Efficient Adversarial Attacks Against DRL-Based Resource Allocation in Intelligent O-RAN for V2X
Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in smart vehicle-to-everything (V2X) networks and vehicle road cooperation systems. However, the openness and dependence of AI models on massive vo...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 74; no. 1; pp. 1674 - 1686 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in smart vehicle-to-everything (V2X) networks and vehicle road cooperation systems. However, the openness and dependence of AI models on massive volumes of data render them subject to serious security vulnerabilities, such as adversarial attacks. This study investigates security issues in O-RAN's near real-time RAN intelligent controller (RIC), with an emphasis on deep reinforcement learning (DRL)-based resource allocation. We introduce a novel attack manipulating environmental observations to mislead AI agents, resulting in erroneous allocations and decreased physical resource block (PRB) transmission rates for various vehicular communications. We also discover flaws where compromised users or signal jammers can fake signal power to trick the AI agent's state observation. This can lead to a policy infiltration attack that makes the network performance drop significantly. Evaluation results show up to a 40% decline in user data rates, a 77.74% reduction in packet delivery rates, and significant disruptions in ultra-reliable and low-latency communications (uRLLC) services such as remote driving and connected automated vehicles. The policy infiltration attack causes a 20% increase in packet losses and up to 150% delay overall. The attack efficiency emphasizes the need for adversarial training in protecting AI-driven applications, which should be addressed in future O-RAN security specifications and AI-powered vehicular networks. |
---|---|
AbstractList | Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in smart vehicle-to-everything (V2X) networks and vehicle road cooperation systems. However, the openness and dependence of AI models on massive volumes of data render them subject to serious security vulnerabilities, such as adversarial attacks. This study investigates security issues in O-RAN's near real-time RAN intelligent controller (RIC), with an emphasis on deep reinforcement learning (DRL)-based resource allocation. We introduce a novel attack manipulating environmental observations to mislead AI agents, resulting in erroneous allocations and decreased physical resource block (PRB) transmission rates for various vehicular communications. We also discover flaws where compromised users or signal jammers can fake signal power to trick the AI agent's state observation. This can lead to a policy infiltration attack that makes the network performance drop significantly. Evaluation results show up to a 40% decline in user data rates, a 77.74% reduction in packet delivery rates, and significant disruptions in ultra-reliable and low-latency communications (uRLLC) services such as remote driving and connected automated vehicles. The policy infiltration attack causes a 20% increase in packet losses and up to 150% delay overall. The attack efficiency emphasizes the need for adversarial training in protecting AI-driven applications, which should be addressed in future O-RAN security specifications and AI-powered vehicular networks. |
Author | Shin, Hyundong Duong, Trung Q. Ergu, Yared Abera Yang, Hui-Kuo Hwang, Ren-Hung Lin, Ying-Dar Nguyen, Van-Linh Cho, Chuan-Yu |
Author_xml | – sequence: 1 givenname: Yared Abera orcidid: 0000-0002-1807-7909 surname: Ergu fullname: Ergu, Yared Abera email: yared111p@cs.ccu.edu.tw organization: Department of Computer science and Information Engineering, National Chung Cheng University (CCU), Minhsiung, Taiwan – sequence: 2 givenname: Van-Linh orcidid: 0000-0002-3472-0108 surname: Nguyen fullname: Nguyen, Van-Linh email: nvlinh@cs.ccu.edu.tw organization: Department of Computer science and Information Engineering, National Chung Cheng University (CCU), Minhsiung, Taiwan – sequence: 3 givenname: Ren-Hung orcidid: 0000-0001-7996-4184 surname: Hwang fullname: Hwang, Ren-Hung email: rhhwang@nycu.edu.tw organization: National Yang Ming Chiao Tung University (NYCU), Tainan, Taiwan – sequence: 4 givenname: Ying-Dar orcidid: 0000-0002-5226-4396 surname: Lin fullname: Lin, Ying-Dar email: ydlin@nycu.edu.tw organization: National Yang Ming Chiao Tung University (NYCU), Tainan, Taiwan – sequence: 5 givenname: Chuan-Yu surname: Cho fullname: Cho, Chuan-Yu email: ares@itri.org.tw organization: Industrial Technology Research Institute, Hsinchu, Taiwan – sequence: 6 givenname: Hui-Kuo surname: Yang fullname: Yang, Hui-Kuo email: hgyang@itri.org.tw organization: Industrial Technology Research Institute, Hsinchu, Taiwan – sequence: 7 givenname: Hyundong orcidid: 0000-0003-3364-8084 surname: Shin fullname: Shin, Hyundong email: hshin@khu.ac.kr organization: Kyung Hee University, Yongin-si, South Korea – sequence: 8 givenname: Trung Q. orcidid: 0000-0002-4703-4836 surname: Duong fullname: Duong, Trung Q. email: tduong@mun.ca organization: Memorial University, St. John's, NL, Canada |
BookMark | eNpNkEFLAzEQRoMoWKt3Dx4CnrdmssmmOa5atVAslFq8xWw2W1LXbE1SwX_vlvbgaRh43zfDu0CnvvMWoWsgIwAi75ar5YgSykY5KwoOcIIGIHOZyZzLUzQgBMaZ5Iyfo4sYN_3KmIQB-pg0jTPO-oTL-seGqIPTLS5T0uYz4nKtnY8JPy5m2b2OtsYLG7tdMBaXbdsZnVznsfN46pNtW7feF82zRfmKmy7gFX2_RGeNbqO9Os4henuaLB9estn8efpQzjJDGU9ZZWStRSVkXRDacAaUGVlJCtxwQXLGAIRhNdGCQyGloVARTSivjKmN4DQfottD7zZ03zsbk9r0f_r-pMqB8zGhgox7ihwoE7oYg23UNrgvHX4VELX3qHqPau9RHT32kZtDxFlr_-GFFEyI_A-Hfm6P |
CODEN | ITVTAB |
Cites_doi | 10.1109/MNET.001.1900662 10.1016/j.comnet.2022.109502 10.1512/iumj.1957.6.56038 10.1145/3460120.3484777 10.1109/GLOBECOM54140.2023.10437125 10.1007/s12559-022-10062-y 10.1109/MNET.011.2000088 10.1109/MCOM.101.2001120 10.1109/COMST.2023.3239220 10.1145/3643833.3656119 10.1109/WCNC49053.2021.9417271 10.1109/TVT.2023.3335211 10.1109/LWC.2022.3227676 10.1109/ICC51166.2024.10623131 10.1109/IOTM.001.2300032 10.1109/TVT.2021.3131534 10.1109/MCOM.003.2200879 10.1109/NFV-SDN59219.2023.10329620 10.1109/mnet.2024.3434419 10.1109/MAES.2022.3186966 10.1002/9781119723950.ch14 10.1109/COMST.2022.3205184 10.1109/MWC.001.2200213 10.1109/OJCOMS.2023.3337854 10.1109/LWC.2018.2867459 10.1109/TVT.2024.3399924 10.1109/TMC.2022.3188013 10.1109/JSAC.2023.3334610 10.1109/pimrc56721.2023.10293795 10.1109/ICC45855.2022.9838763 10.1109/MVT.2020.3002487 10.1109/TNSM.2022.3188930 10.1109/TCCN.2022.3147203 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2024.3466511 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 1686 |
ExternalDocumentID | 10_1109_TVT_2024_3466511 10697477 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council (NSTC) of Taiwan grantid: 111-2222-E-194-007-MY2; 112-2221-E-194-017-MY3 – fundername: Ministry of Education in Taiwan – fundername: Advanced Institute of Manufacturing with High-tech Innovations |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c245t-bc9da7b79d602f54124c9b9215c570344117c4d0a751699c21b0a025bccdc7523 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Tue Jul 22 16:41:26 EDT 2025 Tue Jul 01 01:44:31 EDT 2025 Wed Aug 27 01:55:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-bc9da7b79d602f54124c9b9215c570344117c4d0a751699c21b0a025bccdc7523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4703-4836 0000-0001-7996-4184 0000-0003-3364-8084 0000-0002-3472-0108 0000-0002-5226-4396 0000-0002-1807-7909 |
PQID | 3155802708 |
PQPubID | 85454 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3155802708 ieee_primary_10697477 crossref_primary_10_1109_TVT_2024_3466511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Jan. 2025-1-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref15 Sunay (ref8) 2020 ref36 ref31 ref30 ref11 ref33 ref10 Habler (ref17) 2023 ref32 ref2 ref1 ref39 ref16 ref38 ref19 ref18 (ref37) 2023 ref24 ref23 (ref14) 2023 ref26 ref25 ref20 Goodfellow (ref40) 2015 ref22 ref21 (ref34) 2023 ref28 ref27 ref29 ref7 ref9 ref4 Madry (ref41) 2019 ref3 ref6 ref5 Jason (ref13) 2023 |
References_xml | – ident: ref39 doi: 10.1109/MNET.001.1900662 – year: 2023 ident: ref13 article-title: Zero trust architecture for evolving radio access networks – ident: ref2 doi: 10.1016/j.comnet.2022.109502 – ident: ref29 doi: 10.1512/iumj.1957.6.56038 – ident: ref26 doi: 10.1145/3460120.3484777 – ident: ref16 doi: 10.1109/GLOBECOM54140.2023.10437125 – ident: ref21 doi: 10.1007/s12559-022-10062-y – ident: ref15 doi: 10.1109/MNET.011.2000088 – year: 2023 ident: ref17 article-title: Adversarial machine learning threat analysis and remediation in open radio access network – ident: ref1 doi: 10.1109/MCOM.101.2001120 – ident: ref6 doi: 10.1109/COMST.2023.3239220 – year: 2020 ident: ref8 article-title: SD-RAN: ONF’s software-defined RAN platform consistent with the O-RAN architecture – ident: ref35 doi: 10.1145/3643833.3656119 – ident: ref27 doi: 10.1109/WCNC49053.2021.9417271 – ident: ref10 doi: 10.1109/TVT.2023.3335211 – ident: ref24 doi: 10.1109/LWC.2022.3227676 – ident: ref28 doi: 10.1109/ICC51166.2024.10623131 – ident: ref7 doi: 10.1109/IOTM.001.2300032 – ident: ref22 doi: 10.1109/TVT.2021.3131534 – year: 2023 ident: ref34 article-title: Open ran security report – ident: ref11 doi: 10.1109/MCOM.003.2200879 – year: 2019 ident: ref41 article-title: Towards deep learning models resistant to adversarial attacks – ident: ref36 doi: 10.1109/NFV-SDN59219.2023.10329620 – ident: ref19 doi: 10.1109/mnet.2024.3434419 – ident: ref4 doi: 10.1109/MAES.2022.3186966 – ident: ref25 doi: 10.1002/9781119723950.ch14 – ident: ref18 doi: 10.1109/COMST.2022.3205184 – ident: ref5 doi: 10.1109/MWC.001.2200213 – ident: ref32 doi: 10.1109/OJCOMS.2023.3337854 – ident: ref20 doi: 10.1109/LWC.2018.2867459 – ident: ref30 doi: 10.1109/TVT.2024.3399924 – ident: ref33 doi: 10.1109/TMC.2022.3188013 – year: 2023 ident: ref37 article-title: Rr-2023-04 – year: 2023 ident: ref14 article-title: O-RAN security threat modeling and remediation analysis 4.0 – year: 2015 ident: ref40 article-title: Explaining and harnessing adversarial examples – ident: ref3 doi: 10.1109/JSAC.2023.3334610 – ident: ref9 doi: 10.1109/pimrc56721.2023.10293795 – ident: ref31 doi: 10.1109/ICC45855.2022.9838763 – ident: ref12 doi: 10.1109/MVT.2020.3002487 – ident: ref38 doi: 10.1109/TNSM.2022.3188930 – ident: ref23 doi: 10.1109/TCCN.2022.3147203 |
SSID | ssj0014491 |
Score | 2.4546273 |
Snippet | Artificial intelligence (AI) is projected to be a critical part of open radio access networks (O-RAN) to enable intelligence for connectivity management in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1674 |
SubjectTerms | Adversarial attacks Artificial intelligence deep reinforcement learning Glass box Infiltration Intelligent vehicles Jamming Machine learning Network latency Network security O-RAN Open RAN Perturbation methods policy infiltration attacks Real time Resource allocation Resource management Roads Security Vehicle-to-everything Wireless communication |
Title | Efficient Adversarial Attacks Against DRL-Based Resource Allocation in Intelligent O-RAN for V2X |
URI | https://ieeexplore.ieee.org/document/10697477 https://www.proquest.com/docview/3155802708 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YTnDgOcRgoBy4cEjpI22WY4FNA6EhTdu0W2nSDE2gDbHuwq_HTttpgJC49dBUUWzXn-34MyGXhns6iDRnWgrDuFKGSZGlzLhccW40Uo7hbYt-1Bvxh0k4KZvVbS-MMcZePjMOPtpafrbQK0yVgYVHCH9FjdQgciuatdYlA87L8XgeWDDggqom6crr4XgIkaDPnYBHUeh533yQHary609s3Ut3j_SrjRW3Sl6dVa4c_fmDs_HfO98nuyXQpHGhGQdky8wPyc4G_eARee5Y_ghYSe1c5mWK2kjjPMfGexq_pDMAj_Ru8MhuwNlltMr10_gNfSDKlM7m9H5N65nTJzaI-xSQMB37kwYZdTvD2x4rJy4w7fMwZ0rLLBVKyCxy_WmIk6m1VBJggUamLoBOntA8c1OB5TWpfU-5KaAmpXWmBcS0x6Q-X8zNCaHwHT9rCyNVYCDEmSrti0ghOxr2TQVek1xVMkjeC2KNxAYkrkxAXgnKKynl1SQNPNKN94rTbJJWJbWkNL1lEgBCakOw7bZP_1h2RrZ9nOJrEyktUs8_VuYcoEWuLqxKfQErZsjG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbAwuOThxPUYXipQioQK6hZix0UIVBBNF349d06CeAiJLYNtWT47993rO4B9K3wTxkZwo6TlQmvLlcwzbj2hhbCGKMco26IXd27FxSAaVMXqrhbGWuuSz2yLPl0sP38xE3KV4QuPCf7KaZhBxR_5ZbnWZ9BAiKpBno9vGAfUUUlPHfbv-mgLBqIVijiOfP-bFnJtVX79i52COVuEXr21Mq_kqTUpdMu8_2Bt_Pfel2ChgposKe_GMkzZ0QrMfyEgXIX7U8cggTOZ68w8zug-sqQoqPSeJQ_ZI8JHdnLT5Ueo7nJWe_tZ8kxakKTKHkfs_JPYs2DX_CbpMcTC7C4YrMHt2Wn_uMOrngvcBCIquDYqz6SWKo-9YBhRb2qjtEJgYIirC8GTL43IvUxSgE2ZwNdehrhJG5MbiVbtOjRGLyO7AQzXCfK2tEqHFo2coTaBjDXxo1HlVOg34aCWQfpaUmukziTxVIrySkleaSWvJqzRkX4ZV55mE7ZrqaXV4xunIWKkNprbXnvzj2l7MNvpX3XT7nnvcgvmAurp69wq29Ao3iZ2B4FGoXfd9foA1LHMDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Adversarial+Attacks+Against+DRL-Based+Resource+Allocation+in+Intelligent+O-RAN+for+V2X&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Ergu%2C+Yared+Abera&rft.au=Nguyen%2C+Van-Linh&rft.au=Hwang%2C+Ren-Hung&rft.au=Lin%2C+Ying-Dar&rft.date=2025-01-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=74&rft.issue=1&rft.spage=1674&rft.epage=1686&rft_id=info:doi/10.1109%2FTVT.2024.3466511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2024_3466511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |