Automated Thermography Cognitive Sensing-Feedback Inspection for Large Irregular Sample

As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the aircraft industry. Due to the complex structure of the large irregular composite materials, traditional manual inspection leads to uneven he...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 10
Main Authors Kang, Yukuan, Liu, Lei, Gao, Bin, Li, Jiacheng, Zeng, Yu, Lok Woo, Wai
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the aircraft industry. Due to the complex structure of the large irregular composite materials, traditional manual inspection leads to uneven heat conduction, low defect detection rate, and lack of automation. Studying the physical properties of heat conduction found that surface thermal uniformity is particularly sensitive to defect positioning errors as well as resolution. This article proposes an adaptive defect detection method based on thermal perception guided Robot-sensing-feedback controlling within the heat flux density isobaric surface (HFDIS) projection. In particular, it is constructed by the physical projection of the OPT as embedded with the 3-D model of the sample. HFDIS can be simultaneously used to reconstruct the 3-D thermography of the irregular sample, introduce closed-loop constraints, globally optimize the heat flux density uniformity loss function, and control the detection pose of the robotic arm. Thus, it improves heat conduction uniformity and defect detection accuracy and efficiency. Both simulation and experimental verification were conducted on multiple types of heterogeneous and special-shaped samples provided by the aircraft company, and the effectiveness and scientific validity of the detection method were rigorously evaluated.
AbstractList As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the aircraft industry. Due to the complex structure of the large irregular composite materials, traditional manual inspection leads to uneven heat conduction, low defect detection rate, and lack of automation. Studying the physical properties of heat conduction found that surface thermal uniformity is particularly sensitive to defect positioning errors as well as resolution. This article proposes an adaptive defect detection method based on thermal perception guided Robot-sensing-feedback controlling within the heat flux density isobaric surface (HFDIS) projection. In particular, it is constructed by the physical projection of the OPT as embedded with the 3-D model of the sample. HFDIS can be simultaneously used to reconstruct the 3-D thermography of the irregular sample, introduce closed-loop constraints, globally optimize the heat flux density uniformity loss function, and control the detection pose of the robotic arm. Thus, it improves heat conduction uniformity and defect detection accuracy and efficiency. Both simulation and experimental verification were conducted on multiple types of heterogeneous and special-shaped samples provided by the aircraft company, and the effectiveness and scientific validity of the detection method were rigorously evaluated.
Author Zeng, Yu
Lok Woo, Wai
Gao, Bin
Kang, Yukuan
Liu, Lei
Li, Jiacheng
Author_xml – sequence: 1
  givenname: Yukuan
  orcidid: 0009-0006-6465-9295
  surname: Kang
  fullname: Kang, Yukuan
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Lei
  orcidid: 0009-0007-3382-0071
  surname: Liu
  fullname: Liu, Lei
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0003-3377-6895
  surname: Gao
  fullname: Gao, Bin
  email: bin_gao@uestc.edu.cn
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Jiacheng
  orcidid: 0009-0000-9258-3204
  surname: Li
  fullname: Li, Jiacheng
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Yu
  orcidid: 0009-0004-5335-5873
  surname: Zeng
  fullname: Zeng, Yu
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Wai
  orcidid: 0000-0002-8698-7605
  surname: Lok Woo
  fullname: Lok Woo, Wai
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
BookMark eNpNkMFLwzAUh4NMcE7vHjwEPHcmadI0xzGcFiYeNvEY0va161yTmrTC_ns7toOnx4Pf93uP7xZNrLOA0AMlc0qJet5m73NGGJ_HPKWCkys0pULISCUJm6ApITSNFBfJDboNYU8IkQmXU_S1GHrXmh5KvN2Bb13tTbc74qWrbdM3v4A3YENj62gFUOam-MaZDR0UfeMsrpzHa-NrwJn3UA8H4_HGtN0B7tB1ZQ4B7i9zhj5XL9vlW7T-eM2Wi3VUMC76yPCqiqmQqRCciUKolJmSCBkbY8rx_bQkVVqWtJCJGRdKQEka5yzPRQWCyXiGns69nXc_A4Re793g7XhSx5TxlKkTMEPknCq8C8FDpTvftMYfNSX6pE-P-vRJn77oG5HHM9IAwL-4ZEQoFv8BATNteg
CODEN IEIMAO
Cites_doi 10.1109/tim.2004.839750
10.1016/j.infrared.2004.03.012
10.1063/1.4974667
10.1109/SAS.2018.8336740
10.1109/ICRA.2013.6630890
10.1364/OE.26.008179
10.1109/tim.2022.3155745
10.1088/0957-0233/27/12/124006
10.1109/tie.2020.2984453
10.1088/0266-5611/32/12/125007
10.1016/j.jmva.2019.104568
10.1109/TIM.2022.3170969
10.3390/s18020609
10.1109/tim.2022.3175264
10.1109/tii.2018.2884738
10.1109/tii.2022.3217829
10.1109/tip.2020.2966075
10.1063/1.362662
10.1109/tie.2021.3120471
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3481540
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2024_3481540
10720592
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72401107
  funderid: 10.13039/501100001809
– fundername: National Postdoctoral Researcher Program
  grantid: GZC20240220
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2022NSFSC1995
  funderid: 10.13039/501100018542
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-a4ff3157855425c5982ad0573aaad5578d0f8dd1c76a78d10e9713b2bb5fe5273
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:02:41 EDT 2025
Tue Aug 05 12:05:40 EDT 2025
Wed Aug 27 01:39:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-a4ff3157855425c5982ad0573aaad5578d0f8dd1c76a78d10e9713b2bb5fe5273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-9258-3204
0000-0003-3377-6895
0009-0004-5335-5873
0009-0006-6465-9295
0000-0002-8698-7605
0009-0007-3382-0071
PQID 3124829971
PQPubID 85462
PageCount 10
ParticipantIDs proquest_journals_3124829971
crossref_primary_10_1109_TIM_2024_3481540
ieee_primary_10720592
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/tim.2004.839750
– ident: ref7
  doi: 10.1016/j.infrared.2004.03.012
– ident: ref10
  doi: 10.1063/1.4974667
– ident: ref13
  doi: 10.1109/SAS.2018.8336740
– ident: ref14
  doi: 10.1109/ICRA.2013.6630890
– ident: ref18
  doi: 10.1364/OE.26.008179
– ident: ref1
  doi: 10.1109/tim.2022.3155745
– ident: ref17
  doi: 10.1088/0957-0233/27/12/124006
– ident: ref11
  doi: 10.1109/tie.2020.2984453
– ident: ref15
  doi: 10.1088/0266-5611/32/12/125007
– ident: ref8
  doi: 10.1016/j.jmva.2019.104568
– ident: ref16
  doi: 10.1109/TIM.2022.3170969
– ident: ref5
  doi: 10.3390/s18020609
– ident: ref4
  doi: 10.1109/tim.2022.3175264
– ident: ref2
  doi: 10.1109/tii.2018.2884738
– ident: ref12
  doi: 10.1109/tii.2022.3217829
– ident: ref6
  doi: 10.1109/tip.2020.2966075
– ident: ref9
  doi: 10.1063/1.362662
– ident: ref19
  doi: 10.1109/tie.2021.3120471
SSID ssj0007647
Score 2.410796
Snippet As an effective method for detecting inner defects in composite materials, optical pulsed thermography (OPT) nondestructive testing (NDT) is widely used in the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms 3-D thermography
Accuracy
Aerial thermography
Aircraft
Aircraft detection
Automation
Closed loops
Composite materials
Conduction heating
Conductive heat transfer
Defect detection
Defects
Effectiveness
Feedback
Feedback control
Flux density
Heat flux
heat flux density isobaric surface (HFDIS)
Infrared imaging
Inspection
large irregular composite materials
Nondestructive testing
Optical properties
optical pulsed thermography (OPT)
Physical properties
Robot arms
Robot control
Robot sensing systems
Scientific validity
sensing-feedback
Sensors
Three-dimensional displays
Title Automated Thermography Cognitive Sensing-Feedback Inspection for Large Irregular Sample
URI https://ieeexplore.ieee.org/document/10720592
https://www.proquest.com/docview/3124829971
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IOjBR61YrbIHLx4S805zlGJpxfbSFnsL-_RQTCRNLv56ZzaJFEXwloQkLDs7O9_MznxDyJ1wEy0T7VhofpFUO7ASJpXFdRgzcAdkwLFQeDaPJqvgeR2um2J1UwujlDLJZ8rGS3OWL3NRYagMNDz2AA7AjrsPnltdrPW97cZRUBNkuqDBAAvaM0kneVhOZ-AJeoGNVacmzrFjg0xTlV87sTEv4xMybwdWZ5Vs7Krktvj8wdn475GfkuMGaNLHemWckT2VdcnRDv1glxyY9E-xPSevj1WZA3ZVksK6Kd4bHms6apOL6AIT3bM3awzWjjOxodOsLtLMMwq4l75gRjmdFoXpbV_QBUPa4R5ZjZ-Wo4nVtFywhBeEpcUCrX0XCXBCUGaB7H5MImciY0yG8Fw6eiilK-KIwY3rqAS8XO5xHmqFXG4XpJPlmbokVAoXGxnHUnsyiLmTDLV0uO_6Qkex9MI-uW-FkH7UzBqp8UicJAWBpSiwtBFYn_RwTnfeq6ezTwat2NJG97apD5BlCFY2dq_--OyaHOLf60jKgHTKolI3gC1KfmvW1BdFxMq-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLYQCAEDjwKiPG9gYUjJpUnTjKiiaqHtQhFs0T0ZKlKUpgu_HvuSoAqExJZEiXI6n8-fffZngGvFE6sT63tkfolUO_QSoY0nbRQLdAd0KKlQeDzpDJ7Dh9fotSpWd7UwxhiXfGZadOnO8vVcLSlUhhoeBwgHcMfdQMMf8bJc63vjjTthSZHJUYcRGNSnkn5yOx2O0RcMwhbVnbpIx4oVcm1Vfu3FzsD092BSD63MK5m1loVsqc8frI3_Hvs-7FZQk92Va-MA1kzWgJ0VAsIGbLoEULU4hJe7ZTFH9Go0w5WTv1dM1qxXpxexJ0p1z968Pto7KdSMDbOyTHOeMUS-bEQ55WyY5667fc6eBBEPH8Fz_37aG3hV0wVPBWFUeCK0ts2JAidCdVbE7yc0sSYKIXSEz7Vvu1pzFXcE3nDfJOjnykDKyBpiczuG9WyemRNgWnFqZRxrG-gwln7StdqXbd5WthPrIGrCTS2E9KPk1kidT-InKQosJYGllcCacERzuvJeOZ1NOK_Fllbat0jbCFq6aGdjfvrHZ1ewNZiOR-loOHk8g236UxlXOYf1Il-aC0Qahbx06-sLBtPOBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Thermography+Cognitive+Sensing-Feedback+Inspection+for+Large+Irregular+Sample&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kang%2C+Yukuan&rft.au=Liu%2C+Lei&rft.au=Gao%2C+Bin&rft.au=Li%2C+Jiacheng&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3481540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3481540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon