Automated Thermography Cognitive Sensing-Feedback Inspection for Large Irregular Sample
As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the aircraft industry. Due to the complex structure of the large irregular composite materials, traditional manual inspection leads to uneven he...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the aircraft industry. Due to the complex structure of the large irregular composite materials, traditional manual inspection leads to uneven heat conduction, low defect detection rate, and lack of automation. Studying the physical properties of heat conduction found that surface thermal uniformity is particularly sensitive to defect positioning errors as well as resolution. This article proposes an adaptive defect detection method based on thermal perception guided Robot-sensing-feedback controlling within the heat flux density isobaric surface (HFDIS) projection. In particular, it is constructed by the physical projection of the OPT as embedded with the 3-D model of the sample. HFDIS can be simultaneously used to reconstruct the 3-D thermography of the irregular sample, introduce closed-loop constraints, globally optimize the heat flux density uniformity loss function, and control the detection pose of the robotic arm. Thus, it improves heat conduction uniformity and defect detection accuracy and efficiency. Both simulation and experimental verification were conducted on multiple types of heterogeneous and special-shaped samples provided by the aircraft company, and the effectiveness and scientific validity of the detection method were rigorously evaluated. |
---|---|
AbstractList | As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the aircraft industry. Due to the complex structure of the large irregular composite materials, traditional manual inspection leads to uneven heat conduction, low defect detection rate, and lack of automation. Studying the physical properties of heat conduction found that surface thermal uniformity is particularly sensitive to defect positioning errors as well as resolution. This article proposes an adaptive defect detection method based on thermal perception guided Robot-sensing-feedback controlling within the heat flux density isobaric surface (HFDIS) projection. In particular, it is constructed by the physical projection of the OPT as embedded with the 3-D model of the sample. HFDIS can be simultaneously used to reconstruct the 3-D thermography of the irregular sample, introduce closed-loop constraints, globally optimize the heat flux density uniformity loss function, and control the detection pose of the robotic arm. Thus, it improves heat conduction uniformity and defect detection accuracy and efficiency. Both simulation and experimental verification were conducted on multiple types of heterogeneous and special-shaped samples provided by the aircraft company, and the effectiveness and scientific validity of the detection method were rigorously evaluated. |
Author | Zeng, Yu Lok Woo, Wai Gao, Bin Kang, Yukuan Liu, Lei Li, Jiacheng |
Author_xml | – sequence: 1 givenname: Yukuan orcidid: 0009-0006-6465-9295 surname: Kang fullname: Kang, Yukuan organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Lei orcidid: 0009-0007-3382-0071 surname: Liu fullname: Liu, Lei organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Bin orcidid: 0000-0003-3377-6895 surname: Gao fullname: Gao, Bin email: bin_gao@uestc.edu.cn organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Jiacheng orcidid: 0009-0000-9258-3204 surname: Li fullname: Li, Jiacheng organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Yu orcidid: 0009-0004-5335-5873 surname: Zeng fullname: Zeng, Yu organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Wai orcidid: 0000-0002-8698-7605 surname: Lok Woo fullname: Lok Woo, Wai organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K |
BookMark | eNpNkMFLwzAUh4NMcE7vHjwEPHcmadI0xzGcFiYeNvEY0va161yTmrTC_ns7toOnx4Pf93uP7xZNrLOA0AMlc0qJet5m73NGGJ_HPKWCkys0pULISCUJm6ApITSNFBfJDboNYU8IkQmXU_S1GHrXmh5KvN2Bb13tTbc74qWrbdM3v4A3YENj62gFUOam-MaZDR0UfeMsrpzHa-NrwJn3UA8H4_HGtN0B7tB1ZQ4B7i9zhj5XL9vlW7T-eM2Wi3VUMC76yPCqiqmQqRCciUKolJmSCBkbY8rx_bQkVVqWtJCJGRdKQEka5yzPRQWCyXiGns69nXc_A4Re793g7XhSx5TxlKkTMEPknCq8C8FDpTvftMYfNSX6pE-P-vRJn77oG5HHM9IAwL-4ZEQoFv8BATNteg |
CODEN | IEIMAO |
Cites_doi | 10.1109/tim.2004.839750 10.1016/j.infrared.2004.03.012 10.1063/1.4974667 10.1109/SAS.2018.8336740 10.1109/ICRA.2013.6630890 10.1364/OE.26.008179 10.1109/tim.2022.3155745 10.1088/0957-0233/27/12/124006 10.1109/tie.2020.2984453 10.1088/0266-5611/32/12/125007 10.1016/j.jmva.2019.104568 10.1109/TIM.2022.3170969 10.3390/s18020609 10.1109/tim.2022.3175264 10.1109/tii.2018.2884738 10.1109/tii.2022.3217829 10.1109/tip.2020.2966075 10.1063/1.362662 10.1109/tie.2021.3120471 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3481540 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 10 |
ExternalDocumentID | 10_1109_TIM_2024_3481540 10720592 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72401107 funderid: 10.13039/501100001809 – fundername: National Postdoctoral Researcher Program grantid: GZC20240220 – fundername: Natural Science Foundation of Sichuan Province grantid: 2022NSFSC1995 funderid: 10.13039/501100018542 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c245t-a4ff3157855425c5982ad0573aaad5578d0f8dd1c76a78d10e9713b2bb5fe5273 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:02:41 EDT 2025 Tue Aug 05 12:05:40 EDT 2025 Wed Aug 27 01:39:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-a4ff3157855425c5982ad0573aaad5578d0f8dd1c76a78d10e9713b2bb5fe5273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-9258-3204 0000-0003-3377-6895 0009-0004-5335-5873 0009-0006-6465-9295 0000-0002-8698-7605 0009-0007-3382-0071 |
PQID | 3124829971 |
PQPubID | 85462 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3124829971 crossref_primary_10_1109_TIM_2024_3481540 ieee_primary_10720592 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1109/tim.2004.839750 – ident: ref7 doi: 10.1016/j.infrared.2004.03.012 – ident: ref10 doi: 10.1063/1.4974667 – ident: ref13 doi: 10.1109/SAS.2018.8336740 – ident: ref14 doi: 10.1109/ICRA.2013.6630890 – ident: ref18 doi: 10.1364/OE.26.008179 – ident: ref1 doi: 10.1109/tim.2022.3155745 – ident: ref17 doi: 10.1088/0957-0233/27/12/124006 – ident: ref11 doi: 10.1109/tie.2020.2984453 – ident: ref15 doi: 10.1088/0266-5611/32/12/125007 – ident: ref8 doi: 10.1016/j.jmva.2019.104568 – ident: ref16 doi: 10.1109/TIM.2022.3170969 – ident: ref5 doi: 10.3390/s18020609 – ident: ref4 doi: 10.1109/tim.2022.3175264 – ident: ref2 doi: 10.1109/tii.2018.2884738 – ident: ref12 doi: 10.1109/tii.2022.3217829 – ident: ref6 doi: 10.1109/tip.2020.2966075 – ident: ref9 doi: 10.1063/1.362662 – ident: ref19 doi: 10.1109/tie.2021.3120471 |
SSID | ssj0007647 |
Score | 2.410796 |
Snippet | As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | 3-D thermography Accuracy Aerial thermography Aircraft Aircraft detection Automation Closed loops Composite materials Conduction heating Conductive heat transfer Defect detection Defects Effectiveness Feedback Feedback control Flux density Heat flux heat flux density isobaric surface (HFDIS) Infrared imaging Inspection large irregular composite materials Nondestructive testing Optical properties optical pulsed thermography (OPT) Physical properties Robot arms Robot control Robot sensing systems Scientific validity sensing-feedback Sensors Three-dimensional displays |
Title | Automated Thermography Cognitive Sensing-Feedback Inspection for Large Irregular Sample |
URI | https://ieeexplore.ieee.org/document/10720592 https://www.proquest.com/docview/3124829971 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IOjBR61YrbIHLx4S805zlGJpxfbSFnsL-_RQTCRNLv56ZzaJFEXwloQkLDs7O9_MznxDyJ1wEy0T7VhofpFUO7ASJpXFdRgzcAdkwLFQeDaPJqvgeR2um2J1UwujlDLJZ8rGS3OWL3NRYagMNDz2AA7AjrsPnltdrPW97cZRUBNkuqDBAAvaM0kneVhOZ-AJeoGNVacmzrFjg0xTlV87sTEv4xMybwdWZ5Vs7Krktvj8wdn475GfkuMGaNLHemWckT2VdcnRDv1glxyY9E-xPSevj1WZA3ZVksK6Kd4bHms6apOL6AIT3bM3awzWjjOxodOsLtLMMwq4l75gRjmdFoXpbV_QBUPa4R5ZjZ-Wo4nVtFywhBeEpcUCrX0XCXBCUGaB7H5MImciY0yG8Fw6eiilK-KIwY3rqAS8XO5xHmqFXG4XpJPlmbokVAoXGxnHUnsyiLmTDLV0uO_6Qkex9MI-uW-FkH7UzBqp8UicJAWBpSiwtBFYn_RwTnfeq6ezTwat2NJG97apD5BlCFY2dq_--OyaHOLf60jKgHTKolI3gC1KfmvW1BdFxMq- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLYQCAEDjwKiPG9gYUjJpUnTjKiiaqHtQhFs0T0ZKlKUpgu_HvuSoAqExJZEiXI6n8-fffZngGvFE6sT63tkfolUO_QSoY0nbRQLdAd0KKlQeDzpDJ7Dh9fotSpWd7UwxhiXfGZadOnO8vVcLSlUhhoeBwgHcMfdQMMf8bJc63vjjTthSZHJUYcRGNSnkn5yOx2O0RcMwhbVnbpIx4oVcm1Vfu3FzsD092BSD63MK5m1loVsqc8frI3_Hvs-7FZQk92Va-MA1kzWgJ0VAsIGbLoEULU4hJe7ZTFH9Go0w5WTv1dM1qxXpxexJ0p1z968Pto7KdSMDbOyTHOeMUS-bEQ55WyY5667fc6eBBEPH8Fz_37aG3hV0wVPBWFUeCK0ts2JAidCdVbE7yc0sSYKIXSEz7Vvu1pzFXcE3nDfJOjnykDKyBpiczuG9WyemRNgWnFqZRxrG-gwln7StdqXbd5WthPrIGrCTS2E9KPk1kidT-InKQosJYGllcCacERzuvJeOZ1NOK_Fllbat0jbCFq6aGdjfvrHZ1ewNZiOR-loOHk8g236UxlXOYf1Il-aC0Qahbx06-sLBtPOBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Thermography+Cognitive+Sensing-Feedback+Inspection+for+Large+Irregular+Sample&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kang%2C+Yukuan&rft.au=Liu%2C+Lei&rft.au=Gao%2C+Bin&rft.au=Li%2C+Jiacheng&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3481540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3481540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |