Low-Complexity Joint Antenna Selection and Robust Multi-Group Multicast Beamforming for Massive MIMO
We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO) systems. Relying on the estimated channel covariance and assuming a limited number of antennas for transmission at the base station, we aim to m...
Saved in:
Published in | IEEE transactions on signal processing Vol. 72; pp. 792 - 808 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO) systems. Relying on the estimated channel covariance and assuming a limited number of antennas for transmission at the base station, we aim to minimize the transmit power subject to the worst-case signal-to-interference-plus-noise-ratio (SINR) guarantee and per selected antenna power budget. Converting the worst-case SINR constraints to a set of non-convex constraints, we propose a two-phase approach to solve the problem efficiently: the antenna selection phase, followed by the robust multicast beamforming generation phase. We propose an SINR-based approach for antenna selection, where the challenging mixed-integer problem is converted into an approximate joint optimization problem via a sequence of transformation, relaxation, and SINR approximation. We develop a fast two-layered alternating direction method of multipliers (ADMM)-based algorithm to compute an approximate solution. In particular, with our ADMM construction, we obtain semi-closed-form solutions for antenna selection and beamforming subproblems at each ADMM iteration for fast updates. To further reduce the computational complexity, we propose a signal-to-leakage-ratio (SLR)-based approach using the SLR constraints in the joint optimization problem. This allows us to develop a two-layered ADMM-based algorithm, which can compute a solution more efficiently due to the SLR structure. The robust multicast beamforming solution for the selected antennas is computed using the fast algorithm we developed recently. Simulation results show the effectiveness of our two proposed approximated approaches for antenna selection and the overall two-phase approach in both overall performance and substantially low computational complexity in a massive MIMO setting. |
---|---|
AbstractList | We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO) systems. Relying on the estimated channel covariance and assuming a limited number of antennas for transmission at the base station, we aim to minimize the transmit power subject to the worst-case signal-to-interference-plus-noise-ratio (SINR) guarantee and per selected antenna power budget. Converting the worst-case SINR constraints to a set of non-convex constraints, we propose a two-phase approach to solve the problem efficiently: the antenna selection phase, followed by the robust multicast beamforming generation phase. We propose an SINR-based approach for antenna selection, where the challenging mixed-integer problem is converted into an approximate joint optimization problem via a sequence of transformation, relaxation, and SINR approximation. We develop a fast two-layered alternating direction method of multipliers (ADMM)-based algorithm to compute an approximate solution. In particular, with our ADMM construction, we obtain semi-closed-form solutions for antenna selection and beamforming subproblems at each ADMM iteration for fast updates. To further reduce the computational complexity, we propose a signal-to-leakage-ratio (SLR)-based approach using the SLR constraints in the joint optimization problem. This allows us to develop a two-layered ADMM-based algorithm, which can compute a solution more efficiently due to the SLR structure. The robust multicast beamforming solution for the selected antennas is computed using the fast algorithm we developed recently. Simulation results show the effectiveness of our two proposed approximated approaches for antenna selection and the overall two-phase approach in both overall performance and substantially low computational complexity in a massive MIMO setting. |
Author | Mohamadi, Niloofar ShahbazPanahi, Shahram Dong, Min |
Author_xml | – sequence: 1 givenname: Niloofar surname: Mohamadi fullname: Mohamadi, Niloofar email: niloofar.mohamadi@ontariotechu.net organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada – sequence: 2 givenname: Min orcidid: 0000-0002-7223-8865 surname: Dong fullname: Dong, Min email: min.dong@ontariotechu.ca organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada – sequence: 3 givenname: Shahram orcidid: 0000-0001-8914-5481 surname: ShahbazPanahi fullname: ShahbazPanahi, Shahram email: shahram.shahbazpanahi@ontariotechu.ca organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada |
BookMark | eNpNkM1Lw0AUxBdRsK3ePXhY8Jy6X0l2j7VorTRUbAVvYZO8SEqyG7Mbtf-9Ke3B0wyPmXnwG6NzYw0gdEPJlFKi7reb1ykjTEw5D6mI5RkaUSVoQEQcnQ-ehDwIZfxxicbO7QihQqhohIqV_Qnmtmlr-K38Hr_Yyng8Mx6M0XgDNeS-sgZrU-A3m_XO46SvfRUsOtu3R5_r4foAuilt11TmEw-KE-1c9Q04WSbrK3RR6trB9Ukn6P3pcTt_DlbrxXI-WwU5E6EPNIdQyZzmWmpVxpyqOIp0UWQZUE0yrgWLoBBxnikmoSxAZKUkEoRWtMxYxCfo7rjbdvarB-fTne07M7xMmWKc8igUYkiRYyrvrHMdlGnbVY3u9ikl6YFlOrBMDyzTE8uhcnusVADwL86VDFXM_wAPh3M2 |
CODEN | ITPRED |
Cites_doi | 10.1109/TSP.2006.872578 10.1109/TSP.2014.2367458 10.1109/ICCChina.2012.6356961 10.1109/TSP.2014.2345340 10.1109/LSP.2016.2569600 10.1109/TSP.2022.3218184 10.1109/TSP.2011.2169061 10.1109/LSP.2018.2882692 10.1109/SPAWC.2018.8446030 10.1109/LWC.2022.3165194 10.1109/TWC.2017.2672751 10.1109/LSP.2018.2827323 10.1109/LWC.2018.2872710 10.1109/TWC.2016.2594074 10.1109/CAMSAP.2013.6714115 10.1017/CBO9780511804441 10.1109/ICASSP.2012.6288603 10.1109/TWC.2018.2821667 10.1109/TCOMM.2017.2786664 10.1109/TCOMM.2017.2679708 10.1109/TSP.2023.3265885 10.1109/TSP.2018.2864636 10.1109/GLOCOMW.2015.7413982 10.1007/s10589-021-00338-8 10.1007/s10915-018-0757-z 10.1109/ICASSP.2018.8462123 10.1109/TSP.2013.2252167 10.1109/MSP.2014.2312183 10.1561/2200000016 10.1109/TWC.2012.101112.112295 10.1109/TSP.2020.2994753 10.1109/TWC.2017.2657513 10.1109/TSP.2016.2593681 10.1109/TSP.2020.2979545 10.1109/TIT.2013.2269476 10.1109/TSP.2007.909010 10.1109/SPAWC.2015.7227042 10.1007/BF01581204 10.1109/TSP.2022.3160004 10.1109/JSAC.2013.130214 10.1109/LCOMM.2019.2917431 10.1007/s10107-002-0346-6 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TSP.2024.3351478 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 808 |
ExternalDocumentID | 10_1109_TSP_2024_3351478 10398597 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: Discovery Grants funderid: 10.13039/501100000038 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c245t-a3e598c1ca8a9f7319766addbbe1a0b3a426ed47cb928efde4bf808e4a91fb263 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Mon Jun 30 10:23:58 EDT 2025 Tue Jul 01 02:53:28 EDT 2025 Wed Aug 27 02:17:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-a3e598c1ca8a9f7319766addbbe1a0b3a426ed47cb928efde4bf808e4a91fb263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8914-5481 0000-0002-7223-8865 |
PQID | 2923136544 |
PQPubID | 85478 |
PageCount | 17 |
ParticipantIDs | ieee_primary_10398597 crossref_primary_10_1109_TSP_2024_3351478 proquest_journals_2923136544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 d’Aspremont (ref29) 2003; 1 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 Bengtsson (ref33) 2001 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref1 doi: 10.1109/TSP.2006.872578 – ident: ref43 doi: 10.1109/TSP.2014.2367458 – ident: ref35 doi: 10.1109/ICCChina.2012.6356961 – ident: ref3 doi: 10.1109/TSP.2014.2345340 – ident: ref20 doi: 10.1109/LSP.2016.2569600 – ident: ref12 doi: 10.1109/TSP.2022.3218184 – ident: ref19 doi: 10.1109/TSP.2011.2169061 – ident: ref32 doi: 10.1109/LSP.2018.2882692 – ident: ref10 doi: 10.1109/SPAWC.2018.8446030 – ident: ref13 doi: 10.1109/LWC.2022.3165194 – ident: ref8 doi: 10.1109/TWC.2017.2672751 – ident: ref25 doi: 10.1109/LSP.2018.2827323 – ident: ref30 doi: 10.1109/LWC.2018.2872710 – ident: ref17 doi: 10.1109/TWC.2016.2594074 – ident: ref5 doi: 10.1109/CAMSAP.2013.6714115 – volume: 1 start-page: 1 year: 2003 ident: ref29 article-title: Relaxations and randomized methods for nonconvex QCQPs – ident: ref41 doi: 10.1017/CBO9780511804441 – ident: ref34 doi: 10.1109/ICASSP.2012.6288603 – ident: ref28 doi: 10.1109/TWC.2018.2821667 – ident: ref31 doi: 10.1109/TCOMM.2017.2786664 – ident: ref7 doi: 10.1109/TCOMM.2017.2679708 – ident: ref14 doi: 10.1109/TSP.2023.3265885 – ident: ref16 doi: 10.1109/TSP.2018.2864636 – ident: ref26 doi: 10.1109/GLOCOMW.2015.7413982 – ident: ref44 doi: 10.1007/s10589-021-00338-8 – ident: ref38 doi: 10.1007/s10915-018-0757-z – ident: ref9 doi: 10.1109/ICASSP.2018.8462123 – ident: ref15 doi: 10.1109/TSP.2013.2252167 – ident: ref40 doi: 10.1109/MSP.2014.2312183 – ident: ref37 doi: 10.1561/2200000016 – start-page: 18-1 volume-title: Handbook of Antennas in Wireless Communications year: 2001 ident: ref33 article-title: Optimal and suboptimal transmit beamforming – ident: ref4 doi: 10.1109/TWC.2012.101112.112295 – ident: ref11 doi: 10.1109/TSP.2020.2994753 – ident: ref27 doi: 10.1109/TWC.2017.2657513 – ident: ref36 doi: 10.1109/TSP.2016.2593681 – ident: ref18 doi: 10.1109/TSP.2020.2979545 – ident: ref24 doi: 10.1109/TIT.2013.2269476 – ident: ref2 doi: 10.1109/TSP.2007.909010 – ident: ref6 doi: 10.1109/SPAWC.2015.7227042 – ident: ref42 doi: 10.1007/BF01581204 – ident: ref22 doi: 10.1109/TSP.2022.3160004 – ident: ref23 doi: 10.1109/JSAC.2013.130214 – ident: ref21 doi: 10.1109/LCOMM.2019.2917431 – ident: ref39 doi: 10.1007/s10107-002-0346-6 |
SSID | ssj0014496 |
Score | 2.4416962 |
Snippet | We consider low-complexity design for joint antenna selection and robust multi-group multicast beamforming in massive multiple-input multiple-output (MIMO)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 792 |
SubjectTerms | ADMM Algorithms Antenna design Antenna selection Antennas Approximation Array signal processing Beamforming Codes Complexity Interference Iterative methods large-scale systems low complexity Massive MIMO MIMO communication Mixed integer Multicast algorithms Multicasting Optimization robust multicast beamforming Robustness (mathematics) Signal to noise ratio Transmitting antennas |
Title | Low-Complexity Joint Antenna Selection and Robust Multi-Group Multicast Beamforming for Massive MIMO |
URI | https://ieeexplore.ieee.org/document/10398597 https://www.proquest.com/docview/2923136544 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qSQ-uI44bOXjxkE7bpEuOoyg6OCouMLeSpK8gYitOi-iv9yXtyKAInhpKEkJe8vK9nZAjUxQ84dywPAbDhFCGqTiVLIoFcKnCPACr7xhfxxePYjSJJl2wuouFAQDnfAaebTpbfl6ZxqrKBtZsmSICXiSLKLm1wVrfJgMhXDEuxAucRWkymdkkfTl4uL9FSTAUHrd-67ai2twb5Iqq_OLE7nk5XyPXs4W1XiXPXlNrz3z-yNn475Wvk9UOaNJhezI2yAKUm2RlLv3gFsmvqndmGYJNill_0FH1VNZ0aJ3aS0XvXYUcJBtVZU7vKt1Ma-ridZlTWLVto_DvCagXC35xVopfOkZEjlyUji_HNz3yeH72cHrBuqoLzIQiqpniEMnUBEalShYJXtEkjpELag2B8jVX-KZDLhKjZZhCkYPQReqnIJQMCh3GfJsslVUJO4RKiZ2kLqQCLXylVZQg3hJWRvStwadPjmd0yF7b5BqZE0p8mSHNMkuzrKNZn_Tsts71a3e0T_ZnlMu66zfNQgtbeRwJsfvHsD2ybGdvlSn7ZKl-a-AA4UWtD92x-gKLks2O |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7DA4wMZAlHWbD7vs4JLEzoePbKIqrOkQFKm3yHZeJDQtQZAKwV_Ps5NO1dCknWJFdmL52e_9_D4BvtiqEqkQlpcJWi6ltlwnmeJxIlEoHZUhOn1HPksm1_J8ES_6YHUfC4OI3vkMR67pbfllY5dOVXbszJYZIeANeE2CPw67cK0_RgMpfTkuQgyCx1m6WFklA3U8v7qgu2AkR8J5rruaamtSyJdVecGLvYAZ78JsNbXOr-TXaNmakX36K2vjf8_9Lez0UJOddHvjHbzCeg-21xIQvody2jxwxxJcWsz2kZ03N3XLTpxbe63Zla-RQ4Rjui7ZZWOW9y3zEbvcq6y6ttX09hvq3w7-0lcZPVlOmJz4KMvP8p_7cD0-nX-f8L7uAreRjFuuBcYqs6HVmVZVSoc0TRLig8ZgqAMjNEl1LGVqjYoyrEqUpsqCDKVWYWWiRBzAZt3UeAhMKeqkTKU0Ghloo-OUEJd0t8TAmXwG8HVFh-K2S69R-GtJoAqiWeFoVvQ0G8C-W9a1ft2KDmC4olzRH8D7InLAVSSxlEf_GPYZ3kzm-bSYns1-fIAt96dOtTKEzfZuiR8JbLTmk99iz2_-0Nc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Complexity+Joint+Antenna+Selection+and+Robust+Multi-Group+Multicast+Beamforming+for+Massive+MIMO&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Mohamadi%2C+Niloofar&rft.au=Dong%2C+Min&rft.au=ShahbazPanahi%2C+Shahram&rft.date=2024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=72&rft.spage=792&rft.epage=808&rft_id=info:doi/10.1109%2FTSP.2024.3351478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3351478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |