Iterative-learning-based tracking control of a two-wheeled mobile robot with model uncertainties and unknown periodic disturbances
In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots subject to model uncertainties and unknown disturbances. First, we derive the nonlinear velocity error dynamics. Then a parameterization-bas...
Saved in:
Published in | Journal of the Franklin Institute Vol. 361; no. 11; p. 106962 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-0032 1879-2693 |
DOI | 10.1016/j.jfranklin.2024.106962 |
Cover
Loading…
Abstract | In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots subject to model uncertainties and unknown disturbances. First, we derive the nonlinear velocity error dynamics. Then a parameterization-based adaptive iterative learning control scheme is adopted to achieve precise tracking, along with logic-based update law for the estimated period and bound of the disturbance. Moreover, the boundness of all the closed-loop signals is rigorously analyzed based on the Lyapunov stability theory to provide the theoretical foundation for the proposed method. The experimental results show the efficacy and viability of our results. |
---|---|
AbstractList | In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots subject to model uncertainties and unknown disturbances. First, we derive the nonlinear velocity error dynamics. Then a parameterization-based adaptive iterative learning control scheme is adopted to achieve precise tracking, along with logic-based update law for the estimated period and bound of the disturbance. Moreover, the boundness of all the closed-loop signals is rigorously analyzed based on the Lyapunov stability theory to provide the theoretical foundation for the proposed method. The experimental results show the efficacy and viability of our results. |
ArticleNumber | 106962 |
Author | Xie, Min Xiong, Junlin Yu, Lin |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0002-6572-6932 surname: Yu fullname: Yu, Lin email: yulin98@mail.ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Junlin orcidid: 0000-0002-0128-4960 surname: Xiong fullname: Xiong, Junlin email: junlin.xiong@gmail.com organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Min surname: Xie fullname: Xie, Min email: minxie@cityu.edu.hk organization: Department of System Engineering, City University of Hong Kong, Kowloon, Hong Kong |
BookMark | eNqNUE1PAjEUbAwmAvob7B9Y7HY_yh48EOIHCYkXPTfd9q08WFrSFohXf7klGA9e9PTeTGYmmRmRgXUWCLnN2SRneX23nqw7r-ymRzvhjJeJrZuaX5BhPhVNxuumGJAhS9KMsYJfkVEI6wRFztiQfC4ieBXxAFkPylu071mrAhgavdKbBKl2NnrXU9dRRePRZccVQJ8UW9diD9S71kV6xLhKjIGe7q0GHxXaiBCosiYxG-uOlu7AozOoqcEQ975VSRmuyWWn-gA333dM3h4fXufP2fLlaTGfLTPNyypmuimEFpXITVemb1q0NRTAFNO8rgwoXgNvxRSYEMWUgWiFLirguqkU61jZFWNyf87V3oXgoZMaY6p-qqewlzmTp0HlWv4MKk-DyvOgyS9--Xcet8p__MM5Ozsh1TsgeBk0Qupu0IOO0jj8M-MLzGqb0A |
CitedBy_id | crossref_primary_10_1007_s40435_024_01518_0 crossref_primary_10_1177_01423312241283522 crossref_primary_10_1016_j_jfranklin_2024_107304 |
Cites_doi | 10.1016/j.isatra.2021.06.012 10.1007/s12555-019-0814-x 10.1002/rnc.5473 10.1016/j.isatra.2021.10.017 10.1016/j.jfranklin.2022.03.043 10.1109/TAC.2011.2173414 10.1002/rnc.4396 10.1016/j.isatra.2021.12.039 10.1016/j.jfranklin.2023.05.004 10.1002/rnc.3485 10.1109/TSMC.2018.2819191 10.1109/TIE.2020.2989711 10.1109/TAC.2022.3151846 10.1109/CDC.1995.479190 10.1007/s12555-019-0643-y 10.1002/rnc.4750 10.1016/j.robot.2007.01.002 10.1002/rnc.3985 10.1016/j.isatra.2022.04.021 10.23919/CCC50068.2020.9188593 10.23919/ACC45564.2020.9147898 10.1016/j.sysconle.2022.105210 10.1109/TAI.2022.3207133 10.1002/rnc.5859 10.1109/TCSI.2022.3176930 10.1109/TSMC.2018.2870724 10.1016/j.jfranklin.2020.04.043 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfranklin.2024.106962 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2693 |
ExternalDocumentID | 10_1016_j_jfranklin_2024_106962 S0016003224003831 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPAA AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO ADXHL AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c245t-c937c7571df437c83b6e3e0a0c265dea26e2b78e077380e7b7c35e2c95a0f04f3 |
IEDL.DBID | .~1 |
ISSN | 0016-0032 |
IngestDate | Thu Apr 24 22:55:31 EDT 2025 Tue Jul 01 03:53:25 EDT 2025 Sat Jul 06 15:30:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Robust control Model uncertainty Wheeled mobile robot Adaptive control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-c937c7571df437c83b6e3e0a0c265dea26e2b78e077380e7b7c35e2c95a0f04f3 |
ORCID | 0000-0002-6572-6932 0000-0002-0128-4960 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jfranklin_2024_106962 crossref_primary_10_1016_j_jfranklin_2024_106962 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2024_106962 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the Franklin Institute |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Fang, Zhang, Gao, Zhang (b8) 2022; 20 Fang, Zhu, Dian, Xiang, Guo, Li (b16) 2022; 128 Lu, Wu, Baldi, Yu (b32) 2022; 69 Ye, Wang (b27) 2020; 18 Chen, Liu, He, Qiao, Jiao (b17) 2020; 68 Li, Wang, Xia, Zhou (b24) 2020; 357 Zhang, Li, Xiao, Yang, Ling (b6) 2022 Dhaouadi, Hatab (b25) 2013; 2 Huang, Zhou, Di, Zhou, Li (b1) 2019; 29 Li, Ding, Gao, Liu, Li, Deng (b18) 2018; 50 Jin, Dai, Liang (b34) 2023; 68 Nath, Bera, Jagannathan (b23) 2023; 4 A. Arab, Y. Mousavi, Optimal control of wheeled mobile robots: From simulation to real world, in: Proc. American Control Conf, 2020, pp. 583–589. K. Wang, Y. Liu, C. Huang, P. Cheng, Adaptive backstepping control with extended state observer for wheeled mobile robot, in: Proc. 39th Chinese Control Conf, 2020, pp. 1981–1986. Martins, Bertol (b31) 2022; vol. 380 Shu, Oya, Zhao (b19) 2018; 28 Huang, Zhou, Di, Zhou, Li (b21) 2019; 29 Ye (b30) 2012; 57 R.B. Fierro, F.L. Lewis, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, in: Proc. 34th IEEE Conference on Decision and Control, Vol. 4, 1995, pp. 3805–3810. Liu, Yue, Wen, Tian, Zhao (b4) 2021; 32 Yang, Guo, Xia, Sun (b9) 2020; 30 Courant, Hilbert (b29) 2008 Rudra, Barai, Maitra (b12) 2016; 26 Peng, Yang, Wang (b10) 2023; 360 Li, Wu, Wang, Li (b13) 2021; 31 Li, Zhai (b5) 2022 Wu, Wang, Fang (b22) 2022; 125 Singhal, Kumar, Rana (b7) 2022 Fang, Zhu, Dian, Xiang, Guo, Li (b15) 2022; 128 Lu, Baldi, Chen, Yu (b33) 2020; 67 Ding, Li, Gao, Chen, Deng (b14) 2018; 50 Lu, Chen, Wang, Zhang, Sun, Su (b3) 2022 Liu, Tang, Fu (b28) 2022; 163 Klančar, Škrjanc (b26) 2007; 55 Lu, Dai, Jin (b35) 2023 Dhaouadi (10.1016/j.jfranklin.2024.106962_b25) 2013; 2 Zhang (10.1016/j.jfranklin.2024.106962_b6) 2022 Fang (10.1016/j.jfranklin.2024.106962_b15) 2022; 128 Li (10.1016/j.jfranklin.2024.106962_b5) 2022 Ye (10.1016/j.jfranklin.2024.106962_b30) 2012; 57 Lu (10.1016/j.jfranklin.2024.106962_b3) 2022 Lu (10.1016/j.jfranklin.2024.106962_b35) 2023 Liu (10.1016/j.jfranklin.2024.106962_b4) 2021; 32 Huang (10.1016/j.jfranklin.2024.106962_b21) 2019; 29 Fang (10.1016/j.jfranklin.2024.106962_b16) 2022; 128 Li (10.1016/j.jfranklin.2024.106962_b18) 2018; 50 Peng (10.1016/j.jfranklin.2024.106962_b10) 2023; 360 Wu (10.1016/j.jfranklin.2024.106962_b22) 2022; 125 Shu (10.1016/j.jfranklin.2024.106962_b19) 2018; 28 10.1016/j.jfranklin.2024.106962_b20 Li (10.1016/j.jfranklin.2024.106962_b24) 2020; 357 Jin (10.1016/j.jfranklin.2024.106962_b34) 2023; 68 Chen (10.1016/j.jfranklin.2024.106962_b17) 2020; 68 Nath (10.1016/j.jfranklin.2024.106962_b23) 2023; 4 Klančar (10.1016/j.jfranklin.2024.106962_b26) 2007; 55 Ding (10.1016/j.jfranklin.2024.106962_b14) 2018; 50 Rudra (10.1016/j.jfranklin.2024.106962_b12) 2016; 26 Ye (10.1016/j.jfranklin.2024.106962_b27) 2020; 18 10.1016/j.jfranklin.2024.106962_b2 Li (10.1016/j.jfranklin.2024.106962_b13) 2021; 31 Martins (10.1016/j.jfranklin.2024.106962_b31) 2022; vol. 380 Zhang (10.1016/j.jfranklin.2024.106962_b8) 2022; 20 Yang (10.1016/j.jfranklin.2024.106962_b9) 2020; 30 Huang (10.1016/j.jfranklin.2024.106962_b1) 2019; 29 Courant (10.1016/j.jfranklin.2024.106962_b29) 2008 Liu (10.1016/j.jfranklin.2024.106962_b28) 2022; 163 Lu (10.1016/j.jfranklin.2024.106962_b32) 2022; 69 Lu (10.1016/j.jfranklin.2024.106962_b33) 2020; 67 10.1016/j.jfranklin.2024.106962_b11 Singhal (10.1016/j.jfranklin.2024.106962_b7) 2022 |
References_xml | – reference: A. Arab, Y. Mousavi, Optimal control of wheeled mobile robots: From simulation to real world, in: Proc. American Control Conf, 2020, pp. 583–589. – volume: 4 start-page: 1514 year: 2023 end-page: 1525 ident: b23 article-title: Concurrent learning-based neuroadaptive robust tracking control of wheeled mobile robot: an event-triggered design publication-title: IEEE Trans. Artif. Intell. – volume: 360 start-page: 6669 year: 2023 end-page: 6692 ident: b10 article-title: Model predictive tracking control with disturbance compensation for wheeled mobile robots in an environment with obstacles publication-title: J. Franklin Inst. – volume: 26 start-page: 3018 year: 2016 end-page: 3035 ident: b12 article-title: Design and implementation of a block-backstepping based tracking control for nonholonomic wheeled mobile robot publication-title: Internat. J. Robust Nonlinear Control – volume: 29 start-page: 375 year: 2019 end-page: 392 ident: b21 article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation publication-title: Internat. J. Robust Nonlinear Control – volume: 50 start-page: 2512 year: 2018 end-page: 2523 ident: b14 article-title: Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. – reference: R.B. Fierro, F.L. Lewis, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, in: Proc. 34th IEEE Conference on Decision and Control, Vol. 4, 1995, pp. 3805–3810. – volume: 125 start-page: 22 year: 2022 end-page: 30 ident: b22 article-title: Full-state constrained neural control and learning for the nonholonomic wheeled mobile robot with unknown dynamics publication-title: ISA Trans. – volume: 20 start-page: 1640 year: 2022 end-page: 1651 ident: b8 article-title: Trajectory tracking control of nonholonomic wheeled mobile robots using model predictive control subjected to Lyapunov-based input constraints publication-title: Int. J. Control Autom. – year: 2022 ident: b7 article-title: Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller publication-title: J. Franklin Inst. – year: 2008 ident: b29 article-title: Methods of Mathematical Physics: Partial Differential Equations – volume: 163 year: 2022 ident: b28 article-title: Robust adaptive trajectory tracking for wheeled mobile robots based on Gaussian process regression publication-title: Systems Control Lett. – volume: 57 start-page: 1269 year: 2012 end-page: 1273 ident: b30 article-title: Nonlinear adaptive learning control with disturbance of unknown periods publication-title: IEEE Trans. Automat. Control – reference: K. Wang, Y. Liu, C. Huang, P. Cheng, Adaptive backstepping control with extended state observer for wheeled mobile robot, in: Proc. 39th Chinese Control Conf, 2020, pp. 1981–1986. – volume: 31 start-page: 4306 year: 2021 end-page: 4323 ident: b13 article-title: Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction publication-title: Internat. J. Robust Nonlinear Control – volume: 55 start-page: 460 year: 2007 end-page: 469 ident: b26 article-title: Tracking-error model-based predictive control for mobile robots in real time publication-title: Robotics Auton. Syst. – volume: 18 start-page: 3015 year: 2020 end-page: 3022 ident: b27 article-title: Trajectory tracking control for nonholonomic wheeled mobile robots with external disturbances and parameter uncertainties publication-title: Int. J. Control, Autom. Syst. – volume: 2 start-page: 1 year: 2013 end-page: 7 ident: b25 article-title: Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler methodologies: a unified framework publication-title: Adv. Robotics Autom. – volume: vol. 380 year: 2022 ident: b31 publication-title: Background on Simulation and Experimentation Environments – start-page: 1 year: 2022 end-page: 13 ident: b5 article-title: Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer publication-title: Internat. J. Robust Nonlinear Control – volume: 32 start-page: 851 year: 2021 end-page: 872 ident: b4 article-title: Globally exponentially convergent velocity observer design for mechanical systems with nonholonomic constraints publication-title: Internat. J. Robust Nonlinear Control – volume: 30 start-page: 80 year: 2020 end-page: 99 ident: b9 article-title: Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control publication-title: Internat. J. Robust Nonlinear Control – volume: 68 start-page: 5057 year: 2020 end-page: 5067 ident: b17 article-title: Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints publication-title: IEEE Trans. Ind. Electron. – volume: 128 start-page: 123 year: 2022 end-page: 132 ident: b16 article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming publication-title: ISA Trans. – year: 2022 ident: b3 article-title: Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances publication-title: ISA Trans. – volume: 68 start-page: 1700 year: 2023 end-page: 1707 ident: b34 article-title: Adaptive constrained formation-tracking control for a tractor-trailer mobile robot team with multiple constraints publication-title: IEEE Trans. Automat. Control – year: 2023 ident: b35 article-title: Adaptive angle-constrained enclosing control for multirobot systems using bearing measurements publication-title: IEEE Trans. Automat. Control – volume: 28 start-page: 1789 year: 2018 end-page: 1807 ident: b19 article-title: A new adaptive tracking control scheme of wheeled mobile robot without longitudinal velocity measurement publication-title: Internat. J. Robust Nonlinear Control – year: 2022 ident: b6 article-title: Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot publication-title: ISA Trans. – volume: 29 start-page: 375 year: 2019 end-page: 392 ident: b1 article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation publication-title: Internat. J. Robust Nonlinear Control – volume: 50 start-page: 4171 year: 2018 end-page: 4182 ident: b18 article-title: Reinforcement learning neural network-based adaptive control for state and input time-delayed wheeled mobile robots publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 128 start-page: 123 year: 2022 end-page: 132 ident: b15 article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming publication-title: ISA Trans. – volume: 67 start-page: 3167 year: 2020 end-page: 3171 ident: b33 article-title: Neuro-adaptive cooperative tracking rendezvous of nonholonomic mobile robots publication-title: IEEE Trans. Circuits Syst. II Exp. Briefs – volume: 357 start-page: 8491 year: 2020 end-page: 8507 ident: b24 article-title: Trajectory tracking control for wheeled mobile robots based on nonlinear disturbance observer with extended Kalman filter publication-title: J. Franklin Inst. – volume: 69 start-page: 3762 year: 2022 end-page: 3771 ident: b32 article-title: Distributed disturbance-and-leader estimation for controlling networks of nonholonomic mobile robots publication-title: IEEE Trans. Circuits Syst. I Reg. Pap. – volume: 125 start-page: 22 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b22 article-title: Full-state constrained neural control and learning for the nonholonomic wheeled mobile robot with unknown dynamics publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.06.012 – volume: 20 start-page: 1640 issue: 5 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b8 article-title: Trajectory tracking control of nonholonomic wheeled mobile robots using model predictive control subjected to Lyapunov-based input constraints publication-title: Int. J. Control Autom. doi: 10.1007/s12555-019-0814-x – start-page: 1 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b5 article-title: Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer publication-title: Internat. J. Robust Nonlinear Control – volume: 31 start-page: 4306 issue: 9 year: 2021 ident: 10.1016/j.jfranklin.2024.106962_b13 article-title: Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.5473 – volume: 128 start-page: 123 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b15 article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.10.017 – volume: 67 start-page: 3167 issue: 12 year: 2020 ident: 10.1016/j.jfranklin.2024.106962_b33 article-title: Neuro-adaptive cooperative tracking rendezvous of nonholonomic mobile robots publication-title: IEEE Trans. Circuits Syst. II Exp. Briefs – year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b7 article-title: Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.03.043 – volume: 57 start-page: 1269 year: 2012 ident: 10.1016/j.jfranklin.2024.106962_b30 article-title: Nonlinear adaptive learning control with disturbance of unknown periods publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2173414 – volume: 29 start-page: 375 issue: 2 year: 2019 ident: 10.1016/j.jfranklin.2024.106962_b1 article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4396 – year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b3 article-title: Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.12.039 – volume: 360 start-page: 6669 issue: 10 year: 2023 ident: 10.1016/j.jfranklin.2024.106962_b10 article-title: Model predictive tracking control with disturbance compensation for wheeled mobile robots in an environment with obstacles publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2023.05.004 – volume: 29 start-page: 375 issue: 2 year: 2019 ident: 10.1016/j.jfranklin.2024.106962_b21 article-title: Robust neural network–based tracking control and stabilization of a wheeled mobile robot with input saturation publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4396 – volume: 26 start-page: 3018 issue: 14 year: 2016 ident: 10.1016/j.jfranklin.2024.106962_b12 article-title: Design and implementation of a block-backstepping based tracking control for nonholonomic wheeled mobile robot publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.3485 – volume: 50 start-page: 2512 issue: 7 year: 2018 ident: 10.1016/j.jfranklin.2024.106962_b14 article-title: Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2819191 – volume: 68 start-page: 5057 issue: 6 year: 2020 ident: 10.1016/j.jfranklin.2024.106962_b17 article-title: Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2989711 – volume: 68 start-page: 1700 issue: 3 year: 2023 ident: 10.1016/j.jfranklin.2024.106962_b34 article-title: Adaptive constrained formation-tracking control for a tractor-trailer mobile robot team with multiple constraints publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2022.3151846 – ident: 10.1016/j.jfranklin.2024.106962_b2 doi: 10.1109/CDC.1995.479190 – volume: 18 start-page: 3015 issue: 12 year: 2020 ident: 10.1016/j.jfranklin.2024.106962_b27 article-title: Trajectory tracking control for nonholonomic wheeled mobile robots with external disturbances and parameter uncertainties publication-title: Int. J. Control, Autom. Syst. doi: 10.1007/s12555-019-0643-y – volume: 30 start-page: 80 issue: 1 year: 2020 ident: 10.1016/j.jfranklin.2024.106962_b9 article-title: Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4750 – volume: 55 start-page: 460 issue: 6 year: 2007 ident: 10.1016/j.jfranklin.2024.106962_b26 article-title: Tracking-error model-based predictive control for mobile robots in real time publication-title: Robotics Auton. Syst. doi: 10.1016/j.robot.2007.01.002 – volume: 28 start-page: 1789 issue: 5 year: 2018 ident: 10.1016/j.jfranklin.2024.106962_b19 article-title: A new adaptive tracking control scheme of wheeled mobile robot without longitudinal velocity measurement publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.3985 – year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b6 article-title: Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.04.021 – ident: 10.1016/j.jfranklin.2024.106962_b11 doi: 10.23919/CCC50068.2020.9188593 – year: 2008 ident: 10.1016/j.jfranklin.2024.106962_b29 – ident: 10.1016/j.jfranklin.2024.106962_b20 doi: 10.23919/ACC45564.2020.9147898 – volume: 163 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b28 article-title: Robust adaptive trajectory tracking for wheeled mobile robots based on Gaussian process regression publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2022.105210 – volume: 4 start-page: 1514 issue: 6 year: 2023 ident: 10.1016/j.jfranklin.2024.106962_b23 article-title: Concurrent learning-based neuroadaptive robust tracking control of wheeled mobile robot: an event-triggered design publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2022.3207133 – volume: 2 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.jfranklin.2024.106962_b25 article-title: Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler methodologies: a unified framework publication-title: Adv. Robotics Autom. – volume: 128 start-page: 123 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b16 article-title: Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.10.017 – year: 2023 ident: 10.1016/j.jfranklin.2024.106962_b35 article-title: Adaptive angle-constrained enclosing control for multirobot systems using bearing measurements publication-title: IEEE Trans. Automat. Control – volume: 32 start-page: 851 issue: 2 year: 2021 ident: 10.1016/j.jfranklin.2024.106962_b4 article-title: Globally exponentially convergent velocity observer design for mechanical systems with nonholonomic constraints publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.5859 – volume: 69 start-page: 3762 issue: 9 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b32 article-title: Distributed disturbance-and-leader estimation for controlling networks of nonholonomic mobile robots publication-title: IEEE Trans. Circuits Syst. I Reg. Pap. doi: 10.1109/TCSI.2022.3176930 – volume: 50 start-page: 4171 issue: 11 year: 2018 ident: 10.1016/j.jfranklin.2024.106962_b18 article-title: Reinforcement learning neural network-based adaptive control for state and input time-delayed wheeled mobile robots publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2870724 – volume: vol. 380 year: 2022 ident: 10.1016/j.jfranklin.2024.106962_b31 – volume: 357 start-page: 8491 issue: 13 year: 2020 ident: 10.1016/j.jfranklin.2024.106962_b24 article-title: Trajectory tracking control for wheeled mobile robots based on nonlinear disturbance observer with extended Kalman filter publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.04.043 |
SSID | ssj0017100 |
Score | 2.399861 |
Snippet | In this paper, we develop an adaptive iterative learning approach to investigate the trajectory tracking control issue for a class of two-wheeled mobile robots... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106962 |
SubjectTerms | Adaptive control Model uncertainty Robust control Wheeled mobile robot |
Title | Iterative-learning-based tracking control of a two-wheeled mobile robot with model uncertainties and unknown periodic disturbances |
URI | https://dx.doi.org/10.1016/j.jfranklin.2024.106962 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07SwQxEA6ijRbiE9-ksI3m8ry1k8PjVLRSsFvy1BPdlXPFzsJf7mQ3dygIFna7YQeWzDDfJHzzDUKHXFsZABiJg1qfCGUo6UfFSOGpjYUT3rdTFK6u1ehWXNzJuzk0mPbCJFplzv1dTm-zdV45zrt5_DIepx7fHqA1b1mQcM5qO9iFTvr5Rx8zmkcvqdd02RhOzvD1D47XY8yT0eGgyASsqkKx3xHqG-oMV9ByLhfxafdHq2guVGto6ZuI4Dr6PG-FkSFrkTwC4p4kbPK4mRiXbsJx5qPjOmKDm_eavD8EgBuPn2sLWQFPals3OF3J4nYyDgaw66gCSW4Vm8rDSrp9q3ASRq792GEP8fE2sSloXjfQ7fDsZjAiebICcUzIhjgoSpyWuuejgKc-tyrwQA11TEkfDFOBWd0PVGvep0Fb7bgMzBXS0EhF5JtovqqrsIWwFkZR24uWA9C7GKx3UnLGrYPahpliG6npbpYuy46n6RdP5ZRf9ljO3FAmN5SdG7YRnRm-dMobf5ucTN1V_giiEvDhL-Od_xjvosX01vF499B8M3kL-1CtNPagDccDtHB6fjm6_gJRJu3J |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQ9gA9VAWKSlvAB64ujp-b3ipUtDxPrMQt8rPdFSRoCeLWQ395x4mzYiUkDtwiJyNFntF8M9bnbxA65NrKAMBIHNT6RChDyTgqRkpPbSyd8L6bonB5pSZTcXYjb9bQ8XAXJtEqc-7vc3qXrfPKUd7No_vZLN3xLQCteceChD4LWqB3QnKdQvv73yXPo0jyNX06htYZPl8hec1jHo0OnSITsKpKxV6GqGewc_IRfcj1Iv7Z_9ImWgv1Fnr_TEVwG_077ZSRIW2RPAPiN0ng5HG7MC4dheNMSMdNxAa3Tw15-hMAbzy-ayykBbxobNPidCaLu9E4GNCu5wokvVVsag8r6fitxkkZufEzhz0EyOPCpqh5-ISmJ7-ujyckj1YgjgnZEgdVidNSFz4KeBpzqwIP1FDHlPTBMBWY1eNAteZjGrTVjsvAXCkNjVREvoNGdVOHzwhrYRS1RbQckN7FYL2TkjNuHRQ3zJS7SA27WbmsO57GX9xWA8FsXi3dUCU3VL0bdhFdGt730huvm_wY3FWtRFEFAPGa8Ze3GB-g9cn15UV1cXp1_hVtpDc9qfcbGrWLx7AHpUtr97vQ_A_aSO9f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative-learning-based+tracking+control+of+a+two-wheeled+mobile+robot+with+model+uncertainties+and+unknown+periodic+disturbances&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Yu%2C+Lin&rft.au=Xiong%2C+Junlin&rft.au=Xie%2C+Min&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=361&rft.issue=11&rft_id=info:doi/10.1016%2Fj.jfranklin.2024.106962&rft.externalDocID=S0016003224003831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |