Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis
Saved in:
Published in | Coordination chemistry reviews Vol. 469; p. 214666 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
15.10.2022
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 214666 |
---|---|
Author | Sultana, Sabiha Das, Kundan Kumar Mansingh, Sriram Sahoo, Dipti Prava Parida, Kulamani |
Author_xml | – sequence: 1 givenname: Dipti Prava surname: Sahoo fullname: Sahoo, Dipti Prava – sequence: 2 givenname: Kundan Kumar surname: Das fullname: Das, Kundan Kumar – sequence: 3 givenname: Sriram surname: Mansingh fullname: Mansingh, Sriram – sequence: 4 givenname: Sabiha surname: Sultana fullname: Sultana, Sabiha – sequence: 5 givenname: Kulamani surname: Parida fullname: Parida, Kulamani |
BookMark | eNp9kE1PwzAMhnMYEtvgB3DzEQ4tST_Sjds0PoY0CQnBuUpTd8vUNVMcKP03_FQyjRMHTpZlP7beZ8JGne2QsSvBY8GFvN3FWrs44UkSJyKTUo7YmHPBo1me5edsQrQLrZzPkzH7fkWNnYeDsxuHRGA6aIwjD8724J3qyHhjO9ijVy2s1YAOa6jtR9UibIfa2S9TI1yv71c3UCkKQ2xRe2e1CsRAnsDbXrmaoFceHdChNd6bbnMHC3D4abCH3vhteE1msw374R0Nnd8iGbpgZ41qCS9_65S9Pz68LVfR-uXpeblYRzrJch9pWcwqUacZbwpeiFwpkVXzIoTMUy6URFXrDBteyRmfqwZ5qgtRJ3meIJ_JQqVTVpzuameJHDalNl4dowcJpi0FL49yy10Z5JZHueVJbiDFH_LgzF654R_mB0YuhmA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216238 crossref_primary_10_1016_j_jcis_2024_05_169 crossref_primary_10_1016_j_ccr_2023_215547 crossref_primary_10_1016_j_ijhydene_2024_07_322 crossref_primary_10_1039_D3RA01096A crossref_primary_10_1016_j_jcis_2024_02_198 crossref_primary_10_1021_acsanm_3c01555 crossref_primary_10_1039_D3MA00685A crossref_primary_10_1016_j_mtphys_2023_101138 crossref_primary_10_1039_D3RE00004D crossref_primary_10_1016_j_ccr_2024_216112 crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_26599_NR_2025_94907102 crossref_primary_10_1016_j_ijhydene_2024_09_047 crossref_primary_10_1016_j_cclet_2024_110275 crossref_primary_10_1002_smll_202412576 crossref_primary_10_1016_j_jece_2024_113773 crossref_primary_10_1002_advs_202401782 crossref_primary_10_1002_slct_202303916 crossref_primary_10_1016_j_jechem_2023_12_014 crossref_primary_10_1016_j_ccr_2023_215437 crossref_primary_10_1016_j_jaecs_2023_100148 crossref_primary_10_3390_catal13040712 crossref_primary_10_1166_jno_2024_3638 crossref_primary_10_1016_j_surfin_2024_104902 crossref_primary_10_1016_j_cej_2025_159561 crossref_primary_10_1016_j_ccr_2024_216343 crossref_primary_10_1016_j_jiec_2024_12_025 crossref_primary_10_1039_D3MH00366C crossref_primary_10_1039_D4SE00202D crossref_primary_10_1002_smll_202407538 crossref_primary_10_1016_j_cej_2024_153841 crossref_primary_10_1002_cssc_202400751 crossref_primary_10_1002_smll_202311182 crossref_primary_10_1016_j_ijhydene_2024_07_426 crossref_primary_10_1039_D4CY00642A crossref_primary_10_1016_j_surfin_2023_103195 crossref_primary_10_1016_j_fuel_2024_133110 crossref_primary_10_1039_D3NJ03700B crossref_primary_10_1007_s12274_024_6529_1 crossref_primary_10_1016_j_ccr_2023_215644 crossref_primary_10_1016_j_ijhydene_2024_10_084 crossref_primary_10_1016_j_jtice_2024_105394 crossref_primary_10_1002_ente_202301504 crossref_primary_10_1021_acs_langmuir_4c04136 crossref_primary_10_1039_D4TA08427F crossref_primary_10_1016_j_chemosphere_2023_140472 crossref_primary_10_1063_5_0203381 crossref_primary_10_1016_j_jpowsour_2023_233502 crossref_primary_10_1002_advs_202207519 crossref_primary_10_1016_j_jallcom_2024_175523 crossref_primary_10_1021_acs_inorgchem_3c03085 crossref_primary_10_1016_j_ccr_2023_215083 crossref_primary_10_1021_acsami_3c17540 crossref_primary_10_1002_adma_202405129 crossref_primary_10_1039_D3NR01574B crossref_primary_10_1016_j_ccr_2024_215832 crossref_primary_10_1016_j_jtice_2024_105941 crossref_primary_10_1021_acsami_4c15460 crossref_primary_10_1007_s10971_024_06341_9 crossref_primary_10_1002_adma_202411134 crossref_primary_10_1016_j_ceramint_2024_03_268 crossref_primary_10_1149_1945_7111_ad0c67 crossref_primary_10_1021_acs_inorgchem_3c04065 crossref_primary_10_1021_acs_inorgchem_4c01581 crossref_primary_10_1016_j_ijhydene_2023_07_030 crossref_primary_10_1016_j_mtphys_2023_101289 crossref_primary_10_1002_adma_202313057 crossref_primary_10_3390_nano13233066 crossref_primary_10_1002_aenm_202403889 crossref_primary_10_1016_j_jelechem_2025_118958 crossref_primary_10_1016_j_ijhydene_2024_01_239 crossref_primary_10_1016_j_jcis_2024_07_243 crossref_primary_10_1016_j_jece_2023_111191 crossref_primary_10_1016_j_cej_2023_146681 crossref_primary_10_1039_D3QI00857F crossref_primary_10_1016_j_jece_2024_114038 crossref_primary_10_1016_j_jece_2024_114152 crossref_primary_10_1016_j_ijhydene_2024_05_232 crossref_primary_10_1016_j_matchemphys_2023_128321 crossref_primary_10_3390_catal15030205 crossref_primary_10_1021_acs_inorgchem_3c03582 crossref_primary_10_1039_D3DT02426A crossref_primary_10_1016_S1872_2067_24_60076_8 crossref_primary_10_1016_j_apsusc_2024_160854 crossref_primary_10_3390_catal14110755 crossref_primary_10_1016_j_fuel_2025_135164 crossref_primary_10_1039_D4EY00037D crossref_primary_10_1002_cctc_202301533 crossref_primary_10_1016_j_esci_2025_100380 crossref_primary_10_1016_j_cej_2023_144373 crossref_primary_10_1016_j_cej_2025_161153 crossref_primary_10_1039_D4TA04581E crossref_primary_10_1088_1361_6528_ad41ea crossref_primary_10_3390_catal12101167 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1021_acsanm_4c06502 crossref_primary_10_1021_acs_inorgchem_3c04568 crossref_primary_10_1016_j_ijhydene_2023_08_038 crossref_primary_10_1016_j_electacta_2024_144649 crossref_primary_10_1021_acs_energyfuels_4c00651 crossref_primary_10_1002_smtd_202400519 crossref_primary_10_3390_catal12080816 crossref_primary_10_1007_s42864_024_00268_y crossref_primary_10_1021_acs_inorgchem_3c03115 crossref_primary_10_1039_D3TA04533A crossref_primary_10_1016_j_jcis_2023_01_074 crossref_primary_10_1039_D4CE01298D crossref_primary_10_1016_j_fuel_2024_130961 crossref_primary_10_1007_s10562_024_04749_0 crossref_primary_10_1016_j_est_2024_112083 crossref_primary_10_1016_j_clay_2023_107234 crossref_primary_10_1016_j_jallcom_2025_179512 crossref_primary_10_1002_adfm_202313770 crossref_primary_10_1039_D4MH01533A crossref_primary_10_1515_zpch_2022_0126 crossref_primary_10_1021_acsaem_3c01338 crossref_primary_10_1021_acsanm_4c07166 crossref_primary_10_1360_TB_2024_0090 crossref_primary_10_1149_1945_7111_acf528 crossref_primary_10_1002_ece2_90 crossref_primary_10_1016_j_seppur_2024_126388 crossref_primary_10_1039_D4CY00277F crossref_primary_10_1021_acsmaterialslett_4c00659 crossref_primary_10_1016_j_inoche_2025_113962 crossref_primary_10_1016_j_jallcom_2024_175323 crossref_primary_10_1039_D2SE01510B crossref_primary_10_1016_j_nanoms_2024_10_010 crossref_primary_10_1016_j_inoche_2025_114242 crossref_primary_10_1016_j_ccr_2025_216509 crossref_primary_10_1002_asia_202301051 crossref_primary_10_1002_smll_202300509 crossref_primary_10_1007_s40820_022_01004_2 crossref_primary_10_1016_j_cej_2023_142604 crossref_primary_10_1016_j_ijhydene_2024_12_044 crossref_primary_10_1080_10934529_2023_2263323 crossref_primary_10_1016_j_clay_2024_107519 crossref_primary_10_1007_s40820_023_01024_6 crossref_primary_10_1007_s42114_024_01123_x crossref_primary_10_1039_D4SE01175A crossref_primary_10_1016_j_microc_2025_113267 crossref_primary_10_1016_j_jtice_2023_104916 crossref_primary_10_1016_j_mtener_2025_101835 crossref_primary_10_1021_acssuschemeng_3c07722 crossref_primary_10_1021_acsmaterialslett_4c00409 crossref_primary_10_1039_D4DT00883A crossref_primary_10_1002_cctc_202401584 crossref_primary_10_1016_j_nanoen_2022_108032 crossref_primary_10_1016_j_est_2024_113806 crossref_primary_10_1016_j_ijhydene_2024_12_507 crossref_primary_10_1039_D3SE00573A crossref_primary_10_1039_D4NR02567A crossref_primary_10_1039_D3TA00836C crossref_primary_10_1016_j_chemosphere_2022_136633 crossref_primary_10_1016_j_jcat_2024_115352 crossref_primary_10_1002_asia_202300625 crossref_primary_10_1038_s41598_024_54934_9 crossref_primary_10_1039_D2MA01066F crossref_primary_10_1039_D3TA07823J crossref_primary_10_15251_DJNB_2024_193_1159 crossref_primary_10_1016_j_matlet_2024_137664 crossref_primary_10_1016_j_jechem_2024_08_030 crossref_primary_10_1039_D4DT03007A crossref_primary_10_1016_j_ijhydene_2022_11_039 crossref_primary_10_1016_j_ijhydene_2024_06_105 crossref_primary_10_1007_s40242_024_4121_6 crossref_primary_10_1002_cssc_202301703 crossref_primary_10_1016_j_jallcom_2022_166990 crossref_primary_10_1016_j_cej_2024_158217 crossref_primary_10_1016_j_ijhydene_2023_03_326 crossref_primary_10_1039_D4RA03049D crossref_primary_10_1002_inf2_12639 crossref_primary_10_1016_j_ijhydene_2023_09_270 crossref_primary_10_1002_celc_202400101 crossref_primary_10_1002_smll_202302866 crossref_primary_10_3390_molecules28155736 crossref_primary_10_1002_smll_202407845 crossref_primary_10_1016_j_jallcom_2024_177302 crossref_primary_10_1002_cnma_202400366 crossref_primary_10_1016_j_jclepro_2024_140705 crossref_primary_10_1016_j_ijhydene_2024_05_205 crossref_primary_10_1002_smll_202403908 crossref_primary_10_1016_j_jallcom_2025_179695 crossref_primary_10_1016_j_jcis_2025_02_083 crossref_primary_10_1021_acs_iecr_3c03431 crossref_primary_10_1021_acs_inorgchem_3c00425 crossref_primary_10_1021_acs_inorgchem_2c03706 crossref_primary_10_1021_acssuschemeng_3c01381 crossref_primary_10_1021_jacs_4c14675 crossref_primary_10_1016_j_jcis_2024_04_056 crossref_primary_10_1016_j_jallcom_2025_178489 crossref_primary_10_1039_D3QM00819C crossref_primary_10_1016_j_cej_2024_149706 crossref_primary_10_1016_j_cej_2023_146714 crossref_primary_10_1016_j_fuel_2024_133029 crossref_primary_10_1016_j_jechem_2023_04_049 crossref_primary_10_1002_cphc_202400907 crossref_primary_10_1016_j_ccr_2024_216395 crossref_primary_10_1016_j_ccr_2023_215460 crossref_primary_10_6023_A22110448 crossref_primary_10_1007_s10853_024_09587_4 crossref_primary_10_1039_D3QM00567D crossref_primary_10_1016_j_gce_2024_04_002 crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1016_j_jwpe_2023_104625 crossref_primary_10_1039_D4CY00727A crossref_primary_10_1007_s12209_024_00389_y crossref_primary_10_1021_acsomega_2c04044 crossref_primary_10_1016_j_mtsust_2023_100451 crossref_primary_10_1063_5_0185031 crossref_primary_10_1016_j_ccr_2025_216560 crossref_primary_10_20517_energymater_2024_34 crossref_primary_10_1016_j_apcatb_2025_125227 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1016_j_nxmate_2023_100040 crossref_primary_10_1039_D4RE00353E crossref_primary_10_1016_j_cattod_2024_115124 crossref_primary_10_1016_j_colsurfa_2023_131824 crossref_primary_10_1002_smll_202303765 crossref_primary_10_1016_j_nanoen_2023_108884 crossref_primary_10_1007_s44373_024_00011_9 crossref_primary_10_1038_s41598_023_37070_8 crossref_primary_10_1021_acsami_3c19483 crossref_primary_10_1016_j_ijhydene_2023_03_085 crossref_primary_10_1016_j_colsurfa_2023_131370 crossref_primary_10_1016_j_jssc_2024_124600 crossref_primary_10_1007_s11581_023_05264_9 crossref_primary_10_1002_bkcs_12790 crossref_primary_10_1016_j_jcis_2024_10_018 crossref_primary_10_1016_j_jpowsour_2024_235403 crossref_primary_10_1021_acs_jpcc_4c02999 crossref_primary_10_1016_j_surfin_2024_105485 crossref_primary_10_3390_coatings13061102 crossref_primary_10_1021_acs_inorgchem_2c04154 crossref_primary_10_31613_ceramist_2024_00164 crossref_primary_10_1039_D3NJ03260D crossref_primary_10_1002_ente_202300749 crossref_primary_10_1088_2053_1583_ac9241 crossref_primary_10_1016_j_ccr_2023_215450 crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_1016_j_ccr_2022_214981 crossref_primary_10_1016_j_ijbiomac_2025_139994 crossref_primary_10_1016_j_jpowsour_2024_234306 crossref_primary_10_1002_smll_202406431 crossref_primary_10_1016_j_jpowsour_2024_235636 crossref_primary_10_1016_j_jallcom_2024_175952 crossref_primary_10_1021_acsaem_3c00644 crossref_primary_10_1016_j_jpowsour_2024_234422 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1016_j_cej_2024_154958 |
Cites_doi | 10.1021/cm902787u 10.1038/s41467-018-06802-0 10.1063/1.1878333 10.1039/D0TA05797E 10.1007/s40820-017-0160-6 10.1039/C9TA07282A 10.1039/C8NR05974H 10.1002/adma.201906432 10.1016/j.cej.2020.126257 10.1002/cssc.202002509 10.1021/acscatal.8b00032 10.1039/C9SE00700H 10.1039/D0TA09788H 10.1021/acssuschemeng.8b03232 10.1016/j.jcis.2021.12.066 10.1021/acscentsci.8b00426 10.1021/acsami.0c20294 10.1039/C4CS00448E 10.1016/j.electacta.2020.136339 10.1039/D0NR00752H 10.1016/j.jallcom.2021.159874 10.1039/C5QI00232J 10.1039/C9SE01300H 10.1016/j.jcat.2017.11.028 10.1002/aenm.201701905 10.1016/j.clay.2006.10.008 10.1039/C4TA06634K 10.1002/adma.201807134 10.1039/D0SE00050G 10.1039/C8QM00677F 10.1016/j.colsurfa.2020.125419 10.1016/j.electacta.2016.08.149 10.1039/C8DT03764G 10.1021/acsami.9b15208 10.1039/C8TA05907A 10.1016/j.apsusc.2021.151182 10.1021/jacs.5b07728 10.1002/smll.201905328 10.1126/science.1157996 10.1039/C7TA01907F 10.1016/j.ijhydene.2019.11.038 10.1021/acsnano.9b07487 10.1039/a908251d 10.1016/j.jallcom.2021.160752 10.1039/C9QI01394F 10.1016/j.apcatb.2019.118440 10.1039/C8TA02492H 10.1021/acs.chemmater.9b01263 10.1016/j.nanoen.2017.05.044 10.1021/acsanm.8b01932 10.1039/D0DT03802D 10.1039/C6CC06267A 10.1039/C4CS00269E 10.1021/acsami.5b07960 10.1016/j.nanoen.2017.12.003 10.1038/ncomms9625 10.1016/j.cattod.2014.05.032 10.1021/acsenergylett.8b00134 10.1016/j.jpowsour.2019.04.014 10.1016/j.nanoen.2017.04.011 10.1038/nchem.931 10.1039/c3nr00444a 10.1016/j.enchem.2019.100013 10.1021/acsenergylett.7b00206 10.1021/acsami.7b00019 10.1016/j.ijhydene.2020.06.139 10.1002/adfm.201605802 10.1021/acssuschemeng.8b00084 10.1002/adfm.201909832 10.1038/ncomms4813 10.1039/C7CC07186H 10.1002/cssc.201901153 10.1021/acs.chemmater.7b00618 10.1039/C9TA12768B 10.1021/ed060pA25.1 10.1039/C8QI00972D 10.1016/j.ijhydene.2021.04.071 10.1002/advs.201800064 10.1002/advs.201600380 10.1039/c3ee00045a 10.1016/j.electacta.2015.12.154 10.1021/acsaem.8b01318 10.1039/C9DT04888J 10.1021/ar500302q 10.1002/aenm.201703341 10.1002/celc.201600301 10.1021/acs.inorgchem.7b03213 10.1039/C9TA06347A 10.1016/j.jcis.2021.12.031 10.1016/j.jechem.2022.02.044 10.1039/C7TA08440D 10.1021/acsaem.7b00151 10.1039/C8NR07535B 10.1021/ja511572q 10.1021/acsami.7b16430 10.1002/chem.201501120 10.1021/nn400644t 10.1039/C9CC08841E 10.1016/j.jechem.2018.07.007 10.1039/C4CP01665C 10.1039/D0TA08815C 10.1038/nmat4421 10.1039/C8TA01832D 10.1021/acs.inorgchem.0c01927 10.1039/D0SE01490G 10.1002/cphc.200500449 10.1002/adma.201501692 10.1016/j.mtener.2019.04.009 10.1039/C4TA01275E 10.1039/D0NJ00021C 10.1016/j.ijhydene.2019.04.258 10.1002/ange.201301066 10.1039/D0RA00845A 10.1021/ja062677d 10.1038/s41467-018-07790-x 10.1039/c3cs60351b 10.1002/ange.201509758 10.1039/C9TA03580J 10.1039/D0NA00727G 10.1002/aenm.202002816 10.1002/adfm.201301747 10.1002/ange.201600687 10.1016/j.mtsust.2021.100101 10.1007/s12274-019-2575-5 10.1016/j.electacta.2019.134595 10.1039/C9TA03882E 10.1002/advs.202105135 10.1039/C9NR00658C 10.1007/s40820-018-0229-x 10.1002/aenm.201703585 10.1002/advs.201700464 10.1021/acs.chemmater.5b05006 10.1039/C6CS00343E 10.1016/j.jallcom.2019.04.150 10.1016/j.ijhydene.2013.01.151 10.1021/jacs.9b05006 10.1016/j.clay.2007.03.006 10.1016/j.cej.2018.08.102 10.1002/smll.201701931 10.1039/C9NA00808J 10.1021/ar5002846 10.1021/acscatal.8b03092 10.1039/D0TA03895D 10.1039/C9CC00197B 10.1021/acssuschemeng.9b02297 10.1002/smtd.201800286 10.1002/adma.201602912 10.1002/adma.201604080 10.1002/chem.201905844 10.1002/celc.201600022 10.1002/chem.201101874 10.1021/acsami.7b17939 10.1002/anie.201710877 10.1016/j.cej.2020.126297 10.1021/jacs.8b00752 10.1039/C9NH00485H 10.1021/acsami.9b02978 10.1039/D0CC03773G 10.1039/D0NR02697B 10.1021/ja00219a048 10.1021/acscatal.8b03489 10.1002/aenm.201803060 10.1007/s12274-015-0781-3 10.1021/acs.chemmater.5b02177 10.1039/D0CC03760E 10.1002/advs.201600371 10.1002/adfm.201702546 10.1039/C9EE01202H 10.1021/ef901505c 10.1021/acs.inorgchem.0c03514 10.1073/pnas.14.8.627 10.1021/acscatal.7b00007 10.1002/cssc.201701358 10.1002/asia.201800092 10.1002/aenm.201670063 10.1039/C9CY01896D 10.1016/j.jpowsour.2017.02.062 10.1016/j.cej.2020.124525 10.1021/acssuschemeng.8b01425 10.1002/ange.201501419 10.1021/acs.chemmater.8b01334 10.1016/j.jcis.2020.08.086 10.1039/C8TA02967A 10.1016/j.jechem.2017.09.015 10.1038/nnano.2008.215 10.1021/nn400576v 10.1039/D0TA01966F 10.1039/C8NR00426A 10.1002/advs.201900576 10.1039/C6EE03145E 10.1021/acsomega.7b01807 10.1002/adfm.201601315 10.1007/s12598-021-01765-6 10.1016/j.cej.2020.125605 10.1016/j.jpowsour.2016.09.152 10.1021/acsnano.7b03329 10.3389/fchem.2019.00671 10.1002/ange.201004033 10.1021/acsami.7b07984 10.1002/cctc.201000126 10.1002/anie.201701477 10.1016/j.electacta.2020.136247 10.1016/j.clay.2017.12.021 10.1021/acsami.5b03042 10.1007/s40843-020-1566-6 10.1002/adma.202005433 10.1016/j.electacta.2018.04.201 10.1021/acsami.0c01315 10.1021/nn300503e 10.1016/j.jallcom.2020.156949 10.1021/acssuschemeng.7b04199 10.1021/nl0731872 10.1039/c1dt10697j 10.1016/j.jcis.2018.05.075 10.1039/C7NJ04469K 10.1021/acscatal.5b01551 10.1038/nature11475 10.1039/C6EE00377J 10.1039/D0QI00617C 10.1002/smll.201902551 10.1002/anie.201303971 10.1002/aenm.201902535 10.1002/smtd.201800344 10.1016/j.jechem.2020.02.025 10.1021/acs.jpcb.7b06935 10.1039/D0NR06615J 10.1016/j.mtener.2017.07.016 10.1016/j.jpowsour.2019.227434 10.1016/j.mattod.2015.10.006 10.1002/anie.201502461 10.1002/adma.201705106 10.1039/C9CC00268E 10.1039/C6TA02216B 10.1039/C9TA06917H 10.1002/celc.201800194 10.1039/C7CS00318H 10.1002/chin.198723038 10.1002/aenm.201803358 10.1016/j.apsusc.2015.08.160 10.1039/C6TC05463C 10.1007/s12274-017-1437-2 10.1021/acsomega.8b02565 10.1002/smll.201803638 10.1002/adma.201602270 10.1002/slct.201900197 10.1016/j.jelechem.2018.11.028 10.1002/aenm.201900881 10.1021/acsami.6b13360 10.1039/D0TA03272G 10.1039/C7EE01571B 10.1002/cctc.201000397 10.1039/C3TC32578D 10.1021/acs.nanolett.6b03332 10.1021/jacs.6b01606 10.1088/1361-6528/ac0b65 10.1039/D0SE01805H 10.1039/C5TA05002B 10.1039/C3CS60468C 10.1002/adma.200306393 10.1021/ja905467v 10.1016/j.apcatb.2018.09.061 10.1002/adma.201904548 10.1016/j.jtice.2021.01.022 10.1016/j.ijhydene.2019.04.045 10.1016/j.apcatb.2021.119906 10.1021/jz2016507 10.1149/MA2017-02/46/2029 10.1007/s12274-021-3424-x 10.1002/cssc.201900479 10.1039/c2cc17611d 10.1002/adma.201601019 10.1016/j.apcatb.2020.119014 10.1039/C4CS00236A 10.1021/ja5085157 10.1002/adma.201700017 10.1021/acsomega.9b01146 10.1039/C9TA06686A 10.1039/C8TA08223E 10.1039/C7NR02001E 10.1039/C9DT04282B 10.1016/j.apcatb.2017.01.010 10.1039/C9CE01575B 10.1039/C4CC01625D 10.1016/j.ijhydene.2020.02.212 10.1039/C8TA08149B 10.1016/j.ijhydene.2011.03.173 10.1002/anie.201709652 10.1039/D0TA00691B 10.1039/C8SE00525G 10.1002/smll.201902373 10.1016/j.ijhydene.2021.07.111 10.1039/C6TA01668E 10.1021/acssuschemeng.8b03852 10.1016/j.electacta.2014.11.096 10.1021/acssuschemeng.9b07481 10.1021/acsami.8b16962 10.1039/C8TA01067F 10.1021/acsaem.7b00305 10.1002/adma.201701546 10.1021/acsami.6b02352 10.1002/ppsc.201600004 10.1039/D0NJ03537H 10.1002/smll.201501611 10.1021/jp810129h 10.1002/advs.202002631 10.1039/C5TA03394B 10.1016/j.cej.2021.131643 10.1039/D0CC01146K 10.1038/ncomms10922 10.1038/s41570-016-0003 10.1021/acssuschemeng.8b05044 10.1002/cphc.201900524 10.1039/C6CC03687B 10.1021/cm4035598 10.1039/C8TA11273H 10.1039/C9QI00190E 10.1021/cs500923c 10.1021/ja5119495 10.1002/cplu.201700005 10.1002/aenm.201770135 10.1021/acsami.8b22260 10.1039/C7QI00742F 10.1021/acsami.6b12100 10.1002/celc.201901623 10.1002/adma.201606207 10.1016/j.apcatb.2020.118627 10.1021/jacs.9b13694 10.1002/adfm.202108681 10.1021/acsami.9b13629 10.1039/C4NR06754A 10.1002/adfm.201804886 10.1021/acsami.8b11688 10.1039/C8CY02603C 10.1002/adfm.201400193 10.1016/j.jechem.2020.04.009 10.1002/adma.201502696 10.1039/C9NR10781A 10.1039/C9QM00052F 10.1039/D1QI01185E 10.1039/D0TA06353C 10.1021/acssuschemeng.7b04788 10.1038/nchem.1874 10.1016/j.ijpharm.2013.12.035 10.1016/j.nanoen.2016.11.048 10.1016/j.cej.2021.129892 10.1016/j.ijhydene.2021.10.222 10.1016/j.jelechem.2017.11.057 10.1002/admi.201901328 10.1016/j.nanoen.2017.09.045 10.1016/j.electacta.2021.139199 10.1039/C5TA00078E |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2022.214666 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_ccr_2022_214666 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMH HVGLF HZ~ H~9 IHE J1W K-O KOM M23 M41 MO0 N9A NDZJH O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SDF SDG SDP SES SEW SIC SPC SPCBC SSH SSK SSZ T5K TN5 TWZ UPT UQL VH1 WH7 WUQ XJT XPP YK3 ZKB ZMT ZY4 ~G- |
ID | FETCH-LOGICAL-c245t-c678b1d340f70715aa14b976995301a6eadc4ef0b6809afe03c71d2552e0867a3 |
ISSN | 0010-8545 |
IngestDate | Tue Jul 01 02:43:54 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c245t-c678b1d340f70715aa14b976995301a6eadc4ef0b6809afe03c71d2552e0867a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2022_214666 crossref_primary_10_1016_j_ccr_2022_214666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2022 |
References | Ge (10.1016/j.ccr.2022.214666_b0885) 2022; 610 Ling (10.1016/j.ccr.2022.214666_b0340) 2020; 142 Zhang (10.1016/j.ccr.2022.214666_b0840) 2018; 6 Carrasco (10.1016/j.ccr.2022.214666_b0915) 2019; 31 Polaczyk (10.1016/j.ccr.2022.214666_b0215) 2010; 24 Hu (10.1016/j.ccr.2022.214666_b0375) 2019; 12 Wen (10.1016/j.ccr.2022.214666_b0795) 2019; 15 Zhao (10.1016/j.ccr.2022.214666_b1840) 2011; 17 Jia (10.1016/j.ccr.2022.214666_b1455) 2017; 29 Bergmann (10.1016/j.ccr.2022.214666_b0970) 2015; 6 Zhang (10.1016/j.ccr.2022.214666_b1245) 2018; 140 10.1016/j.ccr.2022.214666_b1745 10.1016/j.ccr.2022.214666_b0895 Nayak (10.1016/j.ccr.2022.214666_b0210) 2015; 3 10.1016/j.ccr.2022.214666_b1500 Carrasco (10.1016/j.ccr.2022.214666_b0925) 2019; 55 Dutta (10.1016/j.ccr.2022.214666_b1300) 2017; 9 Karmakar (10.1016/j.ccr.2022.214666_b0290) 2021; 9 Qian (10.1016/j.ccr.2022.214666_b0815) 2016; 3 10.1016/j.ccr.2022.214666_b1740 Zou (10.1016/j.ccr.2022.214666_b1825) 2021; 46 Yan (10.1016/j.ccr.2022.214666_b1135) 2015; 127 Balandin (10.1016/j.ccr.2022.214666_b1545) 2008; 8 Wenchao (10.1016/j.ccr.2022.214666_b0380) 2013; 6 Sanati (10.1016/j.ccr.2022.214666_b1315) 2020; 56 Jung (10.1016/j.ccr.2022.214666_b0955) 2018; 47 Wang (10.1016/j.ccr.2022.214666_b0100) 2017; 4 Cunningham (10.1016/j.ccr.2022.214666_b0650) 2012; 6 Peng (10.1016/j.ccr.2022.214666_b1850) 2019; 3 Zhan (10.1016/j.ccr.2022.214666_b1590) 2016; 333 Long (10.1016/j.ccr.2022.214666_b0085) 2015; 137 Liu (10.1016/j.ccr.2022.214666_b1295) 2014; 44 Bao (10.1016/j.ccr.2022.214666_b1350) 2020; 56 Zehao (10.1016/j.ccr.2022.214666_b1040) 2022; 17 Ma (10.1016/j.ccr.2022.214666_b1010) 2016; 128 Manna (10.1016/j.ccr.2022.214666_b1465) 2020; 2 Zhang (10.1016/j.ccr.2022.214666_b0790) 2020; 8 Deng (10.1016/j.ccr.2022.214666_b1360) 2020; 8 Wang (10.1016/j.ccr.2022.214666_b0560) 2016; 191 Tang (10.1016/j.ccr.2022.214666_b1435) 2016; 33 Deng (10.1016/j.ccr.2022.214666_b0305) 2019; 32 Han (10.1016/j.ccr.2022.214666_b1640) 2016; 28 Xu (10.1016/j.ccr.2022.214666_b0685) 2016; 128 Li (10.1016/j.ccr.2022.214666_b1335) 2019; 7 Chu (10.1016/j.ccr.2022.214666_b0015) 2012; 488 Wang (10.1016/j.ccr.2022.214666_b1125) 2015; 137 Liu (10.1016/j.ccr.2022.214666_b0565) 2017; 5 10.1016/j.ccr.2022.214666_b0880 Xiao (10.1016/j.ccr.2022.214666_b1260) 2018; 10 Xue (10.1016/j.ccr.2022.214666_b0130) 2019; 7 10.1016/j.ccr.2022.214666_b1050 Yang (10.1016/j.ccr.2022.214666_b0515) 2015; 8 Yu (10.1016/j.ccr.2022.214666_b1310) 2018; 6 Lee (10.1016/j.ccr.2022.214666_b0115) 2012; 3 Wang (10.1016/j.ccr.2022.214666_b1815) 2013; 5 Jia (10.1016/j.ccr.2022.214666_b1580) 2016; 28 Chen (10.1016/j.ccr.2022.214666_b0490) 2014; 24 10.1016/j.ccr.2022.214666_b1645 Wang (10.1016/j.ccr.2022.214666_b1655) 2020; 45 Liu (10.1016/j.ccr.2022.214666_b0155) 2019; 11 Wang (10.1016/j.ccr.2022.214666_b1665) 2013; 5 Ray (10.1016/j.ccr.2022.214666_b0315) 2020; 8 Zhu (10.1016/j.ccr.2022.214666_b1250) 2016; 4 Liu (10.1016/j.ccr.2022.214666_b0220) 2018; 277 Ribeiro (10.1016/j.ccr.2022.214666_b0225) 2014; 463 10.1016/j.ccr.2022.214666_b1760 Zhang (10.1016/j.ccr.2022.214666_b0985) 2019; 3 Thenuwara (10.1016/j.ccr.2022.214666_b0960) 2018; 122 Zhang (10.1016/j.ccr.2022.214666_b0780) 2014; 6 Wang (10.1016/j.ccr.2022.214666_b1330) 2020; 59 10.1016/j.ccr.2022.214666_b1190 Wang (10.1016/j.ccr.2022.214666_b1275) 2018; 10 Hu (10.1016/j.ccr.2022.214666_b1235) 2021; 11 Liu (10.1016/j.ccr.2022.214666_b0740) 2014; 24 Zhang (10.1016/j.ccr.2022.214666_b1875) 2015; 54 Liang (10.1016/j.ccr.2022.214666_b0900) 2010; 22 Wang (10.1016/j.ccr.2022.214666_b0105) 2016; 28 Xu (10.1016/j.ccr.2022.214666_b0830) 2020; 8 10.1016/j.ccr.2022.214666_b1625 Ya (10.1016/j.ccr.2022.214666_b1835) 2022 10.1016/j.ccr.2022.214666_b1755 Zhang (10.1016/j.ccr.2022.214666_b0125) 2019; 31 10.1016/j.ccr.2022.214666_b1510 10.1016/j.ccr.2022.214666_b1630 Lee (10.1016/j.ccr.2022.214666_b1550) 2008; 321 Wang (10.1016/j.ccr.2022.214666_b0110) 2017; 8 Zibin (10.1016/j.ccr.2022.214666_b0345) 2019; 1 Wang (10.1016/j.ccr.2022.214666_b0165) 2019; 12 Sun (10.1016/j.ccr.2022.214666_b0180) 2019; 425 Zhang (10.1016/j.ccr.2022.214666_b1055) 2020; 32 Wen (10.1016/j.ccr.2022.214666_b1525) 2021; 52 Li (10.1016/j.ccr.2022.214666_b0530) 2014; 2 Wan (10.1016/j.ccr.2022.214666_b1785) 2019; 6 Shen (10.1016/j.ccr.2022.214666_b1445) 2019; 11 Li (10.1016/j.ccr.2022.214666_b0135) 2018; 8 Kejun (10.1016/j.ccr.2022.214666_b0065) 2020; 32 Wang (10.1016/j.ccr.2022.214666_b0995) 2017; 56 Liang (10.1016/j.ccr.2022.214666_b0425) 2015; 27 10.1016/j.ccr.2022.214666_b0725 Yu (10.1016/j.ccr.2022.214666_b1185) 2017; 10 Kuang (10.1016/j.ccr.2022.214666_b0430) 2018; 28 Liu (10.1016/j.ccr.2022.214666_b0860) 2019; 7 Gao (10.1016/j.ccr.2022.214666_b1615) 2019; 141 Xie (10.1016/j.ccr.2022.214666_b1855) 2016; 22 Wang (10.1016/j.ccr.2022.214666_b0355) 2017; 31 Zhong (10.1016/j.ccr.2022.214666_b0055) 2021; 40 Hanzhi (10.1016/j.ccr.2022.214666_b1415) 2022; 9 Sahoo (10.1016/j.ccr.2022.214666_b0245) 2019; 9 10.1016/j.ccr.2022.214666_b0975 Tang (10.1016/j.ccr.2022.214666_b1475) 2020; 8 Carmo (10.1016/j.ccr.2022.214666_b0045) 2013; 38 10.1016/j.ccr.2022.214666_b0730 Qiao (10.1016/j.ccr.2022.214666_b0550) 2015; 3 Li (10.1016/j.ccr.2022.214666_b1085) 2019; 3 Wang (10.1016/j.ccr.2022.214666_b1145) 2017; 27 Zhao (10.1016/j.ccr.2022.214666_b1820) 2016; 138 10.1016/j.ccr.2022.214666_b0850 Zhang (10.1016/j.ccr.2022.214666_b1155) 2016; 8 Xie (10.1016/j.ccr.2022.214666_b0865) 2020; 22 Gonçalves (10.1016/j.ccr.2022.214666_b0275) 2020; 44 Ge (10.1016/j.ccr.2022.214666_b0950) 2017; 10 Li (10.1016/j.ccr.2022.214666_b1695) 2019; 4 Lin (10.1016/j.ccr.2022.214666_b1370) 2020; 4 Dutta (10.1016/j.ccr.2022.214666_b1845) 2019; 241 Lv (10.1016/j.ccr.2022.214666_b1595) 2015; 48 Zhou (10.1016/j.ccr.2022.214666_b1450) 2018; 8 Yu (10.1016/j.ccr.2022.214666_b0535) 2017; 41 Hu (10.1016/j.ccr.2022.214666_b1220) 2021; 11 Chen (10.1016/j.ccr.2022.214666_b1620) 2015; 11 Li (10.1016/j.ccr.2022.214666_b0600) 2018; 13 Zhou (10.1016/j.ccr.2022.214666_b1305) 2017; 26 Ping (10.1016/j.ccr.2022.214666_b1440) 2016; 28 Arif (10.1016/j.ccr.2022.214666_b1540) 2019; 3 Yu (10.1016/j.ccr.2022.214666_b0260) 2017; 46 Rajeshkhanna (10.1016/j.ccr.2022.214666_b1800) 2018; 14 Yuan (10.1016/j.ccr.2022.214666_b1810) 2014; 53 Ibrahim (10.1016/j.ccr.2022.214666_b0405) 2020; 448 10.1016/j.ccr.2022.214666_b1375 10.1016/j.ccr.2022.214666_b1495 Chen (10.1016/j.ccr.2022.214666_b1700) 2018; 10 Man (10.1016/j.ccr.2022.214666_b0400) 2011; 3 Liu (10.1016/j.ccr.2022.214666_b0735) 2010; 122 Yu (10.1016/j.ccr.2022.214666_b1075) 2018; 57 Li (10.1016/j.ccr.2022.214666_b1660) 2018; 6 Wang (10.1016/j.ccr.2022.214666_b1060) 2020; 13 Yingjie (10.1016/j.ccr.2022.214666_b0350) 2021; 3 Liu (10.1016/j.ccr.2022.214666_b0695) 2017; 29 Lv (10.1016/j.ccr.2022.214666_b0310) 2019; 9 Han (10.1016/j.ccr.2022.214666_b0555) 2015; 3 Zhao (10.1016/j.ccr.2022.214666_b0665) 2018; 8 Liu (10.1016/j.ccr.2022.214666_b1175) 2017; 35 Chala (10.1016/j.ccr.2022.214666_b1200) 2018; 9 10.1016/j.ccr.2022.214666_b1715 Kwon (10.1016/j.ccr.2022.214666_b0575) 1988; 110 Panlong (10.1016/j.ccr.2022.214666_b1400) 2021; 12 Zhong (10.1016/j.ccr.2022.214666_b0440) 2017; 9 10.1016/j.ccr.2022.214666_b0625 10.1016/j.ccr.2022.214666_b0875 Li (10.1016/j.ccr.2022.214666_b0765) 2020; 12 10.1016/j.ccr.2022.214666_b1720 10.1016/j.ccr.2022.214666_b0750 Tang (10.1016/j.ccr.2022.214666_b1025) 2016; 16 He (10.1016/j.ccr.2022.214666_b0870) 2020; 8 Yan (10.1016/j.ccr.2022.214666_b0195) 2009; 113 You (10.1016/j.ccr.2022.214666_b0385) 2014; 43 Cao (10.1016/j.ccr.2022.214666_b0020) 2018; 6 Colton (10.1016/j.ccr.2022.214666_b0025) 2011 Zhou (10.1016/j.ccr.2022.214666_b1140) 2016; 28 10.1016/j.ccr.2022.214666_b0070 Sun (10.1016/j.ccr.2022.214666_b0705) 2020; 56 Read (10.1016/j.ccr.2022.214666_b1255) 2016; 8 Li (10.1016/j.ccr.2022.214666_b0445) 2017; 347 Xu (10.1016/j.ccr.2022.214666_b0465) 2018; 10 Nejati (10.1016/j.ccr.2022.214666_b0940) 2019; 44 Chengye (10.1016/j.ccr.2022.214666_b1420) 2021; 64 Weina (10.1016/j.ccr.2022.214666_b1005) 2022 Cai (10.1016/j.ccr.2022.214666_b0030) 2019; 7 Yin (10.1016/j.ccr.2022.214666_b1490) 2021; 14 Wang (10.1016/j.ccr.2022.214666_b1150) 2020; 13 Wu (10.1016/j.ccr.2022.214666_b1870) 2017; 38 Nie (10.1016/j.ccr.2022.214666_b1380) 2020; 49 Mengzhou (10.1016/j.ccr.2022.214666_b1530) 2022; 70 Wu (10.1016/j.ccr.2022.214666_b1015) 2016; 26 Zhong (10.1016/j.ccr.2022.214666_b0330) 2022; 32 Sahoo (10.1016/j.ccr.2022.214666_b0255) 2020; 7 Chen (10.1016/j.ccr.2022.214666_b0285) 2020; 30 Xue (10.1016/j.ccr.2022.214666_b0935) 2020; 45 10.1016/j.ccr.2022.214666_b1030 Zhang (10.1016/j.ccr.2022.214666_b1205) 2019; 1 Islam (10.1016/j.ccr.2022.214666_b0150) 2018; 3 Hunter (10.1016/j.ccr.2022.214666_b0630) 2016; 9 Okamoto (10.1016/j.ccr.2022.214666_b0475) 2007; 37 Gualandi (10.1016/j.ccr.2022.214666_b0525) 2015; 152 Su (10.1016/j.ccr.2022.214666_b0930) 2018; 528 Tang (10.1016/j.ccr.2022.214666_b1345) 2021; 50 Li (10.1016/j.ccr.2022.214666_b0185) 2018; 2 Xiang (10.1016/j.ccr.2022.214666_b1605) 2017; 11 Sahoo (10.1016/j.ccr.2022.214666_b0240) 2018; 5 Hao (10.1016/j.ccr.2022.214666_b1515) 2019; 12 Zhou (10.1016/j.ccr.2022.214666_b1670) 2018; 354 Hernandez (10.1016/j.ccr.2022.214666_b0640) 2008; 3 Wang (10.1016/j.ccr.2022.214666_b1575) 2016; 15 Abellán (10.1016/j.ccr.2022.214666_b0585) 2014; 2 Zhang (10.1016/j.ccr.2022.214666_b1735) 2019; 6 Dau (10.1016/j.ccr.2022.214666_b0395) 2010; 2 Mengke (10.1016/j.ccr.2022.214666_b0890) 2022; 47 Zhou (10.1016/j.ccr.2022.214666_b1340) 2019; 55 Zhan (10.1016/j.ccr.2022.214666_b1470) 2017; 205 Dou (10.1016/j.ccr.2022.214666_b0690) 2017; 27 Cai (10.1016/j.ccr.2022.214666_b1180) 2019; 7 10.1016/j.ccr.2022.214666_b1225 Choi (10.1016/j.ccr.2022.214666_b1560) 2016; 7 Duan (10.1016/j.ccr.2022.214666_b1565) 2015; 27 Liu (10.1016/j.ccr.2022.214666_b0990) 2020; 8 Wang (10.1016/j.ccr.2022.214666_b1395) 2020; 8 Langmuir (10.1016/j.ccr.2022.214666_b0675) 1928; 14 Dong (10.1016/j.ccr.2022.214666_b1650) 2017; 5 Song (10.1016/j.ccr.2022.214666_b1730) 2021; 582 Huang (10.1016/j.ccr.2022.214666_b0720) 2019; 11 Dang (10.1016/j.ccr.2022.214666_b0635) 2018; 30 Wu (10.1016/j.ccr.2022.214666_b0145) 2019; 12 Han (10.1016/j.ccr.2022.214666_b1035) 2019; 7 Yin (10.1016/j.ccr.2022.214 |
References_xml | – volume: 12 start-page: 29253 issue: 26 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0765 article-title: Holey cobalt–iron nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 371 issue: 2 year: 2010 ident: 10.1016/j.ccr.2022.214666_b0900 article-title: Topochemical synthesis, anion exchange, and exfoliation of Co− Ni layered double hydroxides: a route to positively charged Co− Ni hydroxide nanosheets with tunable composition publication-title: Chem. Mater. doi: 10.1021/cm902787u – ident: 10.1016/j.ccr.2022.214666_b0730 doi: 10.1038/s41467-018-06802-0 – volume: 57 start-page: 39 issue: 12 year: 2004 ident: 10.1016/j.ccr.2022.214666_b0075 article-title: The hydrogen economy publication-title: Phys. Today. doi: 10.1063/1.1878333 – volume: 8 start-page: 19196 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0315 article-title: Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05797E – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0755 article-title: Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-017-0160-6 – volume: 7 start-page: 21722 issue: 38 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1180 article-title: Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@ NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07282A – volume: 1 start-page: 5500 issue: 10 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0760 article-title: Alkaline water electrolysis by NiZn-double hydroxide-derived porous nickel selenide-nitrogen-doped graphene composite publication-title: ACS Appl. Energy Mater. – volume: 10 start-page: 19484 issue: 41 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1635 article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting publication-title: Nanoscale doi: 10.1039/C8NR05974H – volume: 32 start-page: 1906432 issue: 16 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1055 article-title: Designed formation of double- shelled Ni–Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201906432 – volume: 10 start-page: 19484 issue: 41 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1165 article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting publication-title: Nanoscale doi: 10.1039/C8NR05974H – ident: 10.1016/j.ccr.2022.214666_b1740 doi: 10.1016/j.cej.2020.126257 – volume: 14 start-page: 730 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1230 article-title: Highly efficient alkaline water splitting with Ru-doped Co−V layered double hydroxide nanosheets as a bifunctional electrocatalyst publication-title: ChemSusChem doi: 10.1002/cssc.202002509 – volume: 8 start-page: 3859 issue: 5 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1285 article-title: Ultrarapid in situ synthesis of Cu2S nanosheet arrays on copper foam with room-temperature-active iodine plasma for efficient and cost-effective oxygen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.8b00032 – volume: 4 start-page: 312 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0845 article-title: An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting publication-title: Sustain. Energ. Fuels. doi: 10.1039/C9SE00700H – volume: 9 start-page: 1314 issue: 3 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0290 article-title: A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09788H – ident: 10.1016/j.ccr.2022.214666_b1050 doi: 10.1021/acssuschemeng.8b03232 – volume: 611 start-page: 205 year: 2022 ident: 10.1016/j.ccr.2022.214666_b1100 article-title: In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.066 – volume: 4 start-page: 1244 issue: 9 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1265 article-title: Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts publication-title: ACS Central Sci. doi: 10.1021/acscentsci.8b00426 – volume: 13 start-page: 9932 issue: 8 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1830 article-title: NiCo-layered double hydroxide-derived B-doped CoP/Ni2P hollow nanoprisms as high-efficiency electrocatalysts for hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20294 – volume: 44 start-page: 5148 issue: 15 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0390 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – ident: 10.1016/j.ccr.2022.214666_b1495 doi: 10.1016/j.electacta.2020.136339 – volume: 12 start-page: 5359 issue: 9 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1325 article-title: Hierarchical CuO@ ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis publication-title: Nanoscale doi: 10.1039/D0NR00752H – ident: 10.1016/j.ccr.2022.214666_b1755 doi: 10.1016/j.jallcom.2021.159874 – volume: 3 start-page: 630 issue: 5 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0175 article-title: Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00232J – volume: 4 start-page: 1933 issue: 4 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1370 article-title: Hierarchical self-assembly of NiFe-LDH nanosheets on CoFe2O4@Co3S4 nanowires for enhanced overall water splitting publication-title: Sustain. Energy Fuels. doi: 10.1039/C9SE01300H – volume: 358 start-page: 100 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0820 article-title: Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction publication-title: J. Catal. doi: 10.1016/j.jcat.2017.11.028 – volume: 8 start-page: 1701905 issue: 9 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1450 article-title: NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701905 – volume: 37 start-page: 23 issue: 1–2 year: 2007 ident: 10.1016/j.ccr.2022.214666_b0475 article-title: Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2006.10.008 – volume: 3 start-page: 6878 issue: 13 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0550 article-title: One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction publication-title: J. Chem. Mater. A doi: 10.1039/C4TA06634K – volume: 31 start-page: 1807134 issue: 17 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1280 article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201807134 – volume: 4 start-page: 2850 issue: 6 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1090 article-title: Nanoporous NiAl-LDH nanosheet arrays with optimized Ni active sites for efficient electrocatalytic alkaline water splitting publication-title: Sustain. Energ. Fuels. doi: 10.1039/D0SE00050G – volume: 3 start-page: 520 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1540 article-title: Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00677F – ident: 10.1016/j.ccr.2022.214666_b1355 doi: 10.1016/j.colsurfa.2020.125419 – volume: 216 start-page: 35 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0570 article-title: Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance R. Zou publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.149 – volume: 47 start-page: 17342 issue: 48 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0955 article-title: Aqueous-phase synthesis of layered double hydroxide nanoplates as catalysts for the oxygen evolution reaction publication-title: Dalton Trans. doi: 10.1039/C8DT03764G – volume: 12 start-page: 4385 issue: 4 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0165 article-title: Three-dimensional heterostructured NiCoP@ NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15208 – volume: 6 start-page: 15684 issue: 32 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0020 article-title: Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen evolution electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05907A – ident: 10.1016/j.ccr.2022.214666_b1685 doi: 10.1016/j.apsusc.2021.151182 – volume: 137 start-page: 11900 issue: 37 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0085 article-title: Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media publication-title: J Am. Chem. Soc. doi: 10.1021/jacs.5b07728 – ident: 10.1016/j.ccr.2022.214666_b1225 doi: 10.1002/smll.201905328 – volume: 321 start-page: 385 issue: 5887 year: 2008 ident: 10.1016/j.ccr.2022.214666_b1550 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Sci. doi: 10.1126/science.1157996 – volume: 5 start-page: 7744 issue: 17 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0095 article-title: Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@ nickel film as an electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01907F – volume: 45 start-page: 1802 issue: 3 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0935 article-title: Polyoxometalate intercalated NiFe layered double hydroxides for advanced water oxidation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.11.038 – volume: 14 start-page: 1770 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1195 article-title: Hierarchical 3D architectured Ag nanowires shelled with NiMn- layered double hydroxide as an efficient bifunctional oxygen electrocatalyst publication-title: ACS Nano doi: 10.1021/acsnano.9b07487 – volume: 1 start-page: 91 year: 2000 ident: 10.1016/j.ccr.2022.214666_b0660 article-title: Delamination of layered double hydroxides by use of surfactants publication-title: Chem. Commun. doi: 10.1039/a908251d – volume: 882 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0905 article-title: Interlayer expanded nickel-iron layered double hydroxide by intercalation with sodium dodecyl sulfate for enhanced oxygen evolution reaction publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160752 – ident: 10.1016/j.ccr.2022.214666_b0455 doi: 10.1039/C9QI01394F – ident: 10.1016/j.ccr.2022.214666_b1745 doi: 10.1016/j.apcatb.2019.118440 – volume: 6 start-page: 10064 issue: 21 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0505 article-title: Tubular Cu(OH)2 arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on Cu foam: a 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02492H – volume: 31 start-page: 6798 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0915 article-title: Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01263 – volume: 38 start-page: 167 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1870 article-title: Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.044 – volume: 2 start-page: 325 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0185 article-title: NiFe layered double-hydroxide nanosheets on a cactuslike (Ni, Co) Se2 Support for water oxidation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01932 – volume: 50 start-page: 1053 issue: 3 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1345 article-title: Ultrathin vanadium hydroxide nanosheets assembled on the surface of Ni–Fe-layered hydroxides as hierarchical catalysts for the oxygen evolution reaction publication-title: Dalton Trans. doi: 10.1039/D0DT03802D – volume: 52 start-page: 12753 issue: 86 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1110 article-title: Mo2C quantum dot embedded chitosan- derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range publication-title: Chem. Commun. doi: 10.1039/C6CC06267A – ident: 10.1016/j.ccr.2022.214666_b1625 doi: 10.1039/C4CS00269E – volume: 7 start-page: 23328 issue: 41 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1115 article-title: Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.5b07960 – volume: 44 start-page: 181 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1520 article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.003 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0970 article-title: Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution publication-title: Nat. Commun. doi: 10.1038/ncomms9625 – volume: 247 start-page: 163 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0265 article-title: Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media publication-title: Catal. Today. doi: 10.1016/j.cattod.2014.05.032 – volume: 3 start-page: 952 issue: 4 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0150 article-title: Bifunctional 2D superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00134 – volume: 425 start-page: 138 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0180 article-title: Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as highly efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2019.04.014 – volume: 35 start-page: 350 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1175 article-title: The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.011 – volume: 3 start-page: 79 issue: 1 year: 2011 ident: 10.1016/j.ccr.2022.214666_b0080 article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.931 – volume: 5 start-page: 5312 issue: 12 year: 2013 ident: 10.1016/j.ccr.2022.214666_b1665 article-title: Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions publication-title: Nanoscale doi: 10.1039/c3nr00444a – volume: 1 issue: 2 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0010 article-title: Photocatalytic ammonia synthesis: recent progress and future publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100013 – volume: 2 start-page: 1035 issue: 5 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1725 article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00206 – volume: 9 start-page: 15364 issue: 18 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1765 article-title: Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00019 – volume: 45 start-page: 22788 issue: 43 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1065 article-title: In situ direct growth of flower-like hierarchical architecture of CoNi-layered double hydroxide on Ni foam as an efficient self-supported oxygen evolution electrocatalyst publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2020.06.139 – volume: 27 start-page: 1605802 issue: 7 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1145 article-title: Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605802 – ident: 10.1016/j.ccr.2022.214666_b1485 doi: 10.1021/acssuschemeng.8b00084 – volume: 30 start-page: 1909832 issue: 14 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0285 article-title: Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909832 – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0655 article-title: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets publication-title: Nat. Commun. doi: 10.1038/ncomms4813 – volume: 53 start-page: 11778 issue: 86 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1170 article-title: Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C7CC07186H – volume: 12 start-page: 3849 issue: 16 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1805 article-title: Fluoridated iron–nickel layered double hydroxide for enhanced performance in the oxygen evolution reaction publication-title: ChemSusChem doi: 10.1002/cssc.201901153 – volume: 29 start-page: 3274 issue: 7 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0595 article-title: Selective and efficient removal of toxic oxoanions of As (III), As (V), and Cr (VI) by layered double hydroxide intercalated with MoS42– publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00618 – volume: 8 start-page: 2490 issue: 5 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0990 article-title: Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12768B – volume: 60 start-page: A25 year: 1983 ident: 10.1016/j.ccr.2022.214666_b0410 article-title: Electrochemical methods, fundamentals and applications publication-title: J. Chem. Educ. doi: 10.1021/ed060pA25.1 – volume: 6 start-page: 220 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1270 article-title: Clean synthesis of ZnCo2O4@ ZnCo-LDHs yolk–shell nanospheres composed of ultra-thin nanosheets with enhanced electrocatalytic properties publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00972D – volume: 46 start-page: 22463 issue: 43 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1095 article-title: Mo-incorporated three-dimensional hierarchical ternary nickel-cobalt-molybdenum layer double hydroxide for high-efficiency water splitting publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2021.04.071 – volume: 5 start-page: 5312 issue: 12 year: 2013 ident: 10.1016/j.ccr.2022.214666_b1815 article-title: Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions publication-title: Nanoscale doi: 10.1039/c3nr00444a – volume: 5 start-page: 1800064 issue: 8 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0005 article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201800064 – ident: 10.1016/j.ccr.2022.214666_b1030 doi: 10.1002/advs.201600380 – volume: 6 start-page: 1509 issue: 5 year: 2013 ident: 10.1016/j.ccr.2022.214666_b0380 article-title: Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a – volume: 191 start-page: 329 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0560 article-title: Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storageY, Ma publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.154 – volume: 2 start-page: 312 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1080 article-title: Dual tuning of composition and nanostructure of hierarchical hollow nanopolyhedra assembled by NiCo-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01318 – volume: 49 start-page: 4896 issue: 15 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1380 article-title: 3D amorphous NiFe LDH nanosheets electrodeposited on in situ grown NiCoP@ NC on nickel foam for remarkably enhanced OER electrocatalytic performance publication-title: Dalton Trans. doi: 10.1039/C9DT04888J – volume: 48 start-page: 73 issue: 1 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1570 article-title: An open Canvas-2D materials with defects, disorder, and functionality publication-title: Acc. Chem. Res. doi: 10.1021/ar500302q – volume: 8 start-page: 1703341 issue: 15 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0135 article-title: Tuning electronic structure Of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201703341 – year: 2022 ident: 10.1016/j.ccr.2022.214666_b1005 article-title: Growth of nickel vacancy NiFe-LDHs on Ni (OH) 2 nanosheets as highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Int. J. Hydrog. Energy – volume: 3 start-page: 1927 issue: 11 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1675 article-title: NiFe layered-double-hydroxide-derived NiO-NiFe2O4/reduced graphene oxide architectures for enhanced electrocatalysis of alkaline water splitting publication-title: ChemElectroChem doi: 10.1002/celc.201600301 – volume: 57 start-page: 3840 issue: 7 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0235 article-title: Fabrication of a Co(OH)2/ZnCr LDH “p–n” heterojunction photocatalyst with enhanced separation of charge carriers for efficient visible-light-driven H2 and O2 evolution publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b03213 – volume: 7 start-page: 18118 issue: 30 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0540 article-title: Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: a 3D core–shell electrocatalyst for efficient water oxidation publication-title: J. Chem. Mater. A doi: 10.1039/C9TA06347A – volume: 610 start-page: 173 year: 2022 ident: 10.1016/j.ccr.2022.214666_b0885 article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.031 – volume: 70 start-page: 472 year: 2022 ident: 10.1016/j.ccr.2022.214666_b1530 article-title: La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.02.044 – volume: 5 start-page: 24767 issue: 47 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1650 article-title: Hierarchical Ni/NiTiO3 derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08440D – volume: 1 start-page: 623 issue: 2 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1710 article-title: Ultrathin CoNiP@ layered double hydroxides core–shell nanosheets arrays for largely enhanced overall water splitting publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00151 – volume: 10 start-page: 21019 issue: 45 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1700 article-title: Cobalt layered double hydroxides derived CoP/Co2P hybrids for electrocatalytic overall water splitting publication-title: Nanoscale doi: 10.1039/C8NR07535B – volume: 137 start-page: 1587 issue: 4 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1125 article-title: Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511572q – volume: 10 start-page: 4689 issue: 5 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1260 article-title: Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16430 – volume: 22 start-page: 3588 issue: 11 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1855 article-title: Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges publication-title: Chem. Eur. J. doi: 10.1002/chem.201501120 – volume: 7 start-page: 4202 issue: 5 year: 2013 ident: 10.1016/j.ccr.2022.214666_b0700 article-title: Layer-by-layer thinning of MoS2 by plasma publication-title: ACS Nano doi: 10.1021/nn400644t – volume: 56 start-page: 872 issue: 6 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0705 article-title: Exfoliation of bimetallic (Ni, Co) carbonate hydroxide nanowires by Ar plasma for enhanced oxygen evolution publication-title: Chem. Commun. doi: 10.1039/C9CC08841E – volume: 32 start-page: 93 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0305 article-title: Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.07.007 – volume: 16 start-page: 16985 issue: 32 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0590 article-title: Dramatic activities of vanadate intercalated bismuth doped LDH for solar light photocatalysis Phys publication-title: Chem. Chem. Phys. doi: 10.1039/C4CP01665C – volume: 8 start-page: 26130 issue: 48 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0830 article-title: Engineering NiFe layered double hydroxide by valence control and intermediate stabilization toward the oxygen evolution reaction publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA08815C – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1400 article-title: Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting publication-title: Nat. Commun. – volume: 15 start-page: 106 issue: 1 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1575 article-title: Topological defects in liquid crystals as templates for molecular self-assembly publication-title: Nat. Mater. doi: 10.1038/nmat4421 – ident: 10.1016/j.ccr.2022.214666_b1770 doi: 10.1039/C8TA01832D – volume: 59 start-page: 9491 issue: 14 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1330 article-title: CuO@ CoFe layered double hydroxide core-shell heterostructure as an efficient water oxidation electrocatalyst under mild alkaline conditions publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01927 – volume: 5 start-page: 391 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0160 article-title: Propane dehydrogenation reaction in a high-pressure zeolite membrane reactor publication-title: Sustain. Energy Fuels. doi: 10.1039/D0SE01490G – volume: 7 start-page: 296 issue: 2 year: 2006 ident: 10.1016/j.ccr.2022.214666_b0545 article-title: Microwave synthesis of nanoporous materials publication-title: ChemPhysChe doi: 10.1002/cphc.200500449 – volume: 27 start-page: 4234 issue: 28 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1565 article-title: 3D WS2 nanolayers@ heteroatom-doped graphene films as hydrogen evolution catalyst electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201501692 – volume: 12 start-page: 453 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1515 article-title: Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.04.009 – volume: 2 start-page: 13250 issue: 33 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0530 article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation publication-title: J. Chem. Mater. A doi: 10.1039/C4TA01275E – volume: 44 start-page: 9981 issue: 24 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0275 article-title: Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: New J. Chem. doi: 10.1039/D0NJ00021C – volume: 44 start-page: 16378 issue: 31 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1775 article-title: Engineering hierarchical NiFe-layered double hydroxides derived phosphosulfide for high-efficiency hydrogen evolving electrocatalysis publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.04.258 – volume: 52 start-page: 5356 issue: 20 year: 2013 ident: 10.1016/j.ccr.2022.214666_b0090 article-title: An efficient three-dimensional oxygen evolution electrode publication-title: Angew. Chem. doi: 10.1002/ange.201301066 – volume: 10 start-page: 12145 issue: 21 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0610 article-title: Ultrathin sulfate-intercalated NiFe-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution publication-title: RSC Adv. doi: 10.1039/D0RA00845A – volume: 128 start-page: 7756 issue: 24 year: 2006 ident: 10.1016/j.ccr.2022.214666_b1610 article-title: Quantum-sized carbon dots for bright and colorful photoluminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062677d – ident: 10.1016/j.ccr.2022.214666_b0725 doi: 10.1038/s41467-018-07790-x – volume: 43 start-page: 2439 issue: 8 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0385 article-title: Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60351b – volume: 128 start-page: 1150 issue: 3 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1010 article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution publication-title: Angew. Chem. doi: 10.1002/ange.201509758 – ident: 10.1016/j.ccr.2022.214666_b1720 doi: 10.1039/C9TA03580J – volume: 2 start-page: 5555 issue: 12 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0060 article-title: Recent progress of Ni–Fe layered double hydroxide and beyond towards electrochemical water splitting publication-title: Nanoscale Adv. doi: 10.1039/D0NA00727G – volume: 11 start-page: 2002816 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1235 article-title: Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002816 – volume: 24 start-page: 934 issue: 7 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0490 article-title: Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301747 – volume: 128 start-page: 5363 issue: 17 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0685 article-title: Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction publication-title: Angew. Chem. doi: 10.1002/ange.201600687 – volume: 17 start-page: 100101 year: 2022 ident: 10.1016/j.ccr.2022.214666_b1040 article-title: Template synthesis of molybdenum-doped NiFe-layered double hydroxide nanotube as high efficiency electrocatalyst for oxygen evolution reaction publication-title: Mater. Today Sustain. doi: 10.1016/j.mtsust.2021.100101 – volume: 13 start-page: 79 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1060 article-title: Ultrasonication-assisted and gram- scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-019-2575-5 – ident: 10.1016/j.ccr.2022.214666_b1690 doi: 10.1016/j.electacta.2019.134595 – volume: 7 start-page: 14483 issue: 24 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0710 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03882E – ident: 10.1016/j.ccr.2022.214666_b0335 doi: 10.1002/advs.202105135 – volume: 11 start-page: 8855 issue: 18 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0155 article-title: Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting publication-title: Nanoscale doi: 10.1039/C9NR00658C – volume: 10 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0320 article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0229-x – volume: 8 start-page: 1703585 issue: 18 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0665 article-title: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703585 – volume: 5 issue: 2 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0325 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 28 start-page: 1838 issue: 6 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1140 article-title: Design and epitaxial growth of MoSe2–NiSe vertical hetero-nanostructures with electronic modulation for enhanced hydrogen evolution reaction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b05006 – volume: 45 start-page: 4873 issue: 18 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0420 article-title: Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00343E – volume: 1 start-page: 136 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1205 article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting publication-title: Nano Lett. – volume: 794 start-page: 261 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1460 article-title: Hierarchical Graphdiyne@ NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.150 – volume: 38 start-page: 4901 issue: 12 year: 2013 ident: 10.1016/j.ccr.2022.214666_b0045 article-title: A comprehensive review on PEM water electrolysis publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2013.01.151 – volume: 141 start-page: 11658 issue: 29 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1615 article-title: C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05006 – volume: 38 start-page: 153 issue: 3–4 year: 2008 ident: 10.1016/j.ccr.2022.214666_b0580 article-title: Intercalation of Mg–Al layered double hydroxide by anionic surfactants: preparation and characterization publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2007.03.006 – volume: 354 start-page: 875 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1670 article-title: Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for high-performance supercapacitors and efficient oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.102 – volume: 13 start-page: 1701931 issue: 45 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0770 article-title: First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances publication-title: Small doi: 10.1002/smll.201701931 – volume: 2 start-page: 1709 issue: 4 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1465 article-title: A NiFe layered double hydroxide-decorated N-doped entangled-graphene framework: a robust water oxidation electrocatalyst publication-title: Nanoscale Adv. doi: 10.1039/C9NA00808J – volume: 48 start-page: 56 issue: 1 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1595 article-title: Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets publication-title: Acc. Chem. Res. doi: 10.1021/ar5002846 – volume: 9 start-page: 117 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1200 article-title: Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions publication-title: ACS Catal. doi: 10.1021/acscatal.8b03092 – volume: 8 start-page: 11573 issue: 23 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1475 article-title: Regulating the charge diffusion of two-dimensional cobalt–iron hydroxide/graphene composites for high-rate water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03895D – volume: 55 start-page: 3315 issue: 23 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0925 article-title: Liquid phase exfoliation of carbonate-intercalated layered double hydroxides publication-title: Chem. Commun. doi: 10.1039/C9CC00197B – volume: 7 start-page: 13105 issue: 15 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1035 article-title: Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02297 – volume: 3 start-page: 1800286 issue: 2 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0985 article-title: A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution, electrocatalyst publication-title: Small Methods doi: 10.1002/smtd.201800286 – volume: 28 start-page: 9532 issue: 43 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1580 article-title: Defect graphene as a trifunctional catalyst for electrochemical reactions publication-title: Adv. Mater. doi: 10.1002/adma.201602912 – volume: 29 start-page: 1604080 issue: 6 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0745 article-title: Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation publication-title: Adv. Mater. doi: 10.1002/adma.201604080 – volume: 26 start-page: 7244 issue: 32 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0825 article-title: Engineering Li-ion embedded into NiFe-LDHs lattice activate laminate Ni2+ sites as high efficiency oxygen evolution reaction catalysts publication-title: Chem. Eur. J. doi: 10.1002/chem.201905844 – volume: 3 start-page: 950 issue: 6 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0815 article-title: One-step electrodeposition of S-doped cobalt–nickel layered double hydroxides on conductive substrates and their electrocatalytic activity in alkaline media publication-title: ChemElectroChem doi: 10.1002/celc.201600022 – volume: 17 start-page: 13175 issue: 47 year: 2011 ident: 10.1016/j.ccr.2022.214666_b1840 article-title: A family of visible-light responsive photocatalysts obtained by dispersing CrO6 octahedra into a hydrotalcite matrix publication-title: Chem. Eur. J. doi: 10.1002/chem.201101874 – volume: 10 start-page: 6336 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0465 article-title: Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17939 – volume: 57 start-page: 172 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1075 article-title: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710877 – ident: 10.1016/j.ccr.2022.214666_b0850 doi: 10.1016/j.cej.2020.126297 – volume: 140 start-page: 3876 issue: 11 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1245 article-title: Single atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 5 start-page: 43 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0370 article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00485H – volume: 11 start-page: 11555 issue: 12 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0715 article-title: Kirkendall Growth and ostwald ripening induced hierarchical morphology of Ni–Co LDH/MMoS x (M= Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02978 – ident: 10.1016/j.ccr.2022.214666_b1645 doi: 10.1039/D0CC03773G – volume: 12 start-page: 14514 issue: 27 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1390 article-title: In situ semi-transformation from heterometallic MOFs to Fe–Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/D0NR02697B – volume: 110 start-page: 3653 issue: 11 year: 1988 ident: 10.1016/j.ccr.2022.214666_b0575 article-title: Pillaring of layereddouble hydroxides (LDH's) by polyoxometalate anions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00219a048 – volume: 8 start-page: 11342 issue: 12 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0435 article-title: Interfacial interaction between FeOOH and Ni–Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.8b03489 – volume: 9 start-page: 1803060 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0670 article-title: Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803060 – volume: 8 start-page: 2744 issue: 8 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0515 article-title: Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors publication-title: Nano Res. doi: 10.1007/s12274-015-0781-3 – volume: 27 start-page: 5702 issue: 16 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0425 article-title: Porous two- dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02177 – volume: 56 start-page: 9360 issue: 65 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1350 article-title: Interface engineering of NiV-LDH@ FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions publication-title: Chem. Comm. doi: 10.1039/D0CC03760E – volume: 4 start-page: 1600371 issue: 4 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0100 article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting publication-title: Adv. Sci doi: 10.1002/advs.201600371 – volume: 27 start-page: 1702546 issue: 36 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0690 article-title: Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702546 – volume: 12 start-page: 2620 issue: 9 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0375 article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01202H – volume: 24 start-page: 3346 issue: 6 year: 2010 ident: 10.1016/j.ccr.2022.214666_b0215 article-title: Carbon/layered double hydroxide (LDH) composites for supercapacitor application publication-title: Energy Fuels doi: 10.1021/ef901505c – volume: 60 start-page: 2023 issue: 3 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0040 article-title: Enabling and inducing oxygen vacancies in cobalt iron layer double hydroxide via selenization as precatalysts for electrocatalytic hydrogen and oxygen evolution reactions publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03514 – volume: 14 start-page: 627 issue: 8 year: 1928 ident: 10.1016/j.ccr.2022.214666_b0675 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.14.8.627 – volume: 7 start-page: 5557 issue: 8 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0965 article-title: Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00007 – volume: 10 start-page: 4004 issue: 20 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0950 article-title: Benzoate anion-intercalated layered cobalt hydroxide nanoarray: an efficient electrocatalyst for the oxygen evolution reaction publication-title: ChemSusChem doi: 10.1002/cssc.201701358 – volume: 13 start-page: 1129 issue: 9 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0600 article-title: Multi-anion intercalated layered double hydroxide nanosheet-assembled hollow nanoprisms with improved pseudocapacitive and electrocatalytic properties publication-title: Chem. Asian J. doi: 10.1002/asia.201800092 – ident: 10.1016/j.ccr.2022.214666_b1680 doi: 10.1002/aenm.201670063 – volume: 10 start-page: 1292 issue: 5 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1290 article-title: Hierarchical FeCo2S4@ CoFe layered double hydroxide on Ni foam as a bifunctional electrocatalyst for overall water splitting publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY01896D – volume: 347 start-page: 193 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0445 article-title: In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.062 – ident: 10.1016/j.ccr.2022.214666_b1500 doi: 10.1016/j.cej.2020.124525 – volume: 6 start-page: 10087 issue: 8 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1780 article-title: Alumina-supported CoPS nanostructures derived from LDH as highly active bifunctional catalysts for overall water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01425 – volume: 127 start-page: 6423 issue: 21 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1135 article-title: Phosphorus-modifie tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction publication-title: Angew. Chem. doi: 10.1002/ange.201501419 – volume: 30 start-page: 4321 issue: 13 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0635 article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01334 – volume: 13 start-page: 79 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1150 article-title: Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-019-2575-5 – volume: 582 start-page: 535 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1730 article-title: Fabrication of Co(Ni)-P surface bonding states on core–shell Co(OH)2@P-NiCo-LDH towards electrocatalytic hydrogen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.086 – volume: 6 start-page: 13619 issue: 28 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1310 article-title: Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02967A – volume: 26 start-page: 1094 issue: 6 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1305 article-title: Advances in efficient electrocatalysts based on Layered double hydroxides and their derivatives publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.09.015 – volume: 3 start-page: 563 issue: 9 year: 2008 ident: 10.1016/j.ccr.2022.214666_b0640 article-title: High-yield production of graphene by liquid-phase exfoliation of graphite publication-title: Nature Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 7 start-page: 3598 issue: 4 year: 2013 ident: 10.1016/j.ccr.2022.214666_b0680 article-title: Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics publication-title: ACS Nano doi: 10.1021/nn400576v – volume: 8 start-page: 17202 issue: 33 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1395 article-title: Rational design of NiFe LDH@ Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01966F – volume: 10 start-page: 5163 issue: 11 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1795 article-title: Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR00426A – volume: 6 start-page: 1900576 issue: 17 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1735 article-title: Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201900576 – year: 2011 ident: 10.1016/j.ccr.2022.214666_b0025 – volume: 10 start-page: 893 issue: 4 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1865 article-title: A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03145E – volume: 3 start-page: 2532 issue: 3 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0205 article-title: Kinetics, isotherm, and thermodynamic study for ultrafast adsorption of azo dye by an efficient sorbent: ternary Mg/(Al+ Fe) layered double hydroxides publication-title: ACS Omega doi: 10.1021/acsomega.7b01807 – start-page: 163738 year: 2022 ident: 10.1016/j.ccr.2022.214666_b0810 article-title: Mo-doping-assisted electrochemical transformation to generate CoFe LDH as the highly efficient electrocatalyst for overall water splitting publication-title: J. Alloys Compd. – volume: 26 start-page: 4839 issue: 27 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1015 article-title: Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601315 – volume: 40 start-page: 2785 issue: 10 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0055 article-title: Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution publication-title: Rare Metals doi: 10.1007/s12598-021-01765-6 – ident: 10.1016/j.ccr.2022.214666_b1510 doi: 10.1016/j.cej.2020.125605 – volume: 333 start-page: 53 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1590 article-title: NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2016.09.152 – volume: 11 start-page: 6483 issue: 6 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1605 article-title: Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode publication-title: ACS Nano doi: 10.1021/acsnano.7b03329 – ident: 10.1016/j.ccr.2022.214666_b1630 doi: 10.3389/fchem.2019.00671 – volume: 122 start-page: 8429 issue: 44 year: 2010 ident: 10.1016/j.ccr.2022.214666_b0735 article-title: Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification publication-title: Angew. Chem. doi: 10.1002/ange.201004033 – volume: 9 start-page: 33766 issue: 39 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1300 article-title: Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07984 – volume: 2 start-page: 724 issue: 7 year: 2010 ident: 10.1016/j.ccr.2022.214666_b0395 article-title: The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis publication-title: ChemCatChem doi: 10.1002/cctc.201000126 – volume: 56 start-page: 5867 issue: 21 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0995 article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – ident: 10.1016/j.ccr.2022.214666_b1365 doi: 10.1016/j.electacta.2020.136247 – volume: 153 start-page: 172 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0190 article-title: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials publication-title: Applied Clay Sci. doi: 10.1016/j.clay.2017.12.021 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1750 article-title: Facile tumor spheroids formation in large quantity with controllable size and high uniformity publication-title: Sci. Rep. – volume: 7 start-page: 15840 issue: 29 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0485 article-title: Hierarchical configuration of NiCo2S4 nanotube@ Ni–Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03042 – volume: 24 year: 2022 ident: 10.1016/j.ccr.2022.214666_b1405 article-title: Heterostructured composite of NiFe-LDH nanosheets with Ti4O7 for oxygen evolution reaction publication-title: Mater. Today Chem. – volume: 64 start-page: 1662 issue: 7 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1420 article-title: Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1566-6 – volume: 32 start-page: 2005433 issue: 46 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0065 article-title: A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.202005433 – volume: 277 start-page: 67 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0220 article-title: Improved performance of flower-like ZnAl LDH growing on carbon nanotubes used in zinc–nickel secondary battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.201 – volume: 12 start-page: 12919 issue: 11 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0495 article-title: Flexible active-site engineering of monometallic Co-layered double hydroxides for achieving high- performance bifunctional electrocatalyst toward oxygen evolution and H2O2 reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01315 – volume: 6 start-page: 3468 issue: 4 year: 2012 ident: 10.1016/j.ccr.2022.214666_b0650 article-title: Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds publication-title: ACS Nano doi: 10.1021/nn300503e – ident: 10.1016/j.ccr.2022.214666_b1000 doi: 10.1016/j.jallcom.2020.156949 – ident: 10.1016/j.ccr.2022.214666_b0920 doi: 10.1021/acssuschemeng.7b04199 – volume: 8 start-page: 902 issue: 3 year: 2008 ident: 10.1016/j.ccr.2022.214666_b1545 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 40 start-page: 7130 issue: 27 year: 2011 ident: 10.1016/j.ccr.2022.214666_b0230 article-title: Highly active Pd nanoparticles dispersed on amine functionalized layered double hydroxide for Suzuki coupling reaction publication-title: Dalton Trans. doi: 10.1039/c1dt10697j – volume: 528 start-page: 36 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0930 article-title: Borate-ion intercalated NiFe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.05.075 – ident: 10.1016/j.ccr.2022.214666_b1430 doi: 10.1016/j.apsusc.2021.151182 – volume: 42 start-page: 2889 issue: 4 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0945 article-title: Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation publication-title: New J. Chem. doi: 10.1039/C7NJ04469K – volume: 5 start-page: 6680 issue: 4 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0775 article-title: Pulse-electrodeposited Ni–Fe (oxy) hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings publication-title: ACS Catal. doi: 10.1021/acscatal.5b01551 – volume: 488 start-page: 294 issue: 7411 year: 2012 ident: 10.1016/j.ccr.2022.214666_b0015 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – year: 2012 ident: 10.1016/j.ccr.2022.214666_b0415 – volume: 9 start-page: 1734 issue: 5 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0630 article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00377J – volume: 7 start-page: 3695 issue: 19 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0255 article-title: Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ZnCr LDH photocatalyst publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00617C – volume: 15 start-page: 1902551 issue: 41 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0800 article-title: Fe2+ doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems publication-title: Small doi: 10.1002/smll.201902551 – volume: 53 start-page: 1488 issue: 6 year: 2014 ident: 10.1016/j.ccr.2022.214666_b1810 article-title: Mixed transition-metal oxides: design, synthesis, and energy-related applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303971 – volume: 10 start-page: 1902535 issue: 20 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0295 article-title: Layered metal hydroxides and their derivatives: controllable synthesis, chemical exfoliation, and electrocatalytic applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902535 – volume: 3 start-page: 1800344 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1085 article-title: One-step synthesis of NiMn-layered double hydroxide nanosheets efficient for water oxidation publication-title: Small Methods doi: 10.1002/smtd.201800344 – volume: 49 start-page: 189 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1385 article-title: In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@ NiFe LDH/NF arrays for synergistically enhanced overall water splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.02.025 – volume: 122 start-page: 847 issue: 2 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0960 article-title: Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b06935 – volume: 13 start-page: 1354 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1705 article-title: High topological tri-metal phosphide of CoP@ FeNiP toward enhanced activities in oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/D0NR06615J – volume: 7 start-page: 4483 issue: 24 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0860 article-title: Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03882E – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0300 article-title: Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.07.016 – ident: 10.1016/j.ccr.2022.214666_b1190 doi: 10.1016/j.jpowsour.2019.227434 – volume: 19 start-page: 213 issue: 4 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0270 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today. doi: 10.1016/j.mattod.2015.10.006 – volume: 54 start-page: 8957 issue: 31 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1875 article-title: Two-dimensional layered heterostructures synthesized from core-shell nanowires publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502461 – volume: 30 start-page: 1705106 issue: 5 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1130 article-title: A highly efficient oxygen evolution catalyst consisting of interconnected nickel–iron-layered double hydroxide and carbon nanodomains publication-title: Adv. Mater. doi: 10.1002/adma.201705106 – volume: 55 start-page: 4218 issue: 29 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1340 article-title: One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH)2 nanowires grown on a Ni foam for a high-efficiency oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C9CC00268E – volume: 4 start-page: 7245 issue: 19 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1250 article-title: Monolithic structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02216B – volume: 448 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0405 article-title: A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction publication-title: J. Power Sources – volume: 8 start-page: 1138 issue: 3 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1360 article-title: Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@ NiCo-LDH core–shell nanoarray electrocatalysts publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA06917H – ident: 10.1016/j.ccr.2022.214666_b0140 doi: 10.1002/celc.201800194 – volume: 46 start-page: 5950 issue: 19 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0260 article-title: Preparation of two dimensional layered double hydroxide nanosheets and their applicationsChem publication-title: Soc. Rev. doi: 10.1039/C7CS00318H – ident: 10.1016/j.ccr.2022.214666_b0895 doi: 10.1002/chin.198723038 – volume: 9 start-page: 1803358 issue: 17 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0310 article-title: Electrocatalysts: 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application publication-title: Adv Energy Mater. doi: 10.1002/aenm.201803358 – volume: 358 start-page: 436 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0520 article-title: Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.160 – volume: 5 start-page: 3536 issue: 14 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0565 article-title: In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05463C – volume: 10 start-page: 1732 issue: 5 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0620 article-title: Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution publication-title: Nano Res. doi: 10.1007/s12274-017-1437-2 – volume: 3 start-page: 16529 issue: 12 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0280 article-title: Effects of metal combinations on the electrocatalytic properties of transition-metal-based layered double hydroxides for water oxidation: a perspective with insights publication-title: ACS Omega doi: 10.1021/acsomega.8b02565 – volume: 14 start-page: 1803638 issue: 51 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1800 article-title: A New Class of Zn1-xFex–oxyselenide and Zn1-xFex–LDH nanostructured material with remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities for overall water splitting publication-title: Small doi: 10.1002/smll.201803638 – volume: 28 start-page: 9266 issue: 42 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1640 article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction publication-title: Adv. Mater. doi: 10.1002/adma.201602270 – volume: 4 start-page: 6295 issue: 20 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1695 article-title: A Self-Assembled flower-like structure of nickel-cobalt phosphide nanosheets supported on nickel foam for electrochemical hydrogen evolution reaction publication-title: ChemistrySelect doi: 10.1002/slct.201900197 – volume: 833 start-page: 105 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0855 article-title: Electro-synthesis of sulfur doped nickel cobalt layered double hydroxide for electrocatalytic hydrogen evolution reaction and supercapacitor applications publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.11.028 – volume: 9 start-page: 1900881 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0980 article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered doubles hydroxide nanosheets for efficient electrocatalytic water oxidation Adv publication-title: Energy Mater. doi: 10.1002/aenm.201900881 – volume: 9 start-page: 464 issue: 1 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0510 article-title: Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13360 – volume: 8 start-page: 9871 issue: 19 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1240 article-title: Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03272G – volume: 10 start-page: 1820 issue: 8 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1185 article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01571B – volume: 3 start-page: 1159 year: 2011 ident: 10.1016/j.ccr.2022.214666_b0400 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 2 start-page: 3723 issue: 19 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0585 article-title: Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties publication-title: J. Mater. Chem. C doi: 10.1039/C3TC32578D – volume: 16 start-page: 6617 issue: 10 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1025 article-title: Ternary FexCo1–x P nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03332 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0110 article-title: Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis publication-title: Nat. Commun. – volume: 138 start-page: 6517 issue: 20 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1820 article-title: Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01606 – volume: 32 issue: 38 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1160 article-title: Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea publication-title: Nanotechnolog. doi: 10.1088/1361-6528/ac0b65 – volume: 5 start-page: 1429 issue: 5 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1410 article-title: Hydrothermal combined with electrodeposition construction of a stable Co9S8/Ni3S2@ NiFe-LDH heterostructure electrocatalyst for overall water splitting publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE01805H – volume: 3 start-page: 18622 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0210 article-title: Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05002B – volume: 3 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0350 article-title: Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte publication-title: J. Energy Chem. – volume: 43 start-page: 6555 issue: 18 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0360 article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60468C – volume: 16 start-page: 1529 issue: 17 year: 2004 ident: 10.1016/j.ccr.2022.214666_b1600 article-title: Direct synthesis of a macroscale single-walled carbon nanotube non-woven material publication-title: Adv. Mater. doi: 10.1002/adma.200306393 – volume: 131 start-page: 13833 issue: 38 year: 2009 ident: 10.1016/j.ccr.2022.214666_b0450 article-title: Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905467v – volume: 241 start-page: 521 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1845 article-title: promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.09.061 – volume: 31 start-page: 1904548 issue: 48 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0125 article-title: Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix publication-title: Adv. Mater. doi: 10.1002/adma.201904548 – year: 2022 ident: 10.1016/j.ccr.2022.214666_b1835 article-title: LDH-derived phosphide/N-doped graphene oxide hierarchical electrocatalyst for enhanced oxygen evolution reaction publication-title: CrystEngComm – volume: 119 start-page: 166 year: 2021 ident: 10.1016/j.ccr.2022.214666_b0910 article-title: In situ selenylation of molybdate ion intercalated Co-Al layered double hydrotalcite for high-performance electrocatalytic oxygen evolution reaction publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2021.01.022 – volume: 44 start-page: 14842 issue: 29 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0940 article-title: A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.04.045 – ident: 10.1016/j.ccr.2022.214666_b1425 doi: 10.1016/j.apcatb.2021.119906 – volume: 3 start-page: 399 issue: 3 year: 2012 ident: 10.1016/j.ccr.2022.214666_b0115 article-title: Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – ident: 10.1016/j.ccr.2022.214666_b0625 doi: 10.1149/MA2017-02/46/2029 – volume: 14 start-page: 4783 issue: 12 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1490 article-title: NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-021-3424-x – volume: 12 start-page: 2773 issue: 12 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0145 article-title: Rapid fabrication of Ni/NiO@ CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting publication-title: ChemSusChem. doi: 10.1002/cssc.201900479 – volume: 48 start-page: 3703 issue: 31 year: 2012 ident: 10.1016/j.ccr.2022.214666_b0645 article-title: Vortex fluidic exfoliation of graphite and boron nitride publication-title: Chem. Commun. doi: 10.1039/c2cc17611d – volume: 28 start-page: 7640 issue: 35 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1440 article-title: Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201601019 – ident: 10.1016/j.ccr.2022.214666_b1375 doi: 10.1016/j.apcatb.2020.119014 – volume: 44 start-page: 623 issue: 3 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1555 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 44 start-page: 15670 year: 2014 ident: 10.1016/j.ccr.2022.214666_b1295 article-title: Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5085157 – volume: 29 start-page: 1700017 issue: 17 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1455 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 4 start-page: 14721 issue: 12 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0250 article-title: Construction of a Z-scheme dictated WO3–X/Ag/ZnCr LDH synergistically visible light-induced photocatalyst towards tetracycline degradation and H2 evolution publication-title: ACS Omega doi: 10.1021/acsomega.9b01146 – volume: 7 start-page: 23091 issue: 40 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0130 article-title: Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06686A – volume: 6 start-page: 19221 issue: 39 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1660 article-title: Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08223E – volume: 9 start-page: 8185 issue: 24 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0440 article-title: Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion publication-title: Nanoscale doi: 10.1039/C7NR02001E – volume: 49 start-page: 1325 issue: 4 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0500 article-title: Methanol-assisted synthesis of Ni 3+ doped ultrathin NiZn-LDH nanomeshes for boosted alkaline water splitting publication-title: Dalton Trans doi: 10.1039/C9DT04282B – volume: 205 start-page: 551 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1470 article-title: Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.01.010 – ident: 10.1016/j.ccr.2022.214666_b1715 doi: 10.1039/C9CE01575B – volume: 22 start-page: 546 issue: 3 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0865 article-title: Bi-functional Mo and P co-doped ZnCo-LDH nanosheets as high performance electrocatalysts for boosting overall water splitting publication-title: CrystEngComm. doi: 10.1039/C9CE01575B – volume: 50 start-page: 6479 issue: 49 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0480 article-title: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C4CC01625D – volume: 45 start-page: 12629 issue: 23 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1655 article-title: Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.02.212 – ident: 10.1016/j.ccr.2022.214666_b1760 doi: 10.1039/C8TA08149B – volume: 37 start-page: 1954 issue: 2 year: 2012 ident: 10.1016/j.ccr.2022.214666_b0035 article-title: Green methods for hydrogen production publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2011.03.173 – volume: 57 start-page: 2488 issue: 9 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0120 article-title: The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709652 – volume: 8 start-page: 8096 issue: 16 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0805 article-title: Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00691B – volume: 3 start-page: 366 issue: 2 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1850 article-title: Recent progress of transition metal nitrides for efficient electrocatalytic water splitting publication-title: Sustain. Energy Fuels doi: 10.1039/C8SE00525G – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.ccr.2022.214666_b1105 article-title: 3D-printed NiFe-layered double hydroxide pyramid electrodes for enhanced electrocatalytic oxygen evolution reaction publication-title: Sci. Rep. – volume: 15 start-page: 1902373 issue: 35 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0795 article-title: Cr-dopant induced breaking of scaling relations in CoFe layered double hydroxides for improvement of oxygen evolution reaction publication-title: Small doi: 10.1002/smll.201902373 – volume: 46 start-page: 32385 issue: 64 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1825 article-title: Local electronic structure modulation of NiVP@ NiFeV-LDH electrode for high-efficiency oxygen evolution reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.07.111 – volume: 4 start-page: 10744 issue: 28 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0200 article-title: A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01668E – volume: 6 start-page: 15411 issue: 11 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0840 article-title: Ce-directed double-layered nanosheet architecture of NiFe-based hydroxide as highly efficient water oxidation electrocatalyst publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03852 – volume: 152 start-page: 75 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0525 article-title: Electrodeposition of layered double hydroxides on platinum: insights into the reactions sequence publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.096 – ident: 10.1016/j.ccr.2022.214666_b0750 doi: 10.1016/j.electacta.2019.134595 – volume: 8 start-page: 2931 issue: 7 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0870 article-title: Fe and B Codoped nickel zinc layered double hydroxide for boosting the oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b07481 – volume: 10 start-page: 44518 issue: 51 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1045 article-title: Ostwald ripening driven exfoliation to ultrathin layered double hydroxides nanosheets for enhanced oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16962 – ident: 10.1016/j.ccr.2022.214666_b1790 doi: 10.1039/C8TA01067F – volume: 1 start-page: 1200 issue: 3 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1535 article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.7b00305 – volume: 29 start-page: 1701546 issue: 30 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0470 article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multi vacancies for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 8 start-page: 12798 issue: 20 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1255 article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02352 – volume: 33 start-page: 473 issue: 8 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1435 article-title: Advances in hybrid electrocatalysts for oxygen evolution reactions: rational integration of NiFe layered double hydroxides and nanocarbon publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201600004 – volume: 44 start-page: 17744 issue: 41 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1480 article-title: Nitrogen-doped graphene quantum dots anchored on NiFe layered double-hydroxide nanosheets catalyze the oxygen evolution reaction publication-title: New J. Chem. doi: 10.1039/D0NJ03537H – volume: 11 start-page: 5296 issue: 39 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1620 article-title: Rupturing C60 molecules into graphene-oxide-like quantum dots: structure, photoluminescence, and catalytic application publication-title: Small doi: 10.1002/smll.201501611 – volume: 113 start-page: 6133 issue: 21 year: 2009 ident: 10.1016/j.ccr.2022.214666_b0195 article-title: Theoretical study on the structural properties and relative stability of M (II)−Al layered double hydroxides based on a cluster model publication-title: J. Phys. Chem. A doi: 10.1021/jp810129h – volume: 8 start-page: 2002631 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1320 article-title: Interface engineering of Co-LDH@ MOF heterojunction in highly stable and efficient oxygen evolution reaction publication-title: Adv. Sci. doi: 10.1002/advs.202002631 – volume: 3 start-page: 16348 issue: 31 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0555 article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03394B – ident: 10.1016/j.ccr.2022.214666_b0880 doi: 10.1016/j.cej.2021.131643 – volume: 56 start-page: 6652 issue: 49 year: 2020 ident: 10.1016/j.ccr.2022.214666_b1315 article-title: Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@ NiMn-LDHS composite electrode in alkaline electrolyte publication-title: Chem. Commun. doi: 10.1039/D0CC01146K – volume: 7 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1560 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms10922 – volume: 1 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0050 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 7 start-page: 4784 issue: 5 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1335 article-title: Hybridizing NiCo2O4 and amorphous Ni x Co y layered double hydroxides with remarkably improved activity toward efficient overall water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05044 – volume: 20 start-page: 2964 issue: 20 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1070 article-title: Ultra- thin Co− Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation publication-title: ChemPhysChem doi: 10.1002/cphc.201900524 – volume: 52 start-page: 8156 issue: 52 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1585 article-title: Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions publication-title: Chem. Commun. doi: 10.1039/C6CC03687B – volume: 26 start-page: 1442 issue: 3 year: 2014 ident: 10.1016/j.ccr.2022.214666_b1880 article-title: Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm4035598 – volume: 7 start-page: 5069 issue: 10 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0030 article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA11273H – volume: 11 start-page: 2002816 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1220 article-title: Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002816 – volume: 6 start-page: 1793 issue: 7 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1785 article-title: Synthesis from a layered double hydroxide precursor for a highly efficient oxygen evolution reaction publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00190E – volume: 347 start-page: 193 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0615 article-title: In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.062 – volume: 4 start-page: 3957 issue: 11 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0785 article-title: Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials publication-title: ACS Catal. doi: 10.1021/cs500923c – volume: 137 start-page: 4119 issue: 12 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1860 article-title: Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5119495 – volume: 82 start-page: 483 issue: 3 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0460 article-title: A highly active CoFe layered double hydroxide for water splitting publication-title: ChemPlusChem doi: 10.1002/cplu.201700005 – volume: 7 start-page: 1770135 issue: 23 year: 2017 ident: 10.1016/j.ccr.2022.214666_b1020 article-title: Hierarchical nanostructures: hierarchical nanostructures: design for sustainable water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201770135 – volume: 11 start-page: 13545 issue: 14 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1445 article-title: Controlled self-assembled NiFe layered double hydroxides/reduced graphene oxide nanohybrids based on the solid-phase exfoliation strategy as an excellent electrocatalyst for the oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22260 – volume: 5 start-page: 879 issue: 4 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0240 article-title: Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00742F – volume: 8 start-page: 33697 issue: 49 year: 2016 ident: 10.1016/j.ccr.2022.214666_b1155 article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behaviour toward oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12100 – ident: 10.1016/j.ccr.2022.214666_b0365 doi: 10.1002/celc.201901623 – volume: 29 start-page: 1606207 issue: 18 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0695 article-title: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201606207 – ident: 10.1016/j.ccr.2022.214666_b0975 doi: 10.1016/j.apcatb.2020.118627 – volume: 142 start-page: 4985 issue: 11 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0340 article-title: Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt (111) through ab initio simulation of electrode/electrolyte kinetics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13694 – volume: 32 start-page: 2108681 issue: 6 year: 2022 ident: 10.1016/j.ccr.2022.214666_b0330 article-title: Recent advances in complex hollow electrocatalysts for water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108681 – volume: 11 start-page: 39991 issue: 43 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0720 article-title: Surface anionization of self-assembled iron sulfide hierarchitectures to enhance capacitive storage for alkaline-metal-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13629 – volume: 7 start-page: 5203 year: 2015 ident: 10.1016/j.ccr.2022.214666_b1120 article-title: Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C4NR06754A – volume: 28 start-page: 1804886 issue: 52 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0430 article-title: Electronic tuning of Co, Ni-based nanostructured (Hydr) oxides for aqueous electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804886 – volume: 10 start-page: 35145 issue: 41 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1275 article-title: CeOx-decorated NiFe-layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11688 – volume: 9 start-page: 2493 issue: 10 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0245 article-title: Influence of Au/Pd alloy on an amine functionalised ZnCr LDH–MCM-41 nanocomposite: a visible light sensitive photocatalyst towards one-pot imine synthesis publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02603C – volume: 24 start-page: 4292 issue: 27 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0740 article-title: High-yield preparation, versatile structural modification, and properties of layered cobalt hydroxide nanocones publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400193 – volume: 52 start-page: 412 year: 2021 ident: 10.1016/j.ccr.2022.214666_b1525 article-title: Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.009 – volume: 28 start-page: 215 issue: 2 year: 2016 ident: 10.1016/j.ccr.2022.214666_b0105 article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 12 start-page: 5817 issue: 10 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0835 article-title: Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation publication-title: Nanoscale doi: 10.1039/C9NR10781A – volume: 3 start-page: 842 issue: 5 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1210 article-title: Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00052F – volume: 9 start-page: 146 issue: 1 year: 2022 ident: 10.1016/j.ccr.2022.214666_b1415 article-title: In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI01185E – volume: 8 start-page: 17471 issue: 34 year: 2020 ident: 10.1016/j.ccr.2022.214666_b0790 article-title: Unveiling the critical role of the Mn dopant in a NiFe (OH)2 catalyst for water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06353C – volume: 6 start-page: 9649 issue: 8 year: 2018 ident: 10.1016/j.ccr.2022.214666_b0605 article-title: Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04788 – volume: 6 start-page: 362 issue: 4 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0780 article-title: Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst publication-title: Nat. Chem. doi: 10.1038/nchem.1874 – volume: 463 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ccr.2022.214666_b0225 article-title: Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.12.035 – volume: 31 start-page: 456 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0355 article-title: Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.048 – ident: 10.1016/j.ccr.2022.214666_b0070 doi: 10.1016/j.cej.2021.129892 – volume: 47 start-page: 1644 issue: 3 year: 2022 ident: 10.1016/j.ccr.2022.214666_b0890 article-title: Ce and MoS2 dual-doped cobalt aluminum layered double hydroxides for enhanced oxygen evolution reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.10.222 – volume: 808 start-page: 75 year: 2018 ident: 10.1016/j.ccr.2022.214666_b1215 article-title: Efficient hydrogen and oxygen evolution on the AuNPs@CaFe-LDH composite in alkaline media publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.11.057 – volume: 6 start-page: 1901328 issue: 23 year: 2019 ident: 10.1016/j.ccr.2022.214666_b1505 article-title: MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901328 – volume: 41 start-page: 327 year: 2017 ident: 10.1016/j.ccr.2022.214666_b0535 article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano Energy. doi: 10.1016/j.nanoen.2017.09.045 – ident: 10.1016/j.ccr.2022.214666_b0875 doi: 10.1016/j.electacta.2021.139199 – volume: 3 start-page: 8171 issue: 15 year: 2015 ident: 10.1016/j.ccr.2022.214666_b0170 article-title: Nickel nitride as an efficient electrocatalyst for water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA00078E – volume: 1 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214666_b0345 article-title: Metal-organic framework-derived materials for electrochemical energy applications publication-title: J. Energy Chem. |
SSID | ssj0016992 |
Score | 2.7169673 |
SecondaryResourceType | review_article |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 214666 |
Title | Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis |
Volume | 469 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4imWl-bAAYhSpanzMLeqBVW8Lrsr7S1yElfNaklQkgLlwG_hn_DXmLHjNBRWYrlEVeQ6UebTzDfjeTD2VK28SIqp5-aeilzuc-UK7qUuclNFk83R6FJo4P2HcHnC35wGp6PRz0HW0qZNx9m3v9aV_I9U8R7KlapkLyHZflO8gb9RvnhFCeP1n2SMnI-O8nWOFWmsonRWBdI5p6ZBcWSFdEIWjYnW8eotDeZ08mpD5VLrbV5XX4tck8x3iyXFB8im5U43GkdHdrZNSz0gKLe2cb5IaqnYIG9tbaH0zBa_6IBugU9EZ18fQTTbEsllUzRD_juv0NktTATSyeywuW6Pnt4fyXWlQ7gL0mjUU-lzbz0WpgLtLVWwlI7OEN9F1UuKfOhA0VFd1PLj4MgLSbA0IfC0WMthsAP9ZModCYYKHG_EgelAaRU4N8NeehXMQzPI5Q_rYAIVZ-Mso06wvj_erf29E_eehezzFm1K3FmCWyS0RWK2uMKu-uinkKIdf-9zjCahEKZdfffW9lhdJxjuvcWAGA0YzvFNdqNzTWBmcHaLjVR5m12bWyHdYT8M3sDiDYoSNN4A8QY7vIHGG3R4A4M36PEGzxBtz0FjDfaxBh3WQGMNeqy9hBkYlAAhDSzSAB_XI-0uO3n96ni-dLsJH27m86B1M6RK6SSfcm8VIdcNpJzwFAmyEAEaHhmimss4qpM0jD0hV8qbZtEkRy_YV-iKR3J6jx2UVanuMwhi6n3J4zxWSIqpZRHPIx_VkFgJpPnikHn28yZZ1_6eprCcJxcK9ZC96P_yyfR-uXjxg8ssfsiu79D9iB209UY9RnLbpk80gH4Bbq-qjQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+first+row+transition+metal+Layered+double+hydroxide+%28LDH%29+based+electrocatalysts+towards+water+splitting%3A+A+review+with+insights+on+synthesis&rft.jtitle=Coordination+chemistry+reviews&rft.au=Sahoo%2C+Dipti+Prava&rft.au=Das%2C+Kundan+Kumar&rft.au=Mansingh%2C+Sriram&rft.au=Sultana%2C+Sabiha&rft.date=2022-10-15&rft.issn=0010-8545&rft.volume=469&rft.spage=214666&rft_id=info:doi/10.1016%2Fj.ccr.2022.214666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccr_2022_214666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |