Low-Complexity Joint Antenna Selection and Robust Multi-Group Multicast Beamforming for Massive MIMO

We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO) systems. Relying on the estimated channel covariance and assuming a limited number of antennas for transmission at the base station, we aim to m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 72; pp. 792 - 808
Main Authors Mohamadi, Niloofar, Dong, Min, ShahbazPanahi, Shahram
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO) systems. Relying on the estimated channel covariance and assuming a limited number of antennas for transmission at the base station, we aim to minimize the transmit power subject to the worst-case signal-to-interference-plus-noise-ratio (SINR) guarantee and per selected antenna power budget. Converting the worst-case SINR constraints to a set of non-convex constraints, we propose a two-phase approach to solve the problem efficiently: the antenna selection phase, followed by the robust multicast beamforming generation phase. We propose an SINR-based approach for antenna selection, where the challenging mixed-integer problem is converted into an approximate joint optimization problem via a sequence of transformation, relaxation, and SINR approximation. We develop a fast two-layered alternating direction method of multipliers (ADMM)-based algorithm to compute an approximate solution. In particular, with our ADMM construction, we obtain semi-closed-form solutions for antenna selection and beamforming subproblems at each ADMM iteration for fast updates. To further reduce the computational complexity, we propose a signal-to-leakage-ratio (SLR)-based approach using the SLR constraints in the joint optimization problem. This allows us to develop a two-layered ADMM-based algorithm, which can compute a solution more efficiently due to the SLR structure. The robust multicast beamforming solution for the selected antennas is computed using the fast algorithm we developed recently. Simulation results show the effectiveness of our two proposed approximated approaches for antenna selection and the overall two-phase approach in both overall performance and substantially low computational complexity in a massive MIMO setting.
AbstractList We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO) systems. Relying on the estimated channel covariance and assuming a limited number of antennas for transmission at the base station, we aim to minimize the transmit power subject to the worst-case signal-to-interference-plus-noise-ratio (SINR) guarantee and per selected antenna power budget. Converting the worst-case SINR constraints to a set of non-convex constraints, we propose a two-phase approach to solve the problem efficiently: the antenna selection phase, followed by the robust multicast beamforming generation phase. We propose an SINR-based approach for antenna selection, where the challenging mixed-integer problem is converted into an approximate joint optimization problem via a sequence of transformation, relaxation, and SINR approximation. We develop a fast two-layered alternating direction method of multipliers (ADMM)-based algorithm to compute an approximate solution. In particular, with our ADMM construction, we obtain semi-closed-form solutions for antenna selection and beamforming subproblems at each ADMM iteration for fast updates. To further reduce the computational complexity, we propose a signal-to-leakage-ratio (SLR)-based approach using the SLR constraints in the joint optimization problem. This allows us to develop a two-layered ADMM-based algorithm, which can compute a solution more efficiently due to the SLR structure. The robust multicast beamforming solution for the selected antennas is computed using the fast algorithm we developed recently. Simulation results show the effectiveness of our two proposed approximated approaches for antenna selection and the overall two-phase approach in both overall performance and substantially low computational complexity in a massive MIMO setting.
Author Mohamadi, Niloofar
ShahbazPanahi, Shahram
Dong, Min
Author_xml – sequence: 1
  givenname: Niloofar
  surname: Mohamadi
  fullname: Mohamadi, Niloofar
  email: niloofar.mohamadi@ontariotechu.net
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
– sequence: 2
  givenname: Min
  orcidid: 0000-0002-7223-8865
  surname: Dong
  fullname: Dong, Min
  email: min.dong@ontariotechu.ca
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
– sequence: 3
  givenname: Shahram
  orcidid: 0000-0001-8914-5481
  surname: ShahbazPanahi
  fullname: ShahbazPanahi, Shahram
  email: shahram.shahbazpanahi@ontariotechu.ca
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
BookMark eNpNkM1Lw0AUxBdRsK3ePXhY8Jy6X0l2j7VorTRUbAVvYZO8SEqyG7Mbtf-9Ke3B0wyPmXnwG6NzYw0gdEPJlFKi7reb1ykjTEw5D6mI5RkaUSVoQEQcnQ-ehDwIZfxxicbO7QihQqhohIqV_Qnmtmlr-K38Hr_Yyng8Mx6M0XgDNeS-sgZrU-A3m_XO46SvfRUsOtu3R5_r4foAuilt11TmEw-KE-1c9Q04WSbrK3RR6trB9Ukn6P3pcTt_DlbrxXI-WwU5E6EPNIdQyZzmWmpVxpyqOIp0UWQZUE0yrgWLoBBxnikmoSxAZKUkEoRWtMxYxCfo7rjbdvarB-fTne07M7xMmWKc8igUYkiRYyrvrHMdlGnbVY3u9ikl6YFlOrBMDyzTE8uhcnusVADwL86VDFXM_wAPh3M2
CODEN ITPRED
Cites_doi 10.1109/TSP.2006.872578
10.1109/TSP.2014.2367458
10.1109/ICCChina.2012.6356961
10.1109/TSP.2014.2345340
10.1109/LSP.2016.2569600
10.1109/TSP.2022.3218184
10.1109/TSP.2011.2169061
10.1109/LSP.2018.2882692
10.1109/SPAWC.2018.8446030
10.1109/LWC.2022.3165194
10.1109/TWC.2017.2672751
10.1109/LSP.2018.2827323
10.1109/LWC.2018.2872710
10.1109/TWC.2016.2594074
10.1109/CAMSAP.2013.6714115
10.1017/CBO9780511804441
10.1109/ICASSP.2012.6288603
10.1109/TWC.2018.2821667
10.1109/TCOMM.2017.2786664
10.1109/TCOMM.2017.2679708
10.1109/TSP.2023.3265885
10.1109/TSP.2018.2864636
10.1109/GLOCOMW.2015.7413982
10.1007/s10589-021-00338-8
10.1007/s10915-018-0757-z
10.1109/ICASSP.2018.8462123
10.1109/TSP.2013.2252167
10.1109/MSP.2014.2312183
10.1561/2200000016
10.1109/TWC.2012.101112.112295
10.1109/TSP.2020.2994753
10.1109/TWC.2017.2657513
10.1109/TSP.2016.2593681
10.1109/TSP.2020.2979545
10.1109/TIT.2013.2269476
10.1109/TSP.2007.909010
10.1109/SPAWC.2015.7227042
10.1007/BF01581204
10.1109/TSP.2022.3160004
10.1109/JSAC.2013.130214
10.1109/LCOMM.2019.2917431
10.1007/s10107-002-0346-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2024.3351478
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 808
ExternalDocumentID 10_1109_TSP_2024_3351478
10398597
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: Discovery Grants
  funderid: 10.13039/501100000038
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-a3e598c1ca8a9f7319766addbbe1a0b3a426ed47cb928efde4bf808e4a91fb263
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:23:58 EDT 2025
Tue Jul 01 02:53:28 EDT 2025
Wed Aug 27 02:17:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-a3e598c1ca8a9f7319766addbbe1a0b3a426ed47cb928efde4bf808e4a91fb263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8914-5481
0000-0002-7223-8865
PQID 2923136544
PQPubID 85478
PageCount 17
ParticipantIDs ieee_primary_10398597
crossref_primary_10_1109_TSP_2024_3351478
proquest_journals_2923136544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
d’Aspremont (ref29) 2003; 1
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
Bengtsson (ref33) 2001
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref1
  doi: 10.1109/TSP.2006.872578
– ident: ref43
  doi: 10.1109/TSP.2014.2367458
– ident: ref35
  doi: 10.1109/ICCChina.2012.6356961
– ident: ref3
  doi: 10.1109/TSP.2014.2345340
– ident: ref20
  doi: 10.1109/LSP.2016.2569600
– ident: ref12
  doi: 10.1109/TSP.2022.3218184
– ident: ref19
  doi: 10.1109/TSP.2011.2169061
– ident: ref32
  doi: 10.1109/LSP.2018.2882692
– ident: ref10
  doi: 10.1109/SPAWC.2018.8446030
– ident: ref13
  doi: 10.1109/LWC.2022.3165194
– ident: ref8
  doi: 10.1109/TWC.2017.2672751
– ident: ref25
  doi: 10.1109/LSP.2018.2827323
– ident: ref30
  doi: 10.1109/LWC.2018.2872710
– ident: ref17
  doi: 10.1109/TWC.2016.2594074
– ident: ref5
  doi: 10.1109/CAMSAP.2013.6714115
– volume: 1
  start-page: 1
  year: 2003
  ident: ref29
  article-title: Relaxations and randomized methods for nonconvex QCQPs
– ident: ref41
  doi: 10.1017/CBO9780511804441
– ident: ref34
  doi: 10.1109/ICASSP.2012.6288603
– ident: ref28
  doi: 10.1109/TWC.2018.2821667
– ident: ref31
  doi: 10.1109/TCOMM.2017.2786664
– ident: ref7
  doi: 10.1109/TCOMM.2017.2679708
– ident: ref14
  doi: 10.1109/TSP.2023.3265885
– ident: ref16
  doi: 10.1109/TSP.2018.2864636
– ident: ref26
  doi: 10.1109/GLOCOMW.2015.7413982
– ident: ref44
  doi: 10.1007/s10589-021-00338-8
– ident: ref38
  doi: 10.1007/s10915-018-0757-z
– ident: ref9
  doi: 10.1109/ICASSP.2018.8462123
– ident: ref15
  doi: 10.1109/TSP.2013.2252167
– ident: ref40
  doi: 10.1109/MSP.2014.2312183
– ident: ref37
  doi: 10.1561/2200000016
– start-page: 18-1
  volume-title: Handbook of Antennas in Wireless Communications
  year: 2001
  ident: ref33
  article-title: Optimal and suboptimal transmit beamforming
– ident: ref4
  doi: 10.1109/TWC.2012.101112.112295
– ident: ref11
  doi: 10.1109/TSP.2020.2994753
– ident: ref27
  doi: 10.1109/TWC.2017.2657513
– ident: ref36
  doi: 10.1109/TSP.2016.2593681
– ident: ref18
  doi: 10.1109/TSP.2020.2979545
– ident: ref24
  doi: 10.1109/TIT.2013.2269476
– ident: ref2
  doi: 10.1109/TSP.2007.909010
– ident: ref6
  doi: 10.1109/SPAWC.2015.7227042
– ident: ref42
  doi: 10.1007/BF01581204
– ident: ref22
  doi: 10.1109/TSP.2022.3160004
– ident: ref23
  doi: 10.1109/JSAC.2013.130214
– ident: ref21
  doi: 10.1109/LCOMM.2019.2917431
– ident: ref39
  doi: 10.1007/s10107-002-0346-6
SSID ssj0014496
Score 2.4416962
Snippet We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 792
SubjectTerms ADMM
Algorithms
Antenna design
Antenna selection
Antennas
Approximation
Array signal processing
Beamforming
Codes
Complexity
Interference
Iterative methods
large-scale systems
low complexity
Massive MIMO
MIMO communication
Mixed integer
Multicast algorithms
Multicasting
Optimization
robust multicast beamforming
Robustness (mathematics)
Signal to noise ratio
Transmitting antennas
Title Low-Complexity Joint Antenna Selection and Robust Multi-Group Multicast Beamforming for Massive MIMO
URI https://ieeexplore.ieee.org/document/10398597
https://www.proquest.com/docview/2923136544
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qSQ-uI44bOXjxkE7bpEuOoyg6OCouMLeSpK8gYitOi-iv9yXtyKAInhpKEkJe8vK9nZAjUxQ84dywPAbDhFCGqTiVLIoFcKnCPACr7xhfxxePYjSJJl2wuouFAQDnfAaebTpbfl6ZxqrKBtZsmSICXiSLKLm1wVrfJgMhXDEuxAucRWkymdkkfTl4uL9FSTAUHrd-67ai2twb5Iqq_OLE7nk5XyPXs4W1XiXPXlNrz3z-yNn475Wvk9UOaNJhezI2yAKUm2RlLv3gFsmvqndmGYJNill_0FH1VNZ0aJ3aS0XvXYUcJBtVZU7vKt1Ma-ridZlTWLVto_DvCagXC35xVopfOkZEjlyUji_HNz3yeH72cHrBuqoLzIQiqpniEMnUBEalShYJXtEkjpELag2B8jVX-KZDLhKjZZhCkYPQReqnIJQMCh3GfJsslVUJO4RKiZ2kLqQCLXylVZQg3hJWRvStwadPjmd0yF7b5BqZE0p8mSHNMkuzrKNZn_Tsts71a3e0T_ZnlMu66zfNQgtbeRwJsfvHsD2ybGdvlSn7ZKl-a-AA4UWtD92x-gKLks2O
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7DA4wMZAlHWbD7vs4JLEzoePbKIqrOkQFKm3yHZeJDQtQZAKwV_Ps5NO1dCknWJFdmL52e_9_D4BvtiqEqkQlpcJWi6ltlwnmeJxIlEoHZUhOn1HPksm1_J8ES_6YHUfC4OI3vkMR67pbfllY5dOVXbszJYZIeANeE2CPw67cK0_RgMpfTkuQgyCx1m6WFklA3U8v7qgu2AkR8J5rruaamtSyJdVecGLvYAZ78JsNbXOr-TXaNmakX36K2vjf8_9Lez0UJOddHvjHbzCeg-21xIQvody2jxwxxJcWsz2kZ03N3XLTpxbe63Zla-RQ4Rjui7ZZWOW9y3zEbvcq6y6ttX09hvq3w7-0lcZPVlOmJz4KMvP8p_7cD0-nX-f8L7uAreRjFuuBcYqs6HVmVZVSoc0TRLig8ZgqAMjNEl1LGVqjYoyrEqUpsqCDKVWYWWiRBzAZt3UeAhMKeqkTKU0Ghloo-OUEJd0t8TAmXwG8HVFh-K2S69R-GtJoAqiWeFoVvQ0G8C-W9a1ft2KDmC4olzRH8D7InLAVSSxlEf_GPYZ3kzm-bSYns1-fIAt96dOtTKEzfZuiR8JbLTmk99iz2_-0Nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Complexity+Joint+Antenna+Selection+and+Robust+Multi-Group+Multicast+Beamforming+for+Massive+MIMO&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Mohamadi%2C+Niloofar&rft.au=Dong%2C+Min&rft.au=ShahbazPanahi%2C+Shahram&rft.date=2024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=72&rft.spage=792&rft.epage=808&rft_id=info:doi/10.1109%2FTSP.2024.3351478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3351478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon