Efficient Adversarial Attacks Against DRL-Based Resource Allocation in Intelligent O-RAN for V2X

Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in smart vehicle-to-everything (V2X) networks and vehicle road cooperation systems. However, the openness and dependence of AI models on massive vo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 74; no. 1; pp. 1674 - 1686
Main Authors Ergu, Yared Abera, Nguyen, Van-Linh, Hwang, Ren-Hung, Lin, Ying-Dar, Cho, Chuan-Yu, Yang, Hui-Kuo, Shin, Hyundong, Duong, Trung Q.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in smart vehicle-to-everything (V2X) networks and vehicle road cooperation systems. However, the openness and dependence of AI models on massive volumes of data render them subject to serious security vulnerabilities, such as adversarial attacks. This study investigates security issues in O-RAN's near real-time RAN intelligent controller (RIC), with an emphasis on deep reinforcement learning (DRL)-based resource allocation. We introduce a novel attack manipulating environmental observations to mislead AI agents, resulting in erroneous allocations and decreased physical resource block (PRB) transmission rates for various vehicular communications. We also discover flaws where compromised users or signal jammers can fake signal power to trick the AI agent's state observation. This can lead to a policy infiltration attack that makes the network performance drop significantly. Evaluation results show up to a 40% decline in user data rates, a 77.74% reduction in packet delivery rates, and significant disruptions in ultra-reliable and low-latency communications (uRLLC) services such as remote driving and connected automated vehicles. The policy infiltration attack causes a 20% increase in packet losses and up to 150% delay overall. The attack efficiency emphasizes the need for adversarial training in protecting AI-driven applications, which should be addressed in future O-RAN security specifications and AI-powered vehicular networks.
AbstractList Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in smart vehicle-to-everything (V2X) networks and vehicle road cooperation systems. However, the openness and dependence of AI models on massive volumes of data render them subject to serious security vulnerabilities, such as adversarial attacks. This study investigates security issues in O-RAN's near real-time RAN intelligent controller (RIC), with an emphasis on deep reinforcement learning (DRL)-based resource allocation. We introduce a novel attack manipulating environmental observations to mislead AI agents, resulting in erroneous allocations and decreased physical resource block (PRB) transmission rates for various vehicular communications. We also discover flaws where compromised users or signal jammers can fake signal power to trick the AI agent's state observation. This can lead to a policy infiltration attack that makes the network performance drop significantly. Evaluation results show up to a 40% decline in user data rates, a 77.74% reduction in packet delivery rates, and significant disruptions in ultra-reliable and low-latency communications (uRLLC) services such as remote driving and connected automated vehicles. The policy infiltration attack causes a 20% increase in packet losses and up to 150% delay overall. The attack efficiency emphasizes the need for adversarial training in protecting AI-driven applications, which should be addressed in future O-RAN security specifications and AI-powered vehicular networks.
Author Shin, Hyundong
Duong, Trung Q.
Ergu, Yared Abera
Yang, Hui-Kuo
Hwang, Ren-Hung
Lin, Ying-Dar
Nguyen, Van-Linh
Cho, Chuan-Yu
Author_xml – sequence: 1
  givenname: Yared Abera
  orcidid: 0000-0002-1807-7909
  surname: Ergu
  fullname: Ergu, Yared Abera
  email: yared111p@cs.ccu.edu.tw
  organization: Department of Computer science and Information Engineering, National Chung Cheng University (CCU), Minhsiung, Taiwan
– sequence: 2
  givenname: Van-Linh
  orcidid: 0000-0002-3472-0108
  surname: Nguyen
  fullname: Nguyen, Van-Linh
  email: nvlinh@cs.ccu.edu.tw
  organization: Department of Computer science and Information Engineering, National Chung Cheng University (CCU), Minhsiung, Taiwan
– sequence: 3
  givenname: Ren-Hung
  orcidid: 0000-0001-7996-4184
  surname: Hwang
  fullname: Hwang, Ren-Hung
  email: rhhwang@nycu.edu.tw
  organization: National Yang Ming Chiao Tung University (NYCU), Tainan, Taiwan
– sequence: 4
  givenname: Ying-Dar
  orcidid: 0000-0002-5226-4396
  surname: Lin
  fullname: Lin, Ying-Dar
  email: ydlin@nycu.edu.tw
  organization: National Yang Ming Chiao Tung University (NYCU), Tainan, Taiwan
– sequence: 5
  givenname: Chuan-Yu
  surname: Cho
  fullname: Cho, Chuan-Yu
  email: ares@itri.org.tw
  organization: Industrial Technology Research Institute, Hsinchu, Taiwan
– sequence: 6
  givenname: Hui-Kuo
  surname: Yang
  fullname: Yang, Hui-Kuo
  email: hgyang@itri.org.tw
  organization: Industrial Technology Research Institute, Hsinchu, Taiwan
– sequence: 7
  givenname: Hyundong
  orcidid: 0000-0003-3364-8084
  surname: Shin
  fullname: Shin, Hyundong
  email: hshin@khu.ac.kr
  organization: Kyung Hee University, Yongin-si, South Korea
– sequence: 8
  givenname: Trung Q.
  orcidid: 0000-0002-4703-4836
  surname: Duong
  fullname: Duong, Trung Q.
  email: tduong@mun.ca
  organization: Memorial University, St. John's, NL, Canada
BookMark eNpNkEFLAzEQRoMoWKt3Dx4CnrdmssmmOa5atVAslFq8xWw2W1LXbE1SwX_vlvbgaRh43zfDu0CnvvMWoWsgIwAi75ar5YgSykY5KwoOcIIGIHOZyZzLUzQgBMaZ5Iyfo4sYN_3KmIQB-pg0jTPO-oTL-seGqIPTLS5T0uYz4nKtnY8JPy5m2b2OtsYLG7tdMBaXbdsZnVznsfN46pNtW7feF82zRfmKmy7gFX2_RGeNbqO9Os4henuaLB9estn8efpQzjJDGU9ZZWStRSVkXRDacAaUGVlJCtxwQXLGAIRhNdGCQyGloVARTSivjKmN4DQfottD7zZ03zsbk9r0f_r-pMqB8zGhgox7ihwoE7oYg23UNrgvHX4VELX3qHqPau9RHT32kZtDxFlr_-GFFEyI_A-Hfm6P
CODEN ITVTAB
Cites_doi 10.1109/MNET.001.1900662
10.1016/j.comnet.2022.109502
10.1512/iumj.1957.6.56038
10.1145/3460120.3484777
10.1109/GLOBECOM54140.2023.10437125
10.1007/s12559-022-10062-y
10.1109/MNET.011.2000088
10.1109/MCOM.101.2001120
10.1109/COMST.2023.3239220
10.1145/3643833.3656119
10.1109/WCNC49053.2021.9417271
10.1109/TVT.2023.3335211
10.1109/LWC.2022.3227676
10.1109/ICC51166.2024.10623131
10.1109/IOTM.001.2300032
10.1109/TVT.2021.3131534
10.1109/MCOM.003.2200879
10.1109/NFV-SDN59219.2023.10329620
10.1109/mnet.2024.3434419
10.1109/MAES.2022.3186966
10.1002/9781119723950.ch14
10.1109/COMST.2022.3205184
10.1109/MWC.001.2200213
10.1109/OJCOMS.2023.3337854
10.1109/LWC.2018.2867459
10.1109/TVT.2024.3399924
10.1109/TMC.2022.3188013
10.1109/JSAC.2023.3334610
10.1109/pimrc56721.2023.10293795
10.1109/ICC45855.2022.9838763
10.1109/MVT.2020.3002487
10.1109/TNSM.2022.3188930
10.1109/TCCN.2022.3147203
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2024.3466511
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 1686
ExternalDocumentID 10_1109_TVT_2024_3466511
10697477
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council (NSTC) of Taiwan
  grantid: 111-2222-E-194-007-MY2; 112-2221-E-194-017-MY3
– fundername: Ministry of Education in Taiwan
– fundername: Advanced Institute of Manufacturing with High-tech Innovations
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c245t-bc9da7b79d602f54124c9b9215c570344117c4d0a751699c21b0a025bccdc7523
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Tue Jul 22 16:41:26 EDT 2025
Tue Jul 01 01:44:31 EDT 2025
Wed Aug 27 01:55:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-bc9da7b79d602f54124c9b9215c570344117c4d0a751699c21b0a025bccdc7523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4703-4836
0000-0001-7996-4184
0000-0003-3364-8084
0000-0002-3472-0108
0000-0002-5226-4396
0000-0002-1807-7909
PQID 3155802708
PQPubID 85454
PageCount 13
ParticipantIDs proquest_journals_3155802708
ieee_primary_10697477
crossref_primary_10_1109_TVT_2024_3466511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jan.
2025-1-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref15
Sunay (ref8) 2020
ref36
ref31
ref30
ref11
ref33
ref10
Habler (ref17) 2023
ref32
ref2
ref1
ref39
ref16
ref38
ref19
ref18
(ref37) 2023
ref24
ref23
(ref14) 2023
ref26
ref25
ref20
Goodfellow (ref40) 2015
ref22
ref21
(ref34) 2023
ref28
ref27
ref29
ref7
ref9
ref4
Madry (ref41) 2019
ref3
ref6
ref5
Jason (ref13) 2023
References_xml – ident: ref39
  doi: 10.1109/MNET.001.1900662
– year: 2023
  ident: ref13
  article-title: Zero trust architecture for evolving radio access networks
– ident: ref2
  doi: 10.1016/j.comnet.2022.109502
– ident: ref29
  doi: 10.1512/iumj.1957.6.56038
– ident: ref26
  doi: 10.1145/3460120.3484777
– ident: ref16
  doi: 10.1109/GLOBECOM54140.2023.10437125
– ident: ref21
  doi: 10.1007/s12559-022-10062-y
– ident: ref15
  doi: 10.1109/MNET.011.2000088
– year: 2023
  ident: ref17
  article-title: Adversarial machine learning threat analysis and remediation in open radio access network
– ident: ref1
  doi: 10.1109/MCOM.101.2001120
– ident: ref6
  doi: 10.1109/COMST.2023.3239220
– year: 2020
  ident: ref8
  article-title: SD-RAN: ONF’s software-defined RAN platform consistent with the O-RAN architecture
– ident: ref35
  doi: 10.1145/3643833.3656119
– ident: ref27
  doi: 10.1109/WCNC49053.2021.9417271
– ident: ref10
  doi: 10.1109/TVT.2023.3335211
– ident: ref24
  doi: 10.1109/LWC.2022.3227676
– ident: ref28
  doi: 10.1109/ICC51166.2024.10623131
– ident: ref7
  doi: 10.1109/IOTM.001.2300032
– ident: ref22
  doi: 10.1109/TVT.2021.3131534
– year: 2023
  ident: ref34
  article-title: Open ran security report
– ident: ref11
  doi: 10.1109/MCOM.003.2200879
– year: 2019
  ident: ref41
  article-title: Towards deep learning models resistant to adversarial attacks
– ident: ref36
  doi: 10.1109/NFV-SDN59219.2023.10329620
– ident: ref19
  doi: 10.1109/mnet.2024.3434419
– ident: ref4
  doi: 10.1109/MAES.2022.3186966
– ident: ref25
  doi: 10.1002/9781119723950.ch14
– ident: ref18
  doi: 10.1109/COMST.2022.3205184
– ident: ref5
  doi: 10.1109/MWC.001.2200213
– ident: ref32
  doi: 10.1109/OJCOMS.2023.3337854
– ident: ref20
  doi: 10.1109/LWC.2018.2867459
– ident: ref30
  doi: 10.1109/TVT.2024.3399924
– ident: ref33
  doi: 10.1109/TMC.2022.3188013
– year: 2023
  ident: ref37
  article-title: Rr-2023-04
– year: 2023
  ident: ref14
  article-title: O-RAN security threat modeling and remediation analysis 4.0
– year: 2015
  ident: ref40
  article-title: Explaining and harnessing adversarial examples
– ident: ref3
  doi: 10.1109/JSAC.2023.3334610
– ident: ref9
  doi: 10.1109/pimrc56721.2023.10293795
– ident: ref31
  doi: 10.1109/ICC45855.2022.9838763
– ident: ref12
  doi: 10.1109/MVT.2020.3002487
– ident: ref38
  doi: 10.1109/TNSM.2022.3188930
– ident: ref23
  doi: 10.1109/TCCN.2022.3147203
SSID ssj0014491
Score 2.4546273
Snippet Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1674
SubjectTerms Adversarial attacks
Artificial intelligence
deep reinforcement learning
Glass box
Infiltration
Intelligent vehicles
Jamming
Machine learning
Network latency
Network security
O-RAN
Open RAN
Perturbation methods
policy infiltration attacks
Real time
Resource allocation
Resource management
Roads
Security
Vehicle-to-everything
Wireless communication
Title Efficient Adversarial Attacks Against DRL-Based Resource Allocation in Intelligent O-RAN for V2X
URI https://ieeexplore.ieee.org/document/10697477
https://www.proquest.com/docview/3155802708
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YTnDgOcRgoBy4cEjpI22WY4FNA6EhTdu0W2nSDE2gDbHuwq_HTttpgJC49dBUUWzXn-34MyGXhns6iDRnWgrDuFKGSZGlzLhccW40Uo7hbYt-1Bvxh0k4KZvVbS-MMcZePjMOPtpafrbQK0yVgYVHCH9FjdQgciuatdYlA87L8XgeWDDggqom6crr4XgIkaDPnYBHUeh533yQHary609s3Ut3j_SrjRW3Sl6dVa4c_fmDs_HfO98nuyXQpHGhGQdky8wPyc4G_eARee5Y_ghYSe1c5mWK2kjjPMfGexq_pDMAj_Ru8MhuwNlltMr10_gNfSDKlM7m9H5N65nTJzaI-xSQMB37kwYZdTvD2x4rJy4w7fMwZ0rLLBVKyCxy_WmIk6m1VBJggUamLoBOntA8c1OB5TWpfU-5KaAmpXWmBcS0x6Q-X8zNCaHwHT9rCyNVYCDEmSrti0ghOxr2TQVek1xVMkjeC2KNxAYkrkxAXgnKKynl1SQNPNKN94rTbJJWJbWkNL1lEgBCakOw7bZP_1h2RrZ9nOJrEyktUs8_VuYcoEWuLqxKfQErZsjG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbAwuOThxPUYXipQioQK6hZix0UIVBBNF349d06CeAiJLYNtWT47993rO4B9K3wTxkZwo6TlQmvLlcwzbj2hhbCGKMco26IXd27FxSAaVMXqrhbGWuuSz2yLPl0sP38xE3KV4QuPCf7KaZhBxR_5ZbnWZ9BAiKpBno9vGAfUUUlPHfbv-mgLBqIVijiOfP-bFnJtVX79i52COVuEXr21Mq_kqTUpdMu8_2Bt_Pfel2ChgposKe_GMkzZ0QrMfyEgXIX7U8cggTOZ68w8zug-sqQoqPSeJQ_ZI8JHdnLT5Ueo7nJWe_tZ8kxakKTKHkfs_JPYs2DX_CbpMcTC7C4YrMHt2Wn_uMOrngvcBCIquDYqz6SWKo-9YBhRb2qjtEJgYIirC8GTL43IvUxSgE2ZwNdehrhJG5MbiVbtOjRGLyO7AQzXCfK2tEqHFo2coTaBjDXxo1HlVOg34aCWQfpaUmukziTxVIrySkleaSWvJqzRkX4ZV55mE7ZrqaXV4xunIWKkNprbXnvzj2l7MNvpX3XT7nnvcgvmAurp69wq29Ao3iZ2B4FGoXfd9foA1LHMDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Adversarial+Attacks+Against+DRL-Based+Resource+Allocation+in+Intelligent+O-RAN+for+V2X&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Ergu%2C+Yared+Abera&rft.au=Nguyen%2C+Van-Linh&rft.au=Hwang%2C+Ren-Hung&rft.au=Lin%2C+Ying-Dar&rft.date=2025-01-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=74&rft.issue=1&rft.spage=1674&rft.epage=1686&rft_id=info:doi/10.1109%2FTVT.2024.3466511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2024_3466511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon