Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 469; p. 214666
Main Authors Sahoo, Dipti Prava, Das, Kundan Kumar, Mansingh, Sriram, Sultana, Sabiha, Parida, Kulamani
Format Journal Article
LanguageEnglish
Published 15.10.2022
Online AccessGet full text

Cover

Loading…
ArticleNumber 214666
Author Sultana, Sabiha
Das, Kundan Kumar
Mansingh, Sriram
Sahoo, Dipti Prava
Parida, Kulamani
Author_xml – sequence: 1
  givenname: Dipti Prava
  surname: Sahoo
  fullname: Sahoo, Dipti Prava
– sequence: 2
  givenname: Kundan Kumar
  surname: Das
  fullname: Das, Kundan Kumar
– sequence: 3
  givenname: Sriram
  surname: Mansingh
  fullname: Mansingh, Sriram
– sequence: 4
  givenname: Sabiha
  surname: Sultana
  fullname: Sultana, Sabiha
– sequence: 5
  givenname: Kulamani
  surname: Parida
  fullname: Parida, Kulamani
BookMark eNp9kE1PwzAMhnMYEtvgB3DzEQ4tST_Sjds0PoY0CQnBuUpTd8vUNVMcKP03_FQyjRMHTpZlP7beZ8JGne2QsSvBY8GFvN3FWrs44UkSJyKTUo7YmHPBo1me5edsQrQLrZzPkzH7fkWNnYeDsxuHRGA6aIwjD8724J3qyHhjO9ijVy2s1YAOa6jtR9UibIfa2S9TI1yv71c3UCkKQ2xRe2e1CsRAnsDbXrmaoFceHdChNd6bbnMHC3D4abCH3vhteE1msw374R0Nnd8iGbpgZ41qCS9_65S9Pz68LVfR-uXpeblYRzrJch9pWcwqUacZbwpeiFwpkVXzIoTMUy6URFXrDBteyRmfqwZ5qgtRJ3meIJ_JQqVTVpzuameJHDalNl4dowcJpi0FL49yy10Z5JZHueVJbiDFH_LgzF654R_mB0YuhmA
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216238
crossref_primary_10_1016_j_jcis_2024_05_169
crossref_primary_10_1016_j_ccr_2023_215547
crossref_primary_10_1016_j_ijhydene_2024_07_322
crossref_primary_10_1039_D3RA01096A
crossref_primary_10_1016_j_jcis_2024_02_198
crossref_primary_10_1021_acsanm_3c01555
crossref_primary_10_1039_D3MA00685A
crossref_primary_10_1016_j_mtphys_2023_101138
crossref_primary_10_1039_D3RE00004D
crossref_primary_10_1016_j_ccr_2024_216112
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_26599_NR_2025_94907102
crossref_primary_10_1016_j_ijhydene_2024_09_047
crossref_primary_10_1016_j_cclet_2024_110275
crossref_primary_10_1002_smll_202412576
crossref_primary_10_1016_j_jece_2024_113773
crossref_primary_10_1002_advs_202401782
crossref_primary_10_1002_slct_202303916
crossref_primary_10_1016_j_jechem_2023_12_014
crossref_primary_10_1016_j_ccr_2023_215437
crossref_primary_10_1016_j_jaecs_2023_100148
crossref_primary_10_3390_catal13040712
crossref_primary_10_1166_jno_2024_3638
crossref_primary_10_1016_j_surfin_2024_104902
crossref_primary_10_1016_j_cej_2025_159561
crossref_primary_10_1016_j_ccr_2024_216343
crossref_primary_10_1016_j_jiec_2024_12_025
crossref_primary_10_1039_D3MH00366C
crossref_primary_10_1039_D4SE00202D
crossref_primary_10_1002_smll_202407538
crossref_primary_10_1016_j_cej_2024_153841
crossref_primary_10_1002_cssc_202400751
crossref_primary_10_1002_smll_202311182
crossref_primary_10_1016_j_ijhydene_2024_07_426
crossref_primary_10_1039_D4CY00642A
crossref_primary_10_1016_j_surfin_2023_103195
crossref_primary_10_1016_j_fuel_2024_133110
crossref_primary_10_1039_D3NJ03700B
crossref_primary_10_1007_s12274_024_6529_1
crossref_primary_10_1016_j_ccr_2023_215644
crossref_primary_10_1016_j_ijhydene_2024_10_084
crossref_primary_10_1016_j_jtice_2024_105394
crossref_primary_10_1002_ente_202301504
crossref_primary_10_1021_acs_langmuir_4c04136
crossref_primary_10_1039_D4TA08427F
crossref_primary_10_1016_j_chemosphere_2023_140472
crossref_primary_10_1063_5_0203381
crossref_primary_10_1016_j_jpowsour_2023_233502
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1016_j_jallcom_2024_175523
crossref_primary_10_1021_acs_inorgchem_3c03085
crossref_primary_10_1016_j_ccr_2023_215083
crossref_primary_10_1021_acsami_3c17540
crossref_primary_10_1002_adma_202405129
crossref_primary_10_1039_D3NR01574B
crossref_primary_10_1016_j_ccr_2024_215832
crossref_primary_10_1016_j_jtice_2024_105941
crossref_primary_10_1021_acsami_4c15460
crossref_primary_10_1007_s10971_024_06341_9
crossref_primary_10_1002_adma_202411134
crossref_primary_10_1016_j_ceramint_2024_03_268
crossref_primary_10_1149_1945_7111_ad0c67
crossref_primary_10_1021_acs_inorgchem_3c04065
crossref_primary_10_1021_acs_inorgchem_4c01581
crossref_primary_10_1016_j_ijhydene_2023_07_030
crossref_primary_10_1016_j_mtphys_2023_101289
crossref_primary_10_1002_adma_202313057
crossref_primary_10_3390_nano13233066
crossref_primary_10_1002_aenm_202403889
crossref_primary_10_1016_j_jelechem_2025_118958
crossref_primary_10_1016_j_ijhydene_2024_01_239
crossref_primary_10_1016_j_jcis_2024_07_243
crossref_primary_10_1016_j_jece_2023_111191
crossref_primary_10_1016_j_cej_2023_146681
crossref_primary_10_1039_D3QI00857F
crossref_primary_10_1016_j_jece_2024_114038
crossref_primary_10_1016_j_jece_2024_114152
crossref_primary_10_1016_j_ijhydene_2024_05_232
crossref_primary_10_1016_j_matchemphys_2023_128321
crossref_primary_10_3390_catal15030205
crossref_primary_10_1021_acs_inorgchem_3c03582
crossref_primary_10_1039_D3DT02426A
crossref_primary_10_1016_S1872_2067_24_60076_8
crossref_primary_10_1016_j_apsusc_2024_160854
crossref_primary_10_3390_catal14110755
crossref_primary_10_1016_j_fuel_2025_135164
crossref_primary_10_1039_D4EY00037D
crossref_primary_10_1002_cctc_202301533
crossref_primary_10_1016_j_esci_2025_100380
crossref_primary_10_1016_j_cej_2023_144373
crossref_primary_10_1016_j_cej_2025_161153
crossref_primary_10_1039_D4TA04581E
crossref_primary_10_1088_1361_6528_ad41ea
crossref_primary_10_3390_catal12101167
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1021_acsanm_4c06502
crossref_primary_10_1021_acs_inorgchem_3c04568
crossref_primary_10_1016_j_ijhydene_2023_08_038
crossref_primary_10_1016_j_electacta_2024_144649
crossref_primary_10_1021_acs_energyfuels_4c00651
crossref_primary_10_1002_smtd_202400519
crossref_primary_10_3390_catal12080816
crossref_primary_10_1007_s42864_024_00268_y
crossref_primary_10_1021_acs_inorgchem_3c03115
crossref_primary_10_1039_D3TA04533A
crossref_primary_10_1016_j_jcis_2023_01_074
crossref_primary_10_1039_D4CE01298D
crossref_primary_10_1016_j_fuel_2024_130961
crossref_primary_10_1007_s10562_024_04749_0
crossref_primary_10_1016_j_est_2024_112083
crossref_primary_10_1016_j_clay_2023_107234
crossref_primary_10_1016_j_jallcom_2025_179512
crossref_primary_10_1002_adfm_202313770
crossref_primary_10_1039_D4MH01533A
crossref_primary_10_1515_zpch_2022_0126
crossref_primary_10_1021_acsaem_3c01338
crossref_primary_10_1021_acsanm_4c07166
crossref_primary_10_1360_TB_2024_0090
crossref_primary_10_1149_1945_7111_acf528
crossref_primary_10_1002_ece2_90
crossref_primary_10_1016_j_seppur_2024_126388
crossref_primary_10_1039_D4CY00277F
crossref_primary_10_1021_acsmaterialslett_4c00659
crossref_primary_10_1016_j_inoche_2025_113962
crossref_primary_10_1016_j_jallcom_2024_175323
crossref_primary_10_1039_D2SE01510B
crossref_primary_10_1016_j_nanoms_2024_10_010
crossref_primary_10_1016_j_inoche_2025_114242
crossref_primary_10_1016_j_ccr_2025_216509
crossref_primary_10_1002_asia_202301051
crossref_primary_10_1002_smll_202300509
crossref_primary_10_1007_s40820_022_01004_2
crossref_primary_10_1016_j_cej_2023_142604
crossref_primary_10_1016_j_ijhydene_2024_12_044
crossref_primary_10_1080_10934529_2023_2263323
crossref_primary_10_1016_j_clay_2024_107519
crossref_primary_10_1007_s40820_023_01024_6
crossref_primary_10_1007_s42114_024_01123_x
crossref_primary_10_1039_D4SE01175A
crossref_primary_10_1016_j_microc_2025_113267
crossref_primary_10_1016_j_jtice_2023_104916
crossref_primary_10_1016_j_mtener_2025_101835
crossref_primary_10_1021_acssuschemeng_3c07722
crossref_primary_10_1021_acsmaterialslett_4c00409
crossref_primary_10_1039_D4DT00883A
crossref_primary_10_1002_cctc_202401584
crossref_primary_10_1016_j_nanoen_2022_108032
crossref_primary_10_1016_j_est_2024_113806
crossref_primary_10_1016_j_ijhydene_2024_12_507
crossref_primary_10_1039_D3SE00573A
crossref_primary_10_1039_D4NR02567A
crossref_primary_10_1039_D3TA00836C
crossref_primary_10_1016_j_chemosphere_2022_136633
crossref_primary_10_1016_j_jcat_2024_115352
crossref_primary_10_1002_asia_202300625
crossref_primary_10_1038_s41598_024_54934_9
crossref_primary_10_1039_D2MA01066F
crossref_primary_10_1039_D3TA07823J
crossref_primary_10_15251_DJNB_2024_193_1159
crossref_primary_10_1016_j_matlet_2024_137664
crossref_primary_10_1016_j_jechem_2024_08_030
crossref_primary_10_1039_D4DT03007A
crossref_primary_10_1016_j_ijhydene_2022_11_039
crossref_primary_10_1016_j_ijhydene_2024_06_105
crossref_primary_10_1007_s40242_024_4121_6
crossref_primary_10_1002_cssc_202301703
crossref_primary_10_1016_j_jallcom_2022_166990
crossref_primary_10_1016_j_cej_2024_158217
crossref_primary_10_1016_j_ijhydene_2023_03_326
crossref_primary_10_1039_D4RA03049D
crossref_primary_10_1002_inf2_12639
crossref_primary_10_1016_j_ijhydene_2023_09_270
crossref_primary_10_1002_celc_202400101
crossref_primary_10_1002_smll_202302866
crossref_primary_10_3390_molecules28155736
crossref_primary_10_1002_smll_202407845
crossref_primary_10_1016_j_jallcom_2024_177302
crossref_primary_10_1002_cnma_202400366
crossref_primary_10_1016_j_jclepro_2024_140705
crossref_primary_10_1016_j_ijhydene_2024_05_205
crossref_primary_10_1002_smll_202403908
crossref_primary_10_1016_j_jallcom_2025_179695
crossref_primary_10_1016_j_jcis_2025_02_083
crossref_primary_10_1021_acs_iecr_3c03431
crossref_primary_10_1021_acs_inorgchem_3c00425
crossref_primary_10_1021_acs_inorgchem_2c03706
crossref_primary_10_1021_acssuschemeng_3c01381
crossref_primary_10_1021_jacs_4c14675
crossref_primary_10_1016_j_jcis_2024_04_056
crossref_primary_10_1016_j_jallcom_2025_178489
crossref_primary_10_1039_D3QM00819C
crossref_primary_10_1016_j_cej_2024_149706
crossref_primary_10_1016_j_cej_2023_146714
crossref_primary_10_1016_j_fuel_2024_133029
crossref_primary_10_1016_j_jechem_2023_04_049
crossref_primary_10_1002_cphc_202400907
crossref_primary_10_1016_j_ccr_2024_216395
crossref_primary_10_1016_j_ccr_2023_215460
crossref_primary_10_6023_A22110448
crossref_primary_10_1007_s10853_024_09587_4
crossref_primary_10_1039_D3QM00567D
crossref_primary_10_1016_j_gce_2024_04_002
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1016_j_jwpe_2023_104625
crossref_primary_10_1039_D4CY00727A
crossref_primary_10_1007_s12209_024_00389_y
crossref_primary_10_1021_acsomega_2c04044
crossref_primary_10_1016_j_mtsust_2023_100451
crossref_primary_10_1063_5_0185031
crossref_primary_10_1016_j_ccr_2025_216560
crossref_primary_10_20517_energymater_2024_34
crossref_primary_10_1016_j_apcatb_2025_125227
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1016_j_nxmate_2023_100040
crossref_primary_10_1039_D4RE00353E
crossref_primary_10_1016_j_cattod_2024_115124
crossref_primary_10_1016_j_colsurfa_2023_131824
crossref_primary_10_1002_smll_202303765
crossref_primary_10_1016_j_nanoen_2023_108884
crossref_primary_10_1007_s44373_024_00011_9
crossref_primary_10_1038_s41598_023_37070_8
crossref_primary_10_1021_acsami_3c19483
crossref_primary_10_1016_j_ijhydene_2023_03_085
crossref_primary_10_1016_j_colsurfa_2023_131370
crossref_primary_10_1016_j_jssc_2024_124600
crossref_primary_10_1007_s11581_023_05264_9
crossref_primary_10_1002_bkcs_12790
crossref_primary_10_1016_j_jcis_2024_10_018
crossref_primary_10_1016_j_jpowsour_2024_235403
crossref_primary_10_1021_acs_jpcc_4c02999
crossref_primary_10_1016_j_surfin_2024_105485
crossref_primary_10_3390_coatings13061102
crossref_primary_10_1021_acs_inorgchem_2c04154
crossref_primary_10_31613_ceramist_2024_00164
crossref_primary_10_1039_D3NJ03260D
crossref_primary_10_1002_ente_202300749
crossref_primary_10_1088_2053_1583_ac9241
crossref_primary_10_1016_j_ccr_2023_215450
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_1016_j_ccr_2022_214981
crossref_primary_10_1016_j_ijbiomac_2025_139994
crossref_primary_10_1016_j_jpowsour_2024_234306
crossref_primary_10_1002_smll_202406431
crossref_primary_10_1016_j_jpowsour_2024_235636
crossref_primary_10_1016_j_jallcom_2024_175952
crossref_primary_10_1021_acsaem_3c00644
crossref_primary_10_1016_j_jpowsour_2024_234422
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1016_j_cej_2024_154958
Cites_doi 10.1021/cm902787u
10.1038/s41467-018-06802-0
10.1063/1.1878333
10.1039/D0TA05797E
10.1007/s40820-017-0160-6
10.1039/C9TA07282A
10.1039/C8NR05974H
10.1002/adma.201906432
10.1016/j.cej.2020.126257
10.1002/cssc.202002509
10.1021/acscatal.8b00032
10.1039/C9SE00700H
10.1039/D0TA09788H
10.1021/acssuschemeng.8b03232
10.1016/j.jcis.2021.12.066
10.1021/acscentsci.8b00426
10.1021/acsami.0c20294
10.1039/C4CS00448E
10.1016/j.electacta.2020.136339
10.1039/D0NR00752H
10.1016/j.jallcom.2021.159874
10.1039/C5QI00232J
10.1039/C9SE01300H
10.1016/j.jcat.2017.11.028
10.1002/aenm.201701905
10.1016/j.clay.2006.10.008
10.1039/C4TA06634K
10.1002/adma.201807134
10.1039/D0SE00050G
10.1039/C8QM00677F
10.1016/j.colsurfa.2020.125419
10.1016/j.electacta.2016.08.149
10.1039/C8DT03764G
10.1021/acsami.9b15208
10.1039/C8TA05907A
10.1016/j.apsusc.2021.151182
10.1021/jacs.5b07728
10.1002/smll.201905328
10.1126/science.1157996
10.1039/C7TA01907F
10.1016/j.ijhydene.2019.11.038
10.1021/acsnano.9b07487
10.1039/a908251d
10.1016/j.jallcom.2021.160752
10.1039/C9QI01394F
10.1016/j.apcatb.2019.118440
10.1039/C8TA02492H
10.1021/acs.chemmater.9b01263
10.1016/j.nanoen.2017.05.044
10.1021/acsanm.8b01932
10.1039/D0DT03802D
10.1039/C6CC06267A
10.1039/C4CS00269E
10.1021/acsami.5b07960
10.1016/j.nanoen.2017.12.003
10.1038/ncomms9625
10.1016/j.cattod.2014.05.032
10.1021/acsenergylett.8b00134
10.1016/j.jpowsour.2019.04.014
10.1016/j.nanoen.2017.04.011
10.1038/nchem.931
10.1039/c3nr00444a
10.1016/j.enchem.2019.100013
10.1021/acsenergylett.7b00206
10.1021/acsami.7b00019
10.1016/j.ijhydene.2020.06.139
10.1002/adfm.201605802
10.1021/acssuschemeng.8b00084
10.1002/adfm.201909832
10.1038/ncomms4813
10.1039/C7CC07186H
10.1002/cssc.201901153
10.1021/acs.chemmater.7b00618
10.1039/C9TA12768B
10.1021/ed060pA25.1
10.1039/C8QI00972D
10.1016/j.ijhydene.2021.04.071
10.1002/advs.201800064
10.1002/advs.201600380
10.1039/c3ee00045a
10.1016/j.electacta.2015.12.154
10.1021/acsaem.8b01318
10.1039/C9DT04888J
10.1021/ar500302q
10.1002/aenm.201703341
10.1002/celc.201600301
10.1021/acs.inorgchem.7b03213
10.1039/C9TA06347A
10.1016/j.jcis.2021.12.031
10.1016/j.jechem.2022.02.044
10.1039/C7TA08440D
10.1021/acsaem.7b00151
10.1039/C8NR07535B
10.1021/ja511572q
10.1021/acsami.7b16430
10.1002/chem.201501120
10.1021/nn400644t
10.1039/C9CC08841E
10.1016/j.jechem.2018.07.007
10.1039/C4CP01665C
10.1039/D0TA08815C
10.1038/nmat4421
10.1039/C8TA01832D
10.1021/acs.inorgchem.0c01927
10.1039/D0SE01490G
10.1002/cphc.200500449
10.1002/adma.201501692
10.1016/j.mtener.2019.04.009
10.1039/C4TA01275E
10.1039/D0NJ00021C
10.1016/j.ijhydene.2019.04.258
10.1002/ange.201301066
10.1039/D0RA00845A
10.1021/ja062677d
10.1038/s41467-018-07790-x
10.1039/c3cs60351b
10.1002/ange.201509758
10.1039/C9TA03580J
10.1039/D0NA00727G
10.1002/aenm.202002816
10.1002/adfm.201301747
10.1002/ange.201600687
10.1016/j.mtsust.2021.100101
10.1007/s12274-019-2575-5
10.1016/j.electacta.2019.134595
10.1039/C9TA03882E
10.1002/advs.202105135
10.1039/C9NR00658C
10.1007/s40820-018-0229-x
10.1002/aenm.201703585
10.1002/advs.201700464
10.1021/acs.chemmater.5b05006
10.1039/C6CS00343E
10.1016/j.jallcom.2019.04.150
10.1016/j.ijhydene.2013.01.151
10.1021/jacs.9b05006
10.1016/j.clay.2007.03.006
10.1016/j.cej.2018.08.102
10.1002/smll.201701931
10.1039/C9NA00808J
10.1021/ar5002846
10.1021/acscatal.8b03092
10.1039/D0TA03895D
10.1039/C9CC00197B
10.1021/acssuschemeng.9b02297
10.1002/smtd.201800286
10.1002/adma.201602912
10.1002/adma.201604080
10.1002/chem.201905844
10.1002/celc.201600022
10.1002/chem.201101874
10.1021/acsami.7b17939
10.1002/anie.201710877
10.1016/j.cej.2020.126297
10.1021/jacs.8b00752
10.1039/C9NH00485H
10.1021/acsami.9b02978
10.1039/D0CC03773G
10.1039/D0NR02697B
10.1021/ja00219a048
10.1021/acscatal.8b03489
10.1002/aenm.201803060
10.1007/s12274-015-0781-3
10.1021/acs.chemmater.5b02177
10.1039/D0CC03760E
10.1002/advs.201600371
10.1002/adfm.201702546
10.1039/C9EE01202H
10.1021/ef901505c
10.1021/acs.inorgchem.0c03514
10.1073/pnas.14.8.627
10.1021/acscatal.7b00007
10.1002/cssc.201701358
10.1002/asia.201800092
10.1002/aenm.201670063
10.1039/C9CY01896D
10.1016/j.jpowsour.2017.02.062
10.1016/j.cej.2020.124525
10.1021/acssuschemeng.8b01425
10.1002/ange.201501419
10.1021/acs.chemmater.8b01334
10.1016/j.jcis.2020.08.086
10.1039/C8TA02967A
10.1016/j.jechem.2017.09.015
10.1038/nnano.2008.215
10.1021/nn400576v
10.1039/D0TA01966F
10.1039/C8NR00426A
10.1002/advs.201900576
10.1039/C6EE03145E
10.1021/acsomega.7b01807
10.1002/adfm.201601315
10.1007/s12598-021-01765-6
10.1016/j.cej.2020.125605
10.1016/j.jpowsour.2016.09.152
10.1021/acsnano.7b03329
10.3389/fchem.2019.00671
10.1002/ange.201004033
10.1021/acsami.7b07984
10.1002/cctc.201000126
10.1002/anie.201701477
10.1016/j.electacta.2020.136247
10.1016/j.clay.2017.12.021
10.1021/acsami.5b03042
10.1007/s40843-020-1566-6
10.1002/adma.202005433
10.1016/j.electacta.2018.04.201
10.1021/acsami.0c01315
10.1021/nn300503e
10.1016/j.jallcom.2020.156949
10.1021/acssuschemeng.7b04199
10.1021/nl0731872
10.1039/c1dt10697j
10.1016/j.jcis.2018.05.075
10.1039/C7NJ04469K
10.1021/acscatal.5b01551
10.1038/nature11475
10.1039/C6EE00377J
10.1039/D0QI00617C
10.1002/smll.201902551
10.1002/anie.201303971
10.1002/aenm.201902535
10.1002/smtd.201800344
10.1016/j.jechem.2020.02.025
10.1021/acs.jpcb.7b06935
10.1039/D0NR06615J
10.1016/j.mtener.2017.07.016
10.1016/j.jpowsour.2019.227434
10.1016/j.mattod.2015.10.006
10.1002/anie.201502461
10.1002/adma.201705106
10.1039/C9CC00268E
10.1039/C6TA02216B
10.1039/C9TA06917H
10.1002/celc.201800194
10.1039/C7CS00318H
10.1002/chin.198723038
10.1002/aenm.201803358
10.1016/j.apsusc.2015.08.160
10.1039/C6TC05463C
10.1007/s12274-017-1437-2
10.1021/acsomega.8b02565
10.1002/smll.201803638
10.1002/adma.201602270
10.1002/slct.201900197
10.1016/j.jelechem.2018.11.028
10.1002/aenm.201900881
10.1021/acsami.6b13360
10.1039/D0TA03272G
10.1039/C7EE01571B
10.1002/cctc.201000397
10.1039/C3TC32578D
10.1021/acs.nanolett.6b03332
10.1021/jacs.6b01606
10.1088/1361-6528/ac0b65
10.1039/D0SE01805H
10.1039/C5TA05002B
10.1039/C3CS60468C
10.1002/adma.200306393
10.1021/ja905467v
10.1016/j.apcatb.2018.09.061
10.1002/adma.201904548
10.1016/j.jtice.2021.01.022
10.1016/j.ijhydene.2019.04.045
10.1016/j.apcatb.2021.119906
10.1021/jz2016507
10.1149/MA2017-02/46/2029
10.1007/s12274-021-3424-x
10.1002/cssc.201900479
10.1039/c2cc17611d
10.1002/adma.201601019
10.1016/j.apcatb.2020.119014
10.1039/C4CS00236A
10.1021/ja5085157
10.1002/adma.201700017
10.1021/acsomega.9b01146
10.1039/C9TA06686A
10.1039/C8TA08223E
10.1039/C7NR02001E
10.1039/C9DT04282B
10.1016/j.apcatb.2017.01.010
10.1039/C9CE01575B
10.1039/C4CC01625D
10.1016/j.ijhydene.2020.02.212
10.1039/C8TA08149B
10.1016/j.ijhydene.2011.03.173
10.1002/anie.201709652
10.1039/D0TA00691B
10.1039/C8SE00525G
10.1002/smll.201902373
10.1016/j.ijhydene.2021.07.111
10.1039/C6TA01668E
10.1021/acssuschemeng.8b03852
10.1016/j.electacta.2014.11.096
10.1021/acssuschemeng.9b07481
10.1021/acsami.8b16962
10.1039/C8TA01067F
10.1021/acsaem.7b00305
10.1002/adma.201701546
10.1021/acsami.6b02352
10.1002/ppsc.201600004
10.1039/D0NJ03537H
10.1002/smll.201501611
10.1021/jp810129h
10.1002/advs.202002631
10.1039/C5TA03394B
10.1016/j.cej.2021.131643
10.1039/D0CC01146K
10.1038/ncomms10922
10.1038/s41570-016-0003
10.1021/acssuschemeng.8b05044
10.1002/cphc.201900524
10.1039/C6CC03687B
10.1021/cm4035598
10.1039/C8TA11273H
10.1039/C9QI00190E
10.1021/cs500923c
10.1021/ja5119495
10.1002/cplu.201700005
10.1002/aenm.201770135
10.1021/acsami.8b22260
10.1039/C7QI00742F
10.1021/acsami.6b12100
10.1002/celc.201901623
10.1002/adma.201606207
10.1016/j.apcatb.2020.118627
10.1021/jacs.9b13694
10.1002/adfm.202108681
10.1021/acsami.9b13629
10.1039/C4NR06754A
10.1002/adfm.201804886
10.1021/acsami.8b11688
10.1039/C8CY02603C
10.1002/adfm.201400193
10.1016/j.jechem.2020.04.009
10.1002/adma.201502696
10.1039/C9NR10781A
10.1039/C9QM00052F
10.1039/D1QI01185E
10.1039/D0TA06353C
10.1021/acssuschemeng.7b04788
10.1038/nchem.1874
10.1016/j.ijpharm.2013.12.035
10.1016/j.nanoen.2016.11.048
10.1016/j.cej.2021.129892
10.1016/j.ijhydene.2021.10.222
10.1016/j.jelechem.2017.11.057
10.1002/admi.201901328
10.1016/j.nanoen.2017.09.045
10.1016/j.electacta.2021.139199
10.1039/C5TA00078E
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.ccr.2022.214666
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_ccr_2022_214666
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
6P2
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMH
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SIC
SPC
SPCBC
SSH
SSK
SSZ
T5K
TN5
TWZ
UPT
UQL
VH1
WH7
WUQ
XJT
XPP
YK3
ZKB
ZMT
ZY4
~G-
ID FETCH-LOGICAL-c245t-c678b1d340f70715aa14b976995301a6eadc4ef0b6809afe03c71d2552e0867a3
ISSN 0010-8545
IngestDate Tue Jul 01 02:43:54 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c245t-c678b1d340f70715aa14b976995301a6eadc4ef0b6809afe03c71d2552e0867a3
ParticipantIDs crossref_citationtrail_10_1016_j_ccr_2022_214666
crossref_primary_10_1016_j_ccr_2022_214666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2022
References Ge (10.1016/j.ccr.2022.214666_b0885) 2022; 610
Ling (10.1016/j.ccr.2022.214666_b0340) 2020; 142
Zhang (10.1016/j.ccr.2022.214666_b0840) 2018; 6
Carrasco (10.1016/j.ccr.2022.214666_b0915) 2019; 31
Polaczyk (10.1016/j.ccr.2022.214666_b0215) 2010; 24
Hu (10.1016/j.ccr.2022.214666_b0375) 2019; 12
Wen (10.1016/j.ccr.2022.214666_b0795) 2019; 15
Zhao (10.1016/j.ccr.2022.214666_b1840) 2011; 17
Jia (10.1016/j.ccr.2022.214666_b1455) 2017; 29
Bergmann (10.1016/j.ccr.2022.214666_b0970) 2015; 6
Zhang (10.1016/j.ccr.2022.214666_b1245) 2018; 140
10.1016/j.ccr.2022.214666_b1745
10.1016/j.ccr.2022.214666_b0895
Nayak (10.1016/j.ccr.2022.214666_b0210) 2015; 3
10.1016/j.ccr.2022.214666_b1500
Carrasco (10.1016/j.ccr.2022.214666_b0925) 2019; 55
Dutta (10.1016/j.ccr.2022.214666_b1300) 2017; 9
Karmakar (10.1016/j.ccr.2022.214666_b0290) 2021; 9
Qian (10.1016/j.ccr.2022.214666_b0815) 2016; 3
10.1016/j.ccr.2022.214666_b1740
Zou (10.1016/j.ccr.2022.214666_b1825) 2021; 46
Yan (10.1016/j.ccr.2022.214666_b1135) 2015; 127
Balandin (10.1016/j.ccr.2022.214666_b1545) 2008; 8
Wenchao (10.1016/j.ccr.2022.214666_b0380) 2013; 6
Sanati (10.1016/j.ccr.2022.214666_b1315) 2020; 56
Jung (10.1016/j.ccr.2022.214666_b0955) 2018; 47
Wang (10.1016/j.ccr.2022.214666_b0100) 2017; 4
Cunningham (10.1016/j.ccr.2022.214666_b0650) 2012; 6
Peng (10.1016/j.ccr.2022.214666_b1850) 2019; 3
Zhan (10.1016/j.ccr.2022.214666_b1590) 2016; 333
Long (10.1016/j.ccr.2022.214666_b0085) 2015; 137
Liu (10.1016/j.ccr.2022.214666_b1295) 2014; 44
Bao (10.1016/j.ccr.2022.214666_b1350) 2020; 56
Zehao (10.1016/j.ccr.2022.214666_b1040) 2022; 17
Ma (10.1016/j.ccr.2022.214666_b1010) 2016; 128
Manna (10.1016/j.ccr.2022.214666_b1465) 2020; 2
Zhang (10.1016/j.ccr.2022.214666_b0790) 2020; 8
Deng (10.1016/j.ccr.2022.214666_b1360) 2020; 8
Wang (10.1016/j.ccr.2022.214666_b0560) 2016; 191
Tang (10.1016/j.ccr.2022.214666_b1435) 2016; 33
Deng (10.1016/j.ccr.2022.214666_b0305) 2019; 32
Han (10.1016/j.ccr.2022.214666_b1640) 2016; 28
Xu (10.1016/j.ccr.2022.214666_b0685) 2016; 128
Li (10.1016/j.ccr.2022.214666_b1335) 2019; 7
Chu (10.1016/j.ccr.2022.214666_b0015) 2012; 488
Wang (10.1016/j.ccr.2022.214666_b1125) 2015; 137
Liu (10.1016/j.ccr.2022.214666_b0565) 2017; 5
10.1016/j.ccr.2022.214666_b0880
Xiao (10.1016/j.ccr.2022.214666_b1260) 2018; 10
Xue (10.1016/j.ccr.2022.214666_b0130) 2019; 7
10.1016/j.ccr.2022.214666_b1050
Yang (10.1016/j.ccr.2022.214666_b0515) 2015; 8
Yu (10.1016/j.ccr.2022.214666_b1310) 2018; 6
Lee (10.1016/j.ccr.2022.214666_b0115) 2012; 3
Wang (10.1016/j.ccr.2022.214666_b1815) 2013; 5
Jia (10.1016/j.ccr.2022.214666_b1580) 2016; 28
Chen (10.1016/j.ccr.2022.214666_b0490) 2014; 24
10.1016/j.ccr.2022.214666_b1645
Wang (10.1016/j.ccr.2022.214666_b1655) 2020; 45
Liu (10.1016/j.ccr.2022.214666_b0155) 2019; 11
Wang (10.1016/j.ccr.2022.214666_b1665) 2013; 5
Ray (10.1016/j.ccr.2022.214666_b0315) 2020; 8
Zhu (10.1016/j.ccr.2022.214666_b1250) 2016; 4
Liu (10.1016/j.ccr.2022.214666_b0220) 2018; 277
Ribeiro (10.1016/j.ccr.2022.214666_b0225) 2014; 463
10.1016/j.ccr.2022.214666_b1760
Zhang (10.1016/j.ccr.2022.214666_b0985) 2019; 3
Thenuwara (10.1016/j.ccr.2022.214666_b0960) 2018; 122
Zhang (10.1016/j.ccr.2022.214666_b0780) 2014; 6
Wang (10.1016/j.ccr.2022.214666_b1330) 2020; 59
10.1016/j.ccr.2022.214666_b1190
Wang (10.1016/j.ccr.2022.214666_b1275) 2018; 10
Hu (10.1016/j.ccr.2022.214666_b1235) 2021; 11
Liu (10.1016/j.ccr.2022.214666_b0740) 2014; 24
Zhang (10.1016/j.ccr.2022.214666_b1875) 2015; 54
Liang (10.1016/j.ccr.2022.214666_b0900) 2010; 22
Wang (10.1016/j.ccr.2022.214666_b0105) 2016; 28
Xu (10.1016/j.ccr.2022.214666_b0830) 2020; 8
10.1016/j.ccr.2022.214666_b1625
Ya (10.1016/j.ccr.2022.214666_b1835) 2022
10.1016/j.ccr.2022.214666_b1755
Zhang (10.1016/j.ccr.2022.214666_b0125) 2019; 31
10.1016/j.ccr.2022.214666_b1510
10.1016/j.ccr.2022.214666_b1630
Lee (10.1016/j.ccr.2022.214666_b1550) 2008; 321
Wang (10.1016/j.ccr.2022.214666_b0110) 2017; 8
Zibin (10.1016/j.ccr.2022.214666_b0345) 2019; 1
Wang (10.1016/j.ccr.2022.214666_b0165) 2019; 12
Sun (10.1016/j.ccr.2022.214666_b0180) 2019; 425
Zhang (10.1016/j.ccr.2022.214666_b1055) 2020; 32
Wen (10.1016/j.ccr.2022.214666_b1525) 2021; 52
Li (10.1016/j.ccr.2022.214666_b0530) 2014; 2
Wan (10.1016/j.ccr.2022.214666_b1785) 2019; 6
Shen (10.1016/j.ccr.2022.214666_b1445) 2019; 11
Li (10.1016/j.ccr.2022.214666_b0135) 2018; 8
Kejun (10.1016/j.ccr.2022.214666_b0065) 2020; 32
Wang (10.1016/j.ccr.2022.214666_b0995) 2017; 56
Liang (10.1016/j.ccr.2022.214666_b0425) 2015; 27
10.1016/j.ccr.2022.214666_b0725
Yu (10.1016/j.ccr.2022.214666_b1185) 2017; 10
Kuang (10.1016/j.ccr.2022.214666_b0430) 2018; 28
Liu (10.1016/j.ccr.2022.214666_b0860) 2019; 7
Gao (10.1016/j.ccr.2022.214666_b1615) 2019; 141
Xie (10.1016/j.ccr.2022.214666_b1855) 2016; 22
Wang (10.1016/j.ccr.2022.214666_b0355) 2017; 31
Zhong (10.1016/j.ccr.2022.214666_b0055) 2021; 40
Hanzhi (10.1016/j.ccr.2022.214666_b1415) 2022; 9
Sahoo (10.1016/j.ccr.2022.214666_b0245) 2019; 9
10.1016/j.ccr.2022.214666_b0975
Tang (10.1016/j.ccr.2022.214666_b1475) 2020; 8
Carmo (10.1016/j.ccr.2022.214666_b0045) 2013; 38
10.1016/j.ccr.2022.214666_b0730
Qiao (10.1016/j.ccr.2022.214666_b0550) 2015; 3
Li (10.1016/j.ccr.2022.214666_b1085) 2019; 3
Wang (10.1016/j.ccr.2022.214666_b1145) 2017; 27
Zhao (10.1016/j.ccr.2022.214666_b1820) 2016; 138
10.1016/j.ccr.2022.214666_b0850
Zhang (10.1016/j.ccr.2022.214666_b1155) 2016; 8
Xie (10.1016/j.ccr.2022.214666_b0865) 2020; 22
Gonçalves (10.1016/j.ccr.2022.214666_b0275) 2020; 44
Ge (10.1016/j.ccr.2022.214666_b0950) 2017; 10
Li (10.1016/j.ccr.2022.214666_b1695) 2019; 4
Lin (10.1016/j.ccr.2022.214666_b1370) 2020; 4
Dutta (10.1016/j.ccr.2022.214666_b1845) 2019; 241
Lv (10.1016/j.ccr.2022.214666_b1595) 2015; 48
Zhou (10.1016/j.ccr.2022.214666_b1450) 2018; 8
Yu (10.1016/j.ccr.2022.214666_b0535) 2017; 41
Hu (10.1016/j.ccr.2022.214666_b1220) 2021; 11
Chen (10.1016/j.ccr.2022.214666_b1620) 2015; 11
Li (10.1016/j.ccr.2022.214666_b0600) 2018; 13
Zhou (10.1016/j.ccr.2022.214666_b1305) 2017; 26
Ping (10.1016/j.ccr.2022.214666_b1440) 2016; 28
Arif (10.1016/j.ccr.2022.214666_b1540) 2019; 3
Yu (10.1016/j.ccr.2022.214666_b0260) 2017; 46
Rajeshkhanna (10.1016/j.ccr.2022.214666_b1800) 2018; 14
Yuan (10.1016/j.ccr.2022.214666_b1810) 2014; 53
Ibrahim (10.1016/j.ccr.2022.214666_b0405) 2020; 448
10.1016/j.ccr.2022.214666_b1375
10.1016/j.ccr.2022.214666_b1495
Chen (10.1016/j.ccr.2022.214666_b1700) 2018; 10
Man (10.1016/j.ccr.2022.214666_b0400) 2011; 3
Liu (10.1016/j.ccr.2022.214666_b0735) 2010; 122
Yu (10.1016/j.ccr.2022.214666_b1075) 2018; 57
Li (10.1016/j.ccr.2022.214666_b1660) 2018; 6
Wang (10.1016/j.ccr.2022.214666_b1060) 2020; 13
Yingjie (10.1016/j.ccr.2022.214666_b0350) 2021; 3
Liu (10.1016/j.ccr.2022.214666_b0695) 2017; 29
Lv (10.1016/j.ccr.2022.214666_b0310) 2019; 9
Han (10.1016/j.ccr.2022.214666_b0555) 2015; 3
Zhao (10.1016/j.ccr.2022.214666_b0665) 2018; 8
Liu (10.1016/j.ccr.2022.214666_b1175) 2017; 35
Chala (10.1016/j.ccr.2022.214666_b1200) 2018; 9
10.1016/j.ccr.2022.214666_b1715
Kwon (10.1016/j.ccr.2022.214666_b0575) 1988; 110
Panlong (10.1016/j.ccr.2022.214666_b1400) 2021; 12
Zhong (10.1016/j.ccr.2022.214666_b0440) 2017; 9
10.1016/j.ccr.2022.214666_b0625
10.1016/j.ccr.2022.214666_b0875
Li (10.1016/j.ccr.2022.214666_b0765) 2020; 12
10.1016/j.ccr.2022.214666_b1720
10.1016/j.ccr.2022.214666_b0750
Tang (10.1016/j.ccr.2022.214666_b1025) 2016; 16
He (10.1016/j.ccr.2022.214666_b0870) 2020; 8
Yan (10.1016/j.ccr.2022.214666_b0195) 2009; 113
You (10.1016/j.ccr.2022.214666_b0385) 2014; 43
Cao (10.1016/j.ccr.2022.214666_b0020) 2018; 6
Colton (10.1016/j.ccr.2022.214666_b0025) 2011
Zhou (10.1016/j.ccr.2022.214666_b1140) 2016; 28
10.1016/j.ccr.2022.214666_b0070
Sun (10.1016/j.ccr.2022.214666_b0705) 2020; 56
Read (10.1016/j.ccr.2022.214666_b1255) 2016; 8
Li (10.1016/j.ccr.2022.214666_b0445) 2017; 347
Xu (10.1016/j.ccr.2022.214666_b0465) 2018; 10
Nejati (10.1016/j.ccr.2022.214666_b0940) 2019; 44
Chengye (10.1016/j.ccr.2022.214666_b1420) 2021; 64
Weina (10.1016/j.ccr.2022.214666_b1005) 2022
Cai (10.1016/j.ccr.2022.214666_b0030) 2019; 7
Yin (10.1016/j.ccr.2022.214666_b1490) 2021; 14
Wang (10.1016/j.ccr.2022.214666_b1150) 2020; 13
Wu (10.1016/j.ccr.2022.214666_b1870) 2017; 38
Nie (10.1016/j.ccr.2022.214666_b1380) 2020; 49
Mengzhou (10.1016/j.ccr.2022.214666_b1530) 2022; 70
Wu (10.1016/j.ccr.2022.214666_b1015) 2016; 26
Zhong (10.1016/j.ccr.2022.214666_b0330) 2022; 32
Sahoo (10.1016/j.ccr.2022.214666_b0255) 2020; 7
Chen (10.1016/j.ccr.2022.214666_b0285) 2020; 30
Xue (10.1016/j.ccr.2022.214666_b0935) 2020; 45
10.1016/j.ccr.2022.214666_b1030
Zhang (10.1016/j.ccr.2022.214666_b1205) 2019; 1
Islam (10.1016/j.ccr.2022.214666_b0150) 2018; 3
Hunter (10.1016/j.ccr.2022.214666_b0630) 2016; 9
Okamoto (10.1016/j.ccr.2022.214666_b0475) 2007; 37
Gualandi (10.1016/j.ccr.2022.214666_b0525) 2015; 152
Su (10.1016/j.ccr.2022.214666_b0930) 2018; 528
Tang (10.1016/j.ccr.2022.214666_b1345) 2021; 50
Li (10.1016/j.ccr.2022.214666_b0185) 2018; 2
Xiang (10.1016/j.ccr.2022.214666_b1605) 2017; 11
Sahoo (10.1016/j.ccr.2022.214666_b0240) 2018; 5
Hao (10.1016/j.ccr.2022.214666_b1515) 2019; 12
Zhou (10.1016/j.ccr.2022.214666_b1670) 2018; 354
Hernandez (10.1016/j.ccr.2022.214666_b0640) 2008; 3
Wang (10.1016/j.ccr.2022.214666_b1575) 2016; 15
Abellán (10.1016/j.ccr.2022.214666_b0585) 2014; 2
Zhang (10.1016/j.ccr.2022.214666_b1735) 2019; 6
Dau (10.1016/j.ccr.2022.214666_b0395) 2010; 2
Mengke (10.1016/j.ccr.2022.214666_b0890) 2022; 47
Zhou (10.1016/j.ccr.2022.214666_b1340) 2019; 55
Zhan (10.1016/j.ccr.2022.214666_b1470) 2017; 205
Dou (10.1016/j.ccr.2022.214666_b0690) 2017; 27
Cai (10.1016/j.ccr.2022.214666_b1180) 2019; 7
10.1016/j.ccr.2022.214666_b1225
Choi (10.1016/j.ccr.2022.214666_b1560) 2016; 7
Duan (10.1016/j.ccr.2022.214666_b1565) 2015; 27
Liu (10.1016/j.ccr.2022.214666_b0990) 2020; 8
Wang (10.1016/j.ccr.2022.214666_b1395) 2020; 8
Langmuir (10.1016/j.ccr.2022.214666_b0675) 1928; 14
Dong (10.1016/j.ccr.2022.214666_b1650) 2017; 5
Song (10.1016/j.ccr.2022.214666_b1730) 2021; 582
Huang (10.1016/j.ccr.2022.214666_b0720) 2019; 11
Dang (10.1016/j.ccr.2022.214666_b0635) 2018; 30
Wu (10.1016/j.ccr.2022.214666_b0145) 2019; 12
Han (10.1016/j.ccr.2022.214666_b1035) 2019; 7
Yin (10.1016/j.ccr.2022.214
References_xml – volume: 12
  start-page: 29253
  issue: 26
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0765
  article-title: Holey cobalt–iron nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 371
  issue: 2
  year: 2010
  ident: 10.1016/j.ccr.2022.214666_b0900
  article-title: Topochemical synthesis, anion exchange, and exfoliation of Co− Ni layered double hydroxides: a route to positively charged Co− Ni hydroxide nanosheets with tunable composition
  publication-title: Chem. Mater.
  doi: 10.1021/cm902787u
– ident: 10.1016/j.ccr.2022.214666_b0730
  doi: 10.1038/s41467-018-06802-0
– volume: 57
  start-page: 39
  issue: 12
  year: 2004
  ident: 10.1016/j.ccr.2022.214666_b0075
  article-title: The hydrogen economy
  publication-title: Phys. Today.
  doi: 10.1063/1.1878333
– volume: 8
  start-page: 19196
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0315
  article-title: Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05797E
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0755
  article-title: Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-017-0160-6
– volume: 7
  start-page: 21722
  issue: 38
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1180
  article-title: Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@ NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07282A
– volume: 1
  start-page: 5500
  issue: 10
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0760
  article-title: Alkaline water electrolysis by NiZn-double hydroxide-derived porous nickel selenide-nitrogen-doped graphene composite
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  start-page: 19484
  issue: 41
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1635
  article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C8NR05974H
– volume: 32
  start-page: 1906432
  issue: 16
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1055
  article-title: Designed formation of double- shelled Ni–Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906432
– volume: 10
  start-page: 19484
  issue: 41
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1165
  article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C8NR05974H
– ident: 10.1016/j.ccr.2022.214666_b1740
  doi: 10.1016/j.cej.2020.126257
– volume: 14
  start-page: 730
  issue: 2
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1230
  article-title: Highly efficient alkaline water splitting with Ru-doped Co−V layered double hydroxide nanosheets as a bifunctional electrocatalyst
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002509
– volume: 8
  start-page: 3859
  issue: 5
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1285
  article-title: Ultrarapid in situ synthesis of Cu2S nanosheet arrays on copper foam with room-temperature-active iodine plasma for efficient and cost-effective oxygen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00032
– volume: 4
  start-page: 312
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0845
  article-title: An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting
  publication-title: Sustain. Energ. Fuels.
  doi: 10.1039/C9SE00700H
– volume: 9
  start-page: 1314
  issue: 3
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0290
  article-title: A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09788H
– ident: 10.1016/j.ccr.2022.214666_b1050
  doi: 10.1021/acssuschemeng.8b03232
– volume: 611
  start-page: 205
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1100
  article-title: In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.066
– volume: 4
  start-page: 1244
  issue: 9
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1265
  article-title: Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts
  publication-title: ACS Central Sci.
  doi: 10.1021/acscentsci.8b00426
– volume: 13
  start-page: 9932
  issue: 8
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1830
  article-title: NiCo-layered double hydroxide-derived B-doped CoP/Ni2P hollow nanoprisms as high-efficiency electrocatalysts for hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20294
– volume: 44
  start-page: 5148
  issue: 15
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0390
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– ident: 10.1016/j.ccr.2022.214666_b1495
  doi: 10.1016/j.electacta.2020.136339
– volume: 12
  start-page: 5359
  issue: 9
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1325
  article-title: Hierarchical CuO@ ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis
  publication-title: Nanoscale
  doi: 10.1039/D0NR00752H
– ident: 10.1016/j.ccr.2022.214666_b1755
  doi: 10.1016/j.jallcom.2021.159874
– volume: 3
  start-page: 630
  issue: 5
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0175
  article-title: Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00232J
– volume: 4
  start-page: 1933
  issue: 4
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1370
  article-title: Hierarchical self-assembly of NiFe-LDH nanosheets on CoFe2O4@Co3S4 nanowires for enhanced overall water splitting
  publication-title: Sustain. Energy Fuels.
  doi: 10.1039/C9SE01300H
– volume: 358
  start-page: 100
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0820
  article-title: Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.11.028
– volume: 8
  start-page: 1701905
  issue: 9
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1450
  article-title: NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701905
– volume: 37
  start-page: 23
  issue: 1–2
  year: 2007
  ident: 10.1016/j.ccr.2022.214666_b0475
  article-title: Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2006.10.008
– volume: 3
  start-page: 6878
  issue: 13
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0550
  article-title: One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction
  publication-title: J. Chem. Mater. A
  doi: 10.1039/C4TA06634K
– volume: 31
  start-page: 1807134
  issue: 17
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1280
  article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807134
– volume: 4
  start-page: 2850
  issue: 6
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1090
  article-title: Nanoporous NiAl-LDH nanosheet arrays with optimized Ni active sites for efficient electrocatalytic alkaline water splitting
  publication-title: Sustain. Energ. Fuels.
  doi: 10.1039/D0SE00050G
– volume: 3
  start-page: 520
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1540
  article-title: Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00677F
– ident: 10.1016/j.ccr.2022.214666_b1355
  doi: 10.1016/j.colsurfa.2020.125419
– volume: 216
  start-page: 35
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0570
  article-title: Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance R. Zou
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.149
– volume: 47
  start-page: 17342
  issue: 48
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0955
  article-title: Aqueous-phase synthesis of layered double hydroxide nanoplates as catalysts for the oxygen evolution reaction
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT03764G
– volume: 12
  start-page: 4385
  issue: 4
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0165
  article-title: Three-dimensional heterostructured NiCoP@ NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15208
– volume: 6
  start-page: 15684
  issue: 32
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0020
  article-title: Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen evolution electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05907A
– ident: 10.1016/j.ccr.2022.214666_b1685
  doi: 10.1016/j.apsusc.2021.151182
– volume: 137
  start-page: 11900
  issue: 37
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0085
  article-title: Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media
  publication-title: J Am. Chem. Soc.
  doi: 10.1021/jacs.5b07728
– ident: 10.1016/j.ccr.2022.214666_b1225
  doi: 10.1002/smll.201905328
– volume: 321
  start-page: 385
  issue: 5887
  year: 2008
  ident: 10.1016/j.ccr.2022.214666_b1550
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Sci.
  doi: 10.1126/science.1157996
– volume: 5
  start-page: 7744
  issue: 17
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0095
  article-title: Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@ nickel film as an electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01907F
– volume: 45
  start-page: 1802
  issue: 3
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0935
  article-title: Polyoxometalate intercalated NiFe layered double hydroxides for advanced water oxidation
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.11.038
– volume: 14
  start-page: 1770
  issue: 2
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1195
  article-title: Hierarchical 3D architectured Ag nanowires shelled with NiMn- layered double hydroxide as an efficient bifunctional oxygen electrocatalyst
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07487
– volume: 1
  start-page: 91
  year: 2000
  ident: 10.1016/j.ccr.2022.214666_b0660
  article-title: Delamination of layered double hydroxides by use of surfactants
  publication-title: Chem. Commun.
  doi: 10.1039/a908251d
– volume: 882
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0905
  article-title: Interlayer expanded nickel-iron layered double hydroxide by intercalation with sodium dodecyl sulfate for enhanced oxygen evolution reaction
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160752
– ident: 10.1016/j.ccr.2022.214666_b0455
  doi: 10.1039/C9QI01394F
– ident: 10.1016/j.ccr.2022.214666_b1745
  doi: 10.1016/j.apcatb.2019.118440
– volume: 6
  start-page: 10064
  issue: 21
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0505
  article-title: Tubular Cu(OH)2 arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on Cu foam: a 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02492H
– volume: 31
  start-page: 6798
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0915
  article-title: Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01263
– volume: 38
  start-page: 167
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1870
  article-title: Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.044
– volume: 2
  start-page: 325
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0185
  article-title: NiFe layered double-hydroxide nanosheets on a cactuslike (Ni, Co) Se2 Support for water oxidation
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01932
– volume: 50
  start-page: 1053
  issue: 3
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1345
  article-title: Ultrathin vanadium hydroxide nanosheets assembled on the surface of Ni–Fe-layered hydroxides as hierarchical catalysts for the oxygen evolution reaction
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT03802D
– volume: 52
  start-page: 12753
  issue: 86
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1110
  article-title: Mo2C quantum dot embedded chitosan- derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06267A
– ident: 10.1016/j.ccr.2022.214666_b1625
  doi: 10.1039/C4CS00269E
– volume: 7
  start-page: 23328
  issue: 41
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1115
  article-title: Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.5b07960
– volume: 44
  start-page: 181
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1520
  article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.003
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0970
  article-title: Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9625
– volume: 247
  start-page: 163
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0265
  article-title: Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media
  publication-title: Catal. Today.
  doi: 10.1016/j.cattod.2014.05.032
– volume: 3
  start-page: 952
  issue: 4
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0150
  article-title: Bifunctional 2D superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00134
– volume: 425
  start-page: 138
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0180
  article-title: Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2019.04.014
– volume: 35
  start-page: 350
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1175
  article-title: The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.011
– volume: 3
  start-page: 79
  issue: 1
  year: 2011
  ident: 10.1016/j.ccr.2022.214666_b0080
  article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.931
– volume: 5
  start-page: 5312
  issue: 12
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b1665
  article-title: Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nanoscale
  doi: 10.1039/c3nr00444a
– volume: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0010
  article-title: Photocatalytic ammonia synthesis: recent progress and future
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100013
– volume: 2
  start-page: 1035
  issue: 5
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1725
  article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00206
– volume: 9
  start-page: 15364
  issue: 18
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1765
  article-title: Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00019
– volume: 45
  start-page: 22788
  issue: 43
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1065
  article-title: In situ direct growth of flower-like hierarchical architecture of CoNi-layered double hydroxide on Ni foam as an efficient self-supported oxygen evolution electrocatalyst
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2020.06.139
– volume: 27
  start-page: 1605802
  issue: 7
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1145
  article-title: Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605802
– ident: 10.1016/j.ccr.2022.214666_b1485
  doi: 10.1021/acssuschemeng.8b00084
– volume: 30
  start-page: 1909832
  issue: 14
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0285
  article-title: Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909832
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0655
  article-title: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4813
– volume: 53
  start-page: 11778
  issue: 86
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1170
  article-title: Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07186H
– volume: 12
  start-page: 3849
  issue: 16
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1805
  article-title: Fluoridated iron–nickel layered double hydroxide for enhanced performance in the oxygen evolution reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901153
– volume: 29
  start-page: 3274
  issue: 7
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0595
  article-title: Selective and efficient removal of toxic oxoanions of As (III), As (V), and Cr (VI) by layered double hydroxide intercalated with MoS42–
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00618
– volume: 8
  start-page: 2490
  issue: 5
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0990
  article-title: Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12768B
– volume: 60
  start-page: A25
  year: 1983
  ident: 10.1016/j.ccr.2022.214666_b0410
  article-title: Electrochemical methods, fundamentals and applications
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed060pA25.1
– volume: 6
  start-page: 220
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1270
  article-title: Clean synthesis of ZnCo2O4@ ZnCo-LDHs yolk–shell nanospheres composed of ultra-thin nanosheets with enhanced electrocatalytic properties
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00972D
– volume: 46
  start-page: 22463
  issue: 43
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1095
  article-title: Mo-incorporated three-dimensional hierarchical ternary nickel-cobalt-molybdenum layer double hydroxide for high-efficiency water splitting
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2021.04.071
– volume: 5
  start-page: 5312
  issue: 12
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b1815
  article-title: Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nanoscale
  doi: 10.1039/c3nr00444a
– volume: 5
  start-page: 1800064
  issue: 8
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0005
  article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800064
– ident: 10.1016/j.ccr.2022.214666_b1030
  doi: 10.1002/advs.201600380
– volume: 6
  start-page: 1509
  issue: 5
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b0380
  article-title: Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
– volume: 191
  start-page: 329
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0560
  article-title: Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storageY, Ma
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.154
– volume: 2
  start-page: 312
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1080
  article-title: Dual tuning of composition and nanostructure of hierarchical hollow nanopolyhedra assembled by NiCo-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01318
– volume: 49
  start-page: 4896
  issue: 15
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1380
  article-title: 3D amorphous NiFe LDH nanosheets electrodeposited on in situ grown NiCoP@ NC on nickel foam for remarkably enhanced OER electrocatalytic performance
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT04888J
– volume: 48
  start-page: 73
  issue: 1
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1570
  article-title: An open Canvas-2D materials with defects, disorder, and functionality
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500302q
– volume: 8
  start-page: 1703341
  issue: 15
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0135
  article-title: Tuning electronic structure Of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201703341
– year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1005
  article-title: Growth of nickel vacancy NiFe-LDHs on Ni (OH) 2 nanosheets as highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Int. J. Hydrog. Energy
– volume: 3
  start-page: 1927
  issue: 11
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1675
  article-title: NiFe layered-double-hydroxide-derived NiO-NiFe2O4/reduced graphene oxide architectures for enhanced electrocatalysis of alkaline water splitting
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600301
– volume: 57
  start-page: 3840
  issue: 7
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0235
  article-title: Fabrication of a Co(OH)2/ZnCr LDH “p–n” heterojunction photocatalyst with enhanced separation of charge carriers for efficient visible-light-driven H2 and O2 evolution
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b03213
– volume: 7
  start-page: 18118
  issue: 30
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0540
  article-title: Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: a 3D core–shell electrocatalyst for efficient water oxidation
  publication-title: J. Chem. Mater. A
  doi: 10.1039/C9TA06347A
– volume: 610
  start-page: 173
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b0885
  article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.031
– volume: 70
  start-page: 472
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1530
  article-title: La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.02.044
– volume: 5
  start-page: 24767
  issue: 47
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1650
  article-title: Hierarchical Ni/NiTiO3 derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08440D
– volume: 1
  start-page: 623
  issue: 2
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1710
  article-title: Ultrathin CoNiP@ layered double hydroxides core–shell nanosheets arrays for largely enhanced overall water splitting
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00151
– volume: 10
  start-page: 21019
  issue: 45
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1700
  article-title: Cobalt layered double hydroxides derived CoP/Co2P hybrids for electrocatalytic overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C8NR07535B
– volume: 137
  start-page: 1587
  issue: 4
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1125
  article-title: Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511572q
– volume: 10
  start-page: 4689
  issue: 5
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1260
  article-title: Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16430
– volume: 22
  start-page: 3588
  issue: 11
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1855
  article-title: Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201501120
– volume: 7
  start-page: 4202
  issue: 5
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b0700
  article-title: Layer-by-layer thinning of MoS2 by plasma
  publication-title: ACS Nano
  doi: 10.1021/nn400644t
– volume: 56
  start-page: 872
  issue: 6
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0705
  article-title: Exfoliation of bimetallic (Ni, Co) carbonate hydroxide nanowires by Ar plasma for enhanced oxygen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08841E
– volume: 32
  start-page: 93
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0305
  article-title: Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.07.007
– volume: 16
  start-page: 16985
  issue: 32
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0590
  article-title: Dramatic activities of vanadate intercalated bismuth doped LDH for solar light photocatalysis Phys
  publication-title: Chem. Chem. Phys.
  doi: 10.1039/C4CP01665C
– volume: 8
  start-page: 26130
  issue: 48
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0830
  article-title: Engineering NiFe layered double hydroxide by valence control and intermediate stabilization toward the oxygen evolution reaction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA08815C
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1400
  article-title: Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting
  publication-title: Nat. Commun.
– volume: 15
  start-page: 106
  issue: 1
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1575
  article-title: Topological defects in liquid crystals as templates for molecular self-assembly
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4421
– ident: 10.1016/j.ccr.2022.214666_b1770
  doi: 10.1039/C8TA01832D
– volume: 59
  start-page: 9491
  issue: 14
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1330
  article-title: CuO@ CoFe layered double hydroxide core-shell heterostructure as an efficient water oxidation electrocatalyst under mild alkaline conditions
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01927
– volume: 5
  start-page: 391
  issue: 2
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0160
  article-title: Propane dehydrogenation reaction in a high-pressure zeolite membrane reactor
  publication-title: Sustain. Energy Fuels.
  doi: 10.1039/D0SE01490G
– volume: 7
  start-page: 296
  issue: 2
  year: 2006
  ident: 10.1016/j.ccr.2022.214666_b0545
  article-title: Microwave synthesis of nanoporous materials
  publication-title: ChemPhysChe
  doi: 10.1002/cphc.200500449
– volume: 27
  start-page: 4234
  issue: 28
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1565
  article-title: 3D WS2 nanolayers@ heteroatom-doped graphene films as hydrogen evolution catalyst electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501692
– volume: 12
  start-page: 453
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1515
  article-title: Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.04.009
– volume: 2
  start-page: 13250
  issue: 33
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0530
  article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation
  publication-title: J. Chem. Mater. A
  doi: 10.1039/C4TA01275E
– volume: 44
  start-page: 9981
  issue: 24
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0275
  article-title: Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ00021C
– volume: 44
  start-page: 16378
  issue: 31
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1775
  article-title: Engineering hierarchical NiFe-layered double hydroxides derived phosphosulfide for high-efficiency hydrogen evolving electrocatalysis
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.04.258
– volume: 52
  start-page: 5356
  issue: 20
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b0090
  article-title: An efficient three-dimensional oxygen evolution electrode
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201301066
– volume: 10
  start-page: 12145
  issue: 21
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0610
  article-title: Ultrathin sulfate-intercalated NiFe-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00845A
– volume: 128
  start-page: 7756
  issue: 24
  year: 2006
  ident: 10.1016/j.ccr.2022.214666_b1610
  article-title: Quantum-sized carbon dots for bright and colorful photoluminescence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062677d
– ident: 10.1016/j.ccr.2022.214666_b0725
  doi: 10.1038/s41467-018-07790-x
– volume: 43
  start-page: 2439
  issue: 8
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0385
  article-title: Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60351b
– volume: 128
  start-page: 1150
  issue: 3
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1010
  article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201509758
– ident: 10.1016/j.ccr.2022.214666_b1720
  doi: 10.1039/C9TA03580J
– volume: 2
  start-page: 5555
  issue: 12
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0060
  article-title: Recent progress of Ni–Fe layered double hydroxide and beyond towards electrochemical water splitting
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00727G
– volume: 11
  start-page: 2002816
  issue: 1
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1235
  article-title: Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002816
– volume: 24
  start-page: 934
  issue: 7
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0490
  article-title: Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301747
– volume: 128
  start-page: 5363
  issue: 17
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0685
  article-title: Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201600687
– volume: 17
  start-page: 100101
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1040
  article-title: Template synthesis of molybdenum-doped NiFe-layered double hydroxide nanotube as high efficiency electrocatalyst for oxygen evolution reaction
  publication-title: Mater. Today Sustain.
  doi: 10.1016/j.mtsust.2021.100101
– volume: 13
  start-page: 79
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1060
  article-title: Ultrasonication-assisted and gram- scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2575-5
– ident: 10.1016/j.ccr.2022.214666_b1690
  doi: 10.1016/j.electacta.2019.134595
– volume: 7
  start-page: 14483
  issue: 24
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0710
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03882E
– ident: 10.1016/j.ccr.2022.214666_b0335
  doi: 10.1002/advs.202105135
– volume: 11
  start-page: 8855
  issue: 18
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0155
  article-title: Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C9NR00658C
– volume: 10
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0320
  article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0229-x
– volume: 8
  start-page: 1703585
  issue: 18
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0665
  article-title: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703585
– volume: 5
  issue: 2
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0325
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 28
  start-page: 1838
  issue: 6
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1140
  article-title: Design and epitaxial growth of MoSe2–NiSe vertical hetero-nanostructures with electronic modulation for enhanced hydrogen evolution reaction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b05006
– volume: 45
  start-page: 4873
  issue: 18
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0420
  article-title: Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00343E
– volume: 1
  start-page: 136
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1205
  article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting
  publication-title: Nano Lett.
– volume: 794
  start-page: 261
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1460
  article-title: Hierarchical Graphdiyne@ NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.150
– volume: 38
  start-page: 4901
  issue: 12
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b0045
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 141
  start-page: 11658
  issue: 29
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1615
  article-title: C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05006
– volume: 38
  start-page: 153
  issue: 3–4
  year: 2008
  ident: 10.1016/j.ccr.2022.214666_b0580
  article-title: Intercalation of Mg–Al layered double hydroxide by anionic surfactants: preparation and characterization
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2007.03.006
– volume: 354
  start-page: 875
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1670
  article-title: Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for high-performance supercapacitors and efficient oxygen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.102
– volume: 13
  start-page: 1701931
  issue: 45
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0770
  article-title: First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances
  publication-title: Small
  doi: 10.1002/smll.201701931
– volume: 2
  start-page: 1709
  issue: 4
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1465
  article-title: A NiFe layered double hydroxide-decorated N-doped entangled-graphene framework: a robust water oxidation electrocatalyst
  publication-title: Nanoscale Adv.
  doi: 10.1039/C9NA00808J
– volume: 48
  start-page: 56
  issue: 1
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1595
  article-title: Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5002846
– volume: 9
  start-page: 117
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1200
  article-title: Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03092
– volume: 8
  start-page: 11573
  issue: 23
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1475
  article-title: Regulating the charge diffusion of two-dimensional cobalt–iron hydroxide/graphene composites for high-rate water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03895D
– volume: 55
  start-page: 3315
  issue: 23
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0925
  article-title: Liquid phase exfoliation of carbonate-intercalated layered double hydroxides
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00197B
– volume: 7
  start-page: 13105
  issue: 15
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1035
  article-title: Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02297
– volume: 3
  start-page: 1800286
  issue: 2
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0985
  article-title: A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution, electrocatalyst
  publication-title: Small Methods
  doi: 10.1002/smtd.201800286
– volume: 28
  start-page: 9532
  issue: 43
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1580
  article-title: Defect graphene as a trifunctional catalyst for electrochemical reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602912
– volume: 29
  start-page: 1604080
  issue: 6
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0745
  article-title: Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604080
– volume: 26
  start-page: 7244
  issue: 32
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0825
  article-title: Engineering Li-ion embedded into NiFe-LDHs lattice activate laminate Ni2+ sites as high efficiency oxygen evolution reaction catalysts
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201905844
– volume: 3
  start-page: 950
  issue: 6
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0815
  article-title: One-step electrodeposition of S-doped cobalt–nickel layered double hydroxides on conductive substrates and their electrocatalytic activity in alkaline media
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600022
– volume: 17
  start-page: 13175
  issue: 47
  year: 2011
  ident: 10.1016/j.ccr.2022.214666_b1840
  article-title: A family of visible-light responsive photocatalysts obtained by dispersing CrO6 octahedra into a hydrotalcite matrix
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201101874
– volume: 10
  start-page: 6336
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0465
  article-title: Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17939
– volume: 57
  start-page: 172
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1075
  article-title: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710877
– ident: 10.1016/j.ccr.2022.214666_b0850
  doi: 10.1016/j.cej.2020.126297
– volume: 140
  start-page: 3876
  issue: 11
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1245
  article-title: Single atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 5
  start-page: 43
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0370
  article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00485H
– volume: 11
  start-page: 11555
  issue: 12
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0715
  article-title: Kirkendall Growth and ostwald ripening induced hierarchical morphology of Ni–Co LDH/MMoS x (M= Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02978
– ident: 10.1016/j.ccr.2022.214666_b1645
  doi: 10.1039/D0CC03773G
– volume: 12
  start-page: 14514
  issue: 27
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1390
  article-title: In situ semi-transformation from heterometallic MOFs to Fe–Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/D0NR02697B
– volume: 110
  start-page: 3653
  issue: 11
  year: 1988
  ident: 10.1016/j.ccr.2022.214666_b0575
  article-title: Pillaring of layereddouble hydroxides (LDH's) by polyoxometalate anions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00219a048
– volume: 8
  start-page: 11342
  issue: 12
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0435
  article-title: Interfacial interaction between FeOOH and Ni–Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03489
– volume: 9
  start-page: 1803060
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0670
  article-title: Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803060
– volume: 8
  start-page: 2744
  issue: 8
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0515
  article-title: Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0781-3
– volume: 27
  start-page: 5702
  issue: 16
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0425
  article-title: Porous two- dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02177
– volume: 56
  start-page: 9360
  issue: 65
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1350
  article-title: Interface engineering of NiV-LDH@ FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions
  publication-title: Chem. Comm.
  doi: 10.1039/D0CC03760E
– volume: 4
  start-page: 1600371
  issue: 4
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0100
  article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting
  publication-title: Adv. Sci
  doi: 10.1002/advs.201600371
– volume: 27
  start-page: 1702546
  issue: 36
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0690
  article-title: Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702546
– volume: 12
  start-page: 2620
  issue: 9
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0375
  article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01202H
– volume: 24
  start-page: 3346
  issue: 6
  year: 2010
  ident: 10.1016/j.ccr.2022.214666_b0215
  article-title: Carbon/layered double hydroxide (LDH) composites for supercapacitor application
  publication-title: Energy Fuels
  doi: 10.1021/ef901505c
– volume: 60
  start-page: 2023
  issue: 3
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0040
  article-title: Enabling and inducing oxygen vacancies in cobalt iron layer double hydroxide via selenization as precatalysts for electrocatalytic hydrogen and oxygen evolution reactions
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03514
– volume: 14
  start-page: 627
  issue: 8
  year: 1928
  ident: 10.1016/j.ccr.2022.214666_b0675
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.14.8.627
– volume: 7
  start-page: 5557
  issue: 8
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0965
  article-title: Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00007
– volume: 10
  start-page: 4004
  issue: 20
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0950
  article-title: Benzoate anion-intercalated layered cobalt hydroxide nanoarray: an efficient electrocatalyst for the oxygen evolution reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701358
– volume: 13
  start-page: 1129
  issue: 9
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0600
  article-title: Multi-anion intercalated layered double hydroxide nanosheet-assembled hollow nanoprisms with improved pseudocapacitive and electrocatalytic properties
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800092
– ident: 10.1016/j.ccr.2022.214666_b1680
  doi: 10.1002/aenm.201670063
– volume: 10
  start-page: 1292
  issue: 5
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1290
  article-title: Hierarchical FeCo2S4@ CoFe layered double hydroxide on Ni foam as a bifunctional electrocatalyst for overall water splitting
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY01896D
– volume: 347
  start-page: 193
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0445
  article-title: In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.062
– ident: 10.1016/j.ccr.2022.214666_b1500
  doi: 10.1016/j.cej.2020.124525
– volume: 6
  start-page: 10087
  issue: 8
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1780
  article-title: Alumina-supported CoPS nanostructures derived from LDH as highly active bifunctional catalysts for overall water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01425
– volume: 127
  start-page: 6423
  issue: 21
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1135
  article-title: Phosphorus-modifie tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201501419
– volume: 30
  start-page: 4321
  issue: 13
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0635
  article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01334
– volume: 13
  start-page: 79
  issue: 1
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1150
  article-title: Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2575-5
– volume: 582
  start-page: 535
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1730
  article-title: Fabrication of Co(Ni)-P surface bonding states on core–shell Co(OH)2@P-NiCo-LDH towards electrocatalytic hydrogen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.086
– volume: 6
  start-page: 13619
  issue: 28
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1310
  article-title: Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02967A
– volume: 26
  start-page: 1094
  issue: 6
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1305
  article-title: Advances in efficient electrocatalysts based on Layered double hydroxides and their derivatives
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.09.015
– volume: 3
  start-page: 563
  issue: 9
  year: 2008
  ident: 10.1016/j.ccr.2022.214666_b0640
  article-title: High-yield production of graphene by liquid-phase exfoliation of graphite
  publication-title: Nature Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 7
  start-page: 3598
  issue: 4
  year: 2013
  ident: 10.1016/j.ccr.2022.214666_b0680
  article-title: Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics
  publication-title: ACS Nano
  doi: 10.1021/nn400576v
– volume: 8
  start-page: 17202
  issue: 33
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1395
  article-title: Rational design of NiFe LDH@ Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01966F
– volume: 10
  start-page: 5163
  issue: 11
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1795
  article-title: Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR00426A
– volume: 6
  start-page: 1900576
  issue: 17
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1735
  article-title: Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900576
– year: 2011
  ident: 10.1016/j.ccr.2022.214666_b0025
– volume: 10
  start-page: 893
  issue: 4
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1865
  article-title: A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03145E
– volume: 3
  start-page: 2532
  issue: 3
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0205
  article-title: Kinetics, isotherm, and thermodynamic study for ultrafast adsorption of azo dye by an efficient sorbent: ternary Mg/(Al+ Fe) layered double hydroxides
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01807
– start-page: 163738
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b0810
  article-title: Mo-doping-assisted electrochemical transformation to generate CoFe LDH as the highly efficient electrocatalyst for overall water splitting
  publication-title: J. Alloys Compd.
– volume: 26
  start-page: 4839
  issue: 27
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1015
  article-title: Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601315
– volume: 40
  start-page: 2785
  issue: 10
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0055
  article-title: Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution
  publication-title: Rare Metals
  doi: 10.1007/s12598-021-01765-6
– ident: 10.1016/j.ccr.2022.214666_b1510
  doi: 10.1016/j.cej.2020.125605
– volume: 333
  start-page: 53
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1590
  article-title: NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2016.09.152
– volume: 11
  start-page: 6483
  issue: 6
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1605
  article-title: Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03329
– ident: 10.1016/j.ccr.2022.214666_b1630
  doi: 10.3389/fchem.2019.00671
– volume: 122
  start-page: 8429
  issue: 44
  year: 2010
  ident: 10.1016/j.ccr.2022.214666_b0735
  article-title: Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201004033
– volume: 9
  start-page: 33766
  issue: 39
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1300
  article-title: Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07984
– volume: 2
  start-page: 724
  issue: 7
  year: 2010
  ident: 10.1016/j.ccr.2022.214666_b0395
  article-title: The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000126
– volume: 56
  start-page: 5867
  issue: 21
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0995
  article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– ident: 10.1016/j.ccr.2022.214666_b1365
  doi: 10.1016/j.electacta.2020.136247
– volume: 153
  start-page: 172
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0190
  article-title: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials
  publication-title: Applied Clay Sci.
  doi: 10.1016/j.clay.2017.12.021
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1750
  article-title: Facile tumor spheroids formation in large quantity with controllable size and high uniformity
  publication-title: Sci. Rep.
– volume: 7
  start-page: 15840
  issue: 29
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0485
  article-title: Hierarchical configuration of NiCo2S4 nanotube@ Ni–Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03042
– volume: 24
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1405
  article-title: Heterostructured composite of NiFe-LDH nanosheets with Ti4O7 for oxygen evolution reaction
  publication-title: Mater. Today Chem.
– volume: 64
  start-page: 1662
  issue: 7
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1420
  article-title: Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1566-6
– volume: 32
  start-page: 2005433
  issue: 46
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0065
  article-title: A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005433
– volume: 277
  start-page: 67
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0220
  article-title: Improved performance of flower-like ZnAl LDH growing on carbon nanotubes used in zinc–nickel secondary battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.201
– volume: 12
  start-page: 12919
  issue: 11
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0495
  article-title: Flexible active-site engineering of monometallic Co-layered double hydroxides for achieving high- performance bifunctional electrocatalyst toward oxygen evolution and H2O2 reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01315
– volume: 6
  start-page: 3468
  issue: 4
  year: 2012
  ident: 10.1016/j.ccr.2022.214666_b0650
  article-title: Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds
  publication-title: ACS Nano
  doi: 10.1021/nn300503e
– ident: 10.1016/j.ccr.2022.214666_b1000
  doi: 10.1016/j.jallcom.2020.156949
– ident: 10.1016/j.ccr.2022.214666_b0920
  doi: 10.1021/acssuschemeng.7b04199
– volume: 8
  start-page: 902
  issue: 3
  year: 2008
  ident: 10.1016/j.ccr.2022.214666_b1545
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 40
  start-page: 7130
  issue: 27
  year: 2011
  ident: 10.1016/j.ccr.2022.214666_b0230
  article-title: Highly active Pd nanoparticles dispersed on amine functionalized layered double hydroxide for Suzuki coupling reaction
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10697j
– volume: 528
  start-page: 36
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0930
  article-title: Borate-ion intercalated NiFe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.05.075
– ident: 10.1016/j.ccr.2022.214666_b1430
  doi: 10.1016/j.apsusc.2021.151182
– volume: 42
  start-page: 2889
  issue: 4
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0945
  article-title: Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ04469K
– volume: 5
  start-page: 6680
  issue: 4
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0775
  article-title: Pulse-electrodeposited Ni–Fe (oxy) hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01551
– volume: 488
  start-page: 294
  issue: 7411
  year: 2012
  ident: 10.1016/j.ccr.2022.214666_b0015
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– year: 2012
  ident: 10.1016/j.ccr.2022.214666_b0415
– volume: 9
  start-page: 1734
  issue: 5
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0630
  article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00377J
– volume: 7
  start-page: 3695
  issue: 19
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0255
  article-title: Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ZnCr LDH photocatalyst
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00617C
– volume: 15
  start-page: 1902551
  issue: 41
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0800
  article-title: Fe2+ doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems
  publication-title: Small
  doi: 10.1002/smll.201902551
– volume: 53
  start-page: 1488
  issue: 6
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b1810
  article-title: Mixed transition-metal oxides: design, synthesis, and energy-related applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201303971
– volume: 10
  start-page: 1902535
  issue: 20
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0295
  article-title: Layered metal hydroxides and their derivatives: controllable synthesis, chemical exfoliation, and electrocatalytic applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902535
– volume: 3
  start-page: 1800344
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1085
  article-title: One-step synthesis of NiMn-layered double hydroxide nanosheets efficient for water oxidation
  publication-title: Small Methods
  doi: 10.1002/smtd.201800344
– volume: 49
  start-page: 189
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1385
  article-title: In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@ NiFe LDH/NF arrays for synergistically enhanced overall water splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.02.025
– volume: 122
  start-page: 847
  issue: 2
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0960
  article-title: Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b06935
– volume: 13
  start-page: 1354
  issue: 2
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1705
  article-title: High topological tri-metal phosphide of CoP@ FeNiP toward enhanced activities in oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/D0NR06615J
– volume: 7
  start-page: 4483
  issue: 24
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0860
  article-title: Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03882E
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0300
  article-title: Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.07.016
– ident: 10.1016/j.ccr.2022.214666_b1190
  doi: 10.1016/j.jpowsour.2019.227434
– volume: 19
  start-page: 213
  issue: 4
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0270
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today.
  doi: 10.1016/j.mattod.2015.10.006
– volume: 54
  start-page: 8957
  issue: 31
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1875
  article-title: Two-dimensional layered heterostructures synthesized from core-shell nanowires
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502461
– volume: 30
  start-page: 1705106
  issue: 5
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1130
  article-title: A highly efficient oxygen evolution catalyst consisting of interconnected nickel–iron-layered double hydroxide and carbon nanodomains
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705106
– volume: 55
  start-page: 4218
  issue: 29
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1340
  article-title: One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH)2 nanowires grown on a Ni foam for a high-efficiency oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00268E
– volume: 4
  start-page: 7245
  issue: 19
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1250
  article-title: Monolithic structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02216B
– volume: 448
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0405
  article-title: A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction
  publication-title: J. Power Sources
– volume: 8
  start-page: 1138
  issue: 3
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1360
  article-title: Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@ NiCo-LDH core–shell nanoarray electrocatalysts
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA06917H
– ident: 10.1016/j.ccr.2022.214666_b0140
  doi: 10.1002/celc.201800194
– volume: 46
  start-page: 5950
  issue: 19
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0260
  article-title: Preparation of two dimensional layered double hydroxide nanosheets and their applicationsChem
  publication-title: Soc. Rev.
  doi: 10.1039/C7CS00318H
– ident: 10.1016/j.ccr.2022.214666_b0895
  doi: 10.1002/chin.198723038
– volume: 9
  start-page: 1803358
  issue: 17
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0310
  article-title: Electrocatalysts: 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application
  publication-title: Adv Energy Mater.
  doi: 10.1002/aenm.201803358
– volume: 358
  start-page: 436
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0520
  article-title: Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.160
– volume: 5
  start-page: 3536
  issue: 14
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0565
  article-title: In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05463C
– volume: 10
  start-page: 1732
  issue: 5
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0620
  article-title: Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1437-2
– volume: 3
  start-page: 16529
  issue: 12
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0280
  article-title: Effects of metal combinations on the electrocatalytic properties of transition-metal-based layered double hydroxides for water oxidation: a perspective with insights
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02565
– volume: 14
  start-page: 1803638
  issue: 51
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1800
  article-title: A New Class of Zn1-xFex–oxyselenide and Zn1-xFex–LDH nanostructured material with remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201803638
– volume: 28
  start-page: 9266
  issue: 42
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1640
  article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602270
– volume: 4
  start-page: 6295
  issue: 20
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1695
  article-title: A Self-Assembled flower-like structure of nickel-cobalt phosphide nanosheets supported on nickel foam for electrochemical hydrogen evolution reaction
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201900197
– volume: 833
  start-page: 105
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0855
  article-title: Electro-synthesis of sulfur doped nickel cobalt layered double hydroxide for electrocatalytic hydrogen evolution reaction and supercapacitor applications
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.11.028
– volume: 9
  start-page: 1900881
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0980
  article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered doubles hydroxide nanosheets for efficient electrocatalytic water oxidation Adv
  publication-title: Energy Mater.
  doi: 10.1002/aenm.201900881
– volume: 9
  start-page: 464
  issue: 1
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0510
  article-title: Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13360
– volume: 8
  start-page: 9871
  issue: 19
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1240
  article-title: Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03272G
– volume: 10
  start-page: 1820
  issue: 8
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1185
  article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01571B
– volume: 3
  start-page: 1159
  year: 2011
  ident: 10.1016/j.ccr.2022.214666_b0400
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 2
  start-page: 3723
  issue: 19
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0585
  article-title: Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC32578D
– volume: 16
  start-page: 6617
  issue: 10
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1025
  article-title: Ternary FexCo1–x P nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03332
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0110
  article-title: Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis
  publication-title: Nat. Commun.
– volume: 138
  start-page: 6517
  issue: 20
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1820
  article-title: Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01606
– volume: 32
  issue: 38
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1160
  article-title: Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea
  publication-title: Nanotechnolog.
  doi: 10.1088/1361-6528/ac0b65
– volume: 5
  start-page: 1429
  issue: 5
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1410
  article-title: Hydrothermal combined with electrodeposition construction of a stable Co9S8/Ni3S2@ NiFe-LDH heterostructure electrocatalyst for overall water splitting
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE01805H
– volume: 3
  start-page: 18622
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0210
  article-title: Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05002B
– volume: 3
  issue: 2
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0350
  article-title: Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte
  publication-title: J. Energy Chem.
– volume: 43
  start-page: 6555
  issue: 18
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0360
  article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60468C
– volume: 16
  start-page: 1529
  issue: 17
  year: 2004
  ident: 10.1016/j.ccr.2022.214666_b1600
  article-title: Direct synthesis of a macroscale single-walled carbon nanotube non-woven material
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306393
– volume: 131
  start-page: 13833
  issue: 38
  year: 2009
  ident: 10.1016/j.ccr.2022.214666_b0450
  article-title: Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905467v
– volume: 241
  start-page: 521
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1845
  article-title: promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.09.061
– volume: 31
  start-page: 1904548
  issue: 48
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0125
  article-title: Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904548
– year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1835
  article-title: LDH-derived phosphide/N-doped graphene oxide hierarchical electrocatalyst for enhanced oxygen evolution reaction
  publication-title: CrystEngComm
– volume: 119
  start-page: 166
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b0910
  article-title: In situ selenylation of molybdate ion intercalated Co-Al layered double hydrotalcite for high-performance electrocatalytic oxygen evolution reaction
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2021.01.022
– volume: 44
  start-page: 14842
  issue: 29
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0940
  article-title: A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.04.045
– ident: 10.1016/j.ccr.2022.214666_b1425
  doi: 10.1016/j.apcatb.2021.119906
– volume: 3
  start-page: 399
  issue: 3
  year: 2012
  ident: 10.1016/j.ccr.2022.214666_b0115
  article-title: Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2016507
– ident: 10.1016/j.ccr.2022.214666_b0625
  doi: 10.1149/MA2017-02/46/2029
– volume: 14
  start-page: 4783
  issue: 12
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1490
  article-title: NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3424-x
– volume: 12
  start-page: 2773
  issue: 12
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0145
  article-title: Rapid fabrication of Ni/NiO@ CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201900479
– volume: 48
  start-page: 3703
  issue: 31
  year: 2012
  ident: 10.1016/j.ccr.2022.214666_b0645
  article-title: Vortex fluidic exfoliation of graphite and boron nitride
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17611d
– volume: 28
  start-page: 7640
  issue: 35
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1440
  article-title: Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601019
– ident: 10.1016/j.ccr.2022.214666_b1375
  doi: 10.1016/j.apcatb.2020.119014
– volume: 44
  start-page: 623
  issue: 3
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1555
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 44
  start-page: 15670
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b1295
  article-title: Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5085157
– volume: 29
  start-page: 1700017
  issue: 17
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1455
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 4
  start-page: 14721
  issue: 12
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0250
  article-title: Construction of a Z-scheme dictated WO3–X/Ag/ZnCr LDH synergistically visible light-induced photocatalyst towards tetracycline degradation and H2 evolution
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01146
– volume: 7
  start-page: 23091
  issue: 40
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0130
  article-title: Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06686A
– volume: 6
  start-page: 19221
  issue: 39
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1660
  article-title: Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08223E
– volume: 9
  start-page: 8185
  issue: 24
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0440
  article-title: Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion
  publication-title: Nanoscale
  doi: 10.1039/C7NR02001E
– volume: 49
  start-page: 1325
  issue: 4
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0500
  article-title: Methanol-assisted synthesis of Ni 3+ doped ultrathin NiZn-LDH nanomeshes for boosted alkaline water splitting
  publication-title: Dalton Trans
  doi: 10.1039/C9DT04282B
– volume: 205
  start-page: 551
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1470
  article-title: Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.01.010
– ident: 10.1016/j.ccr.2022.214666_b1715
  doi: 10.1039/C9CE01575B
– volume: 22
  start-page: 546
  issue: 3
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0865
  article-title: Bi-functional Mo and P co-doped ZnCo-LDH nanosheets as high performance electrocatalysts for boosting overall water splitting
  publication-title: CrystEngComm.
  doi: 10.1039/C9CE01575B
– volume: 50
  start-page: 6479
  issue: 49
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0480
  article-title: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01625D
– volume: 45
  start-page: 12629
  issue: 23
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1655
  article-title: Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.02.212
– ident: 10.1016/j.ccr.2022.214666_b1760
  doi: 10.1039/C8TA08149B
– volume: 37
  start-page: 1954
  issue: 2
  year: 2012
  ident: 10.1016/j.ccr.2022.214666_b0035
  article-title: Green methods for hydrogen production
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2011.03.173
– volume: 57
  start-page: 2488
  issue: 9
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0120
  article-title: The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709652
– volume: 8
  start-page: 8096
  issue: 16
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0805
  article-title: Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00691B
– volume: 3
  start-page: 366
  issue: 2
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1850
  article-title: Recent progress of transition metal nitrides for efficient electrocatalytic water splitting
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00525G
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1105
  article-title: 3D-printed NiFe-layered double hydroxide pyramid electrodes for enhanced electrocatalytic oxygen evolution reaction
  publication-title: Sci. Rep.
– volume: 15
  start-page: 1902373
  issue: 35
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0795
  article-title: Cr-dopant induced breaking of scaling relations in CoFe layered double hydroxides for improvement of oxygen evolution reaction
  publication-title: Small
  doi: 10.1002/smll.201902373
– volume: 46
  start-page: 32385
  issue: 64
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1825
  article-title: Local electronic structure modulation of NiVP@ NiFeV-LDH electrode for high-efficiency oxygen evolution reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.07.111
– volume: 4
  start-page: 10744
  issue: 28
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0200
  article-title: A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01668E
– volume: 6
  start-page: 15411
  issue: 11
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0840
  article-title: Ce-directed double-layered nanosheet architecture of NiFe-based hydroxide as highly efficient water oxidation electrocatalyst
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03852
– volume: 152
  start-page: 75
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0525
  article-title: Electrodeposition of layered double hydroxides on platinum: insights into the reactions sequence
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.096
– ident: 10.1016/j.ccr.2022.214666_b0750
  doi: 10.1016/j.electacta.2019.134595
– volume: 8
  start-page: 2931
  issue: 7
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0870
  article-title: Fe and B Codoped nickel zinc layered double hydroxide for boosting the oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07481
– volume: 10
  start-page: 44518
  issue: 51
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1045
  article-title: Ostwald ripening driven exfoliation to ultrathin layered double hydroxides nanosheets for enhanced oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16962
– ident: 10.1016/j.ccr.2022.214666_b1790
  doi: 10.1039/C8TA01067F
– volume: 1
  start-page: 1200
  issue: 3
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1535
  article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.7b00305
– volume: 29
  start-page: 1701546
  issue: 30
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0470
  article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multi vacancies for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 8
  start-page: 12798
  issue: 20
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1255
  article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02352
– volume: 33
  start-page: 473
  issue: 8
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1435
  article-title: Advances in hybrid electrocatalysts for oxygen evolution reactions: rational integration of NiFe layered double hydroxides and nanocarbon
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201600004
– volume: 44
  start-page: 17744
  issue: 41
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1480
  article-title: Nitrogen-doped graphene quantum dots anchored on NiFe layered double-hydroxide nanosheets catalyze the oxygen evolution reaction
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ03537H
– volume: 11
  start-page: 5296
  issue: 39
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1620
  article-title: Rupturing C60 molecules into graphene-oxide-like quantum dots: structure, photoluminescence, and catalytic application
  publication-title: Small
  doi: 10.1002/smll.201501611
– volume: 113
  start-page: 6133
  issue: 21
  year: 2009
  ident: 10.1016/j.ccr.2022.214666_b0195
  article-title: Theoretical study on the structural properties and relative stability of M (II)−Al layered double hydroxides based on a cluster model
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp810129h
– volume: 8
  start-page: 2002631
  issue: 2
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1320
  article-title: Interface engineering of Co-LDH@ MOF heterojunction in highly stable and efficient oxygen evolution reaction
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002631
– volume: 3
  start-page: 16348
  issue: 31
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0555
  article-title: Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03394B
– ident: 10.1016/j.ccr.2022.214666_b0880
  doi: 10.1016/j.cej.2021.131643
– volume: 56
  start-page: 6652
  issue: 49
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b1315
  article-title: Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@ NiMn-LDHS composite electrode in alkaline electrolyte
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01146K
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1560
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10922
– volume: 1
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0050
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 7
  start-page: 4784
  issue: 5
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1335
  article-title: Hybridizing NiCo2O4 and amorphous Ni x Co y layered double hydroxides with remarkably improved activity toward efficient overall water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05044
– volume: 20
  start-page: 2964
  issue: 20
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1070
  article-title: Ultra- thin Co− Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201900524
– volume: 52
  start-page: 8156
  issue: 52
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1585
  article-title: Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC03687B
– volume: 26
  start-page: 1442
  issue: 3
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b1880
  article-title: Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm4035598
– volume: 7
  start-page: 5069
  issue: 10
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0030
  article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA11273H
– volume: 11
  start-page: 2002816
  issue: 1
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1220
  article-title: Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002816
– volume: 6
  start-page: 1793
  issue: 7
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1785
  article-title: Synthesis from a layered double hydroxide precursor for a highly efficient oxygen evolution reaction
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00190E
– volume: 347
  start-page: 193
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0615
  article-title: In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.062
– volume: 4
  start-page: 3957
  issue: 11
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0785
  article-title: Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials
  publication-title: ACS Catal.
  doi: 10.1021/cs500923c
– volume: 137
  start-page: 4119
  issue: 12
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1860
  article-title: Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5119495
– volume: 82
  start-page: 483
  issue: 3
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0460
  article-title: A highly active CoFe layered double hydroxide for water splitting
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201700005
– volume: 7
  start-page: 1770135
  issue: 23
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b1020
  article-title: Hierarchical nanostructures: hierarchical nanostructures: design for sustainable water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201770135
– volume: 11
  start-page: 13545
  issue: 14
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1445
  article-title: Controlled self-assembled NiFe layered double hydroxides/reduced graphene oxide nanohybrids based on the solid-phase exfoliation strategy as an excellent electrocatalyst for the oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22260
– volume: 5
  start-page: 879
  issue: 4
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0240
  article-title: Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00742F
– volume: 8
  start-page: 33697
  issue: 49
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b1155
  article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behaviour toward oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12100
– ident: 10.1016/j.ccr.2022.214666_b0365
  doi: 10.1002/celc.201901623
– volume: 29
  start-page: 1606207
  issue: 18
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0695
  article-title: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606207
– ident: 10.1016/j.ccr.2022.214666_b0975
  doi: 10.1016/j.apcatb.2020.118627
– volume: 142
  start-page: 4985
  issue: 11
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0340
  article-title: Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt (111) through ab initio simulation of electrode/electrolyte kinetics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13694
– volume: 32
  start-page: 2108681
  issue: 6
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b0330
  article-title: Recent advances in complex hollow electrocatalysts for water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108681
– volume: 11
  start-page: 39991
  issue: 43
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0720
  article-title: Surface anionization of self-assembled iron sulfide hierarchitectures to enhance capacitive storage for alkaline-metal-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13629
– volume: 7
  start-page: 5203
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b1120
  article-title: Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C4NR06754A
– volume: 28
  start-page: 1804886
  issue: 52
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0430
  article-title: Electronic tuning of Co, Ni-based nanostructured (Hydr) oxides for aqueous electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804886
– volume: 10
  start-page: 35145
  issue: 41
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1275
  article-title: CeOx-decorated NiFe-layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11688
– volume: 9
  start-page: 2493
  issue: 10
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0245
  article-title: Influence of Au/Pd alloy on an amine functionalised ZnCr LDH–MCM-41 nanocomposite: a visible light sensitive photocatalyst towards one-pot imine synthesis
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02603C
– volume: 24
  start-page: 4292
  issue: 27
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0740
  article-title: High-yield preparation, versatile structural modification, and properties of layered cobalt hydroxide nanocones
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400193
– volume: 52
  start-page: 412
  year: 2021
  ident: 10.1016/j.ccr.2022.214666_b1525
  article-title: Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.009
– volume: 28
  start-page: 215
  issue: 2
  year: 2016
  ident: 10.1016/j.ccr.2022.214666_b0105
  article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 12
  start-page: 5817
  issue: 10
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0835
  article-title: Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation
  publication-title: Nanoscale
  doi: 10.1039/C9NR10781A
– volume: 3
  start-page: 842
  issue: 5
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1210
  article-title: Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00052F
– volume: 9
  start-page: 146
  issue: 1
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b1415
  article-title: In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI01185E
– volume: 8
  start-page: 17471
  issue: 34
  year: 2020
  ident: 10.1016/j.ccr.2022.214666_b0790
  article-title: Unveiling the critical role of the Mn dopant in a NiFe (OH)2 catalyst for water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06353C
– volume: 6
  start-page: 9649
  issue: 8
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b0605
  article-title: Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04788
– volume: 6
  start-page: 362
  issue: 4
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0780
  article-title: Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1874
– volume: 463
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.ccr.2022.214666_b0225
  article-title: Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.12.035
– volume: 31
  start-page: 456
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0355
  article-title: Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.048
– ident: 10.1016/j.ccr.2022.214666_b0070
  doi: 10.1016/j.cej.2021.129892
– volume: 47
  start-page: 1644
  issue: 3
  year: 2022
  ident: 10.1016/j.ccr.2022.214666_b0890
  article-title: Ce and MoS2 dual-doped cobalt aluminum layered double hydroxides for enhanced oxygen evolution reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.10.222
– volume: 808
  start-page: 75
  year: 2018
  ident: 10.1016/j.ccr.2022.214666_b1215
  article-title: Efficient hydrogen and oxygen evolution on the AuNPs@CaFe-LDH composite in alkaline media
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.11.057
– volume: 6
  start-page: 1901328
  issue: 23
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b1505
  article-title: MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901328
– volume: 41
  start-page: 327
  year: 2017
  ident: 10.1016/j.ccr.2022.214666_b0535
  article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2017.09.045
– ident: 10.1016/j.ccr.2022.214666_b0875
  doi: 10.1016/j.electacta.2021.139199
– volume: 3
  start-page: 8171
  issue: 15
  year: 2015
  ident: 10.1016/j.ccr.2022.214666_b0170
  article-title: Nickel nitride as an efficient electrocatalyst for water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA00078E
– volume: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ccr.2022.214666_b0345
  article-title: Metal-organic framework-derived materials for electrochemical energy applications
  publication-title: J. Energy Chem.
SSID ssj0016992
Score 2.7169673
SecondaryResourceType review_article
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 214666
Title Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis
Volume 469
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4imWl-bAAYhSpanzMLeqBVW8Lrsr7S1yElfNaklQkgLlwG_hn_DXmLHjNBRWYrlEVeQ6UebTzDfjeTD2VK28SIqp5-aeilzuc-UK7qUuclNFk83R6FJo4P2HcHnC35wGp6PRz0HW0qZNx9m3v9aV_I9U8R7KlapkLyHZflO8gb9RvnhFCeP1n2SMnI-O8nWOFWmsonRWBdI5p6ZBcWSFdEIWjYnW8eotDeZ08mpD5VLrbV5XX4tck8x3iyXFB8im5U43GkdHdrZNSz0gKLe2cb5IaqnYIG9tbaH0zBa_6IBugU9EZ18fQTTbEsllUzRD_juv0NktTATSyeywuW6Pnt4fyXWlQ7gL0mjUU-lzbz0WpgLtLVWwlI7OEN9F1UuKfOhA0VFd1PLj4MgLSbA0IfC0WMthsAP9ZModCYYKHG_EgelAaRU4N8NeehXMQzPI5Q_rYAIVZ-Mso06wvj_erf29E_eehezzFm1K3FmCWyS0RWK2uMKu-uinkKIdf-9zjCahEKZdfffW9lhdJxjuvcWAGA0YzvFNdqNzTWBmcHaLjVR5m12bWyHdYT8M3sDiDYoSNN4A8QY7vIHGG3R4A4M36PEGzxBtz0FjDfaxBh3WQGMNeqy9hBkYlAAhDSzSAB_XI-0uO3n96ni-dLsJH27m86B1M6RK6SSfcm8VIdcNpJzwFAmyEAEaHhmimss4qpM0jD0hV8qbZtEkRy_YV-iKR3J6jx2UVanuMwhi6n3J4zxWSIqpZRHPIx_VkFgJpPnikHn28yZZ1_6eprCcJxcK9ZC96P_yyfR-uXjxg8ssfsiu79D9iB209UY9RnLbpk80gH4Bbq-qjQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+first+row+transition+metal+Layered+double+hydroxide+%28LDH%29+based+electrocatalysts+towards+water+splitting%3A+A+review+with+insights+on+synthesis&rft.jtitle=Coordination+chemistry+reviews&rft.au=Sahoo%2C+Dipti+Prava&rft.au=Das%2C+Kundan+Kumar&rft.au=Mansingh%2C+Sriram&rft.au=Sultana%2C+Sabiha&rft.date=2022-10-15&rft.issn=0010-8545&rft.volume=469&rft.spage=214666&rft_id=info:doi/10.1016%2Fj.ccr.2022.214666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccr_2022_214666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon