident: 10.1016/j.jfranklin.2024.106962_b31
– volume: 357
  start-page: 8491
  issue: 13
  year: 2020
  ident: 10.1016/j.jfranklin.2024.106962_b24
  article-title: Trajectory tracking control for wheeled mobile robots based on nonlinear disturbance observer with extended Kalman filter
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.04.043
SSID ssj0017100
Score 2.399861
Snippet In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106962
SubjectTerms Adaptive control
Model uncertainty
Robust control
Wheeled mobile robot
Title Iterative-learning-based tracking control of a two-wheeled mobile robot with model uncertainties and unknown periodic disturbances
URI https://dx.doi.org/10.1016/j.jfranklin.2024.106962
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07SwQxEA6ijRbiE9-ksI3m8ry1k8PjVLRSsFvy1BPdlXPFzsJf7mQ3dygIFna7YQeWzDDfJHzzDUKHXFsZABiJg1qfCGUo6UfFSOGpjYUT3rdTFK6u1ehWXNzJuzk0mPbCJFplzv1dTm-zdV45zrt5_DIepx7fHqA1b1mQcM5qO9iFTvr5Rx8zmkcvqdd02RhOzvD1D47XY8yT0eGgyASsqkKx3xHqG-oMV9ByLhfxafdHq2guVGto6ZuI4Dr6PG-FkSFrkTwC4p4kbPK4mRiXbsJx5qPjOmKDm_eavD8EgBuPn2sLWQFPals3OF3J4nYyDgaw66gCSW4Vm8rDSrp9q3ASRq792GEP8fE2sSloXjfQ7fDsZjAiebICcUzIhjgoSpyWuuejgKc-tyrwQA11TEkfDFOBWd0PVGvep0Fb7bgMzBXS0EhF5JtovqqrsIWwFkZR24uWA9C7GKx3UnLGrYPahpliG6npbpYuy46n6RdP5ZRf9ljO3FAmN5SdG7YRnRm-dMobf5ucTN1V_giiEvDhL-Od_xjvosX01vF499B8M3kL-1CtNPagDccDtHB6fjm6_gJRJu3J
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQ9gA9VAWKSlvAB64ujp-b3ipUtDxPrMQt8rPdFSRoCeLWQ395x4mzYiUkDtwiJyNFntF8M9bnbxA65NrKAMBIHNT6RChDyTgqRkpPbSyd8L6bonB5pSZTcXYjb9bQ8XAXJtEqc-7vc3qXrfPKUd7No_vZLN3xLQCteceChD4LWqB3QnKdQvv73yXPo0jyNX06htYZPl8hec1jHo0OnSITsKpKxV6GqGewc_IRfcj1Iv7Z_9ImWgv1Fnr_TEVwG_077ZSRIW2RPAPiN0ng5HG7MC4dheNMSMdNxAa3Tw15-hMAbzy-ayykBbxobNPidCaLu9E4GNCu5wokvVVsag8r6fitxkkZufEzhz0EyOPCpqh5-ISmJ7-ujyckj1YgjgnZEgdVidNSFz4KeBpzqwIP1FDHlPTBMBWY1eNAteZjGrTVjsvAXCkNjVREvoNGdVOHzwhrYRS1RbQckN7FYL2TkjNuHRQ3zJS7SA27WbmsO57GX9xWA8FsXi3dUCU3VL0bdhFdGt730huvm_wY3FWtRFEFAPGa8Ze3GB-g9cn15UV1cXp1_hVtpDc9qfcbGrWLx7AHpUtr97vQ_A_aSO9f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative-learning-based+tracking+control+of+a+two-wheeled+mobile+robot+with+model+uncertainties+and+unknown+periodic+disturbances&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Yu%2C+Lin&rft.au=Xiong%2C+Junlin&rft.au=Xie%2C+Min&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=361&rft.issue=11&rft_id=info:doi/10.1016%2Fj.jfranklin.2024.106962&rft.externalDocID=S0016003224003831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon