FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms
Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="La...
Saved in:
Published in | IEEE transactions on cloud computing Vol. 12; no. 4; pp. 1328 - 1343 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq1-3473015.gif"/> </inline-formula>) and latency-sensitive (<inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq2-3473015.gif"/> </inline-formula>). Systems typically do not offer any latency or QoS guarantees for <inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq3-3473015.gif"/> </inline-formula> jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for <inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq4-3473015.gif"/> </inline-formula> jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (<inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq5-3473015.gif"/> </inline-formula>) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the <inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq6-3473015.gif"/> </inline-formula> is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications. |
---|---|
AbstractList | Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort ([Formula Omitted]) and latency-sensitive ([Formula Omitted]). Systems typically do not offer any latency or QoS guarantees for [Formula Omitted] jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for [Formula Omitted] jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency ([Formula Omitted]) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the [Formula Omitted] is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications. Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq1-3473015.gif"/> </inline-formula>) and latency-sensitive (<inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq2-3473015.gif"/> </inline-formula>). Systems typically do not offer any latency or QoS guarantees for <inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq3-3473015.gif"/> </inline-formula> jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for <inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq4-3473015.gif"/> </inline-formula> jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (<inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq5-3473015.gif"/> </inline-formula>) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the <inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq6-3473015.gif"/> </inline-formula> is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications. |
Author | Sarangi, Smruti R. Panda, Abhisek |
Author_xml | – sequence: 1 givenname: Abhisek orcidid: 0000-0003-4322-3899 surname: Panda fullname: Panda, Abhisek email: abhisek.panda@cse.iitd.ac.in organization: Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India – sequence: 2 givenname: Smruti R. orcidid: 0000-0002-1657-8523 surname: Sarangi fullname: Sarangi, Smruti R. email: srsarangi@cse.iitd.ac.in organization: Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India |
BookMark | eNpNUMFqAjEQDcVCrfXeQw8LPa-dSbKbbG-yaFsQWtCeQ3Y7S5V1Y5NV8O-N6KFzmHk83pth3j0bdK4jxh4RJohQvKzKcsKBy4mQSgBmN2zIheIpAOpBxJjrVGGOd2wcwgZi6QwLLIZsNrd2Wfa-fU2mSem2O0-_1IX1gdKF7amrj5Hteu_alnzSOJ8syR_ItxRC8tXaPlLb8MBuG9sGGl_niH3PZ6vyPV18vn2U00Vac5n1aUFNrpXmlURBQCqrJIFELlDziJWQuc0KATXyqOf0AzqvbEPVuVmFYsSeL3t33v3tKfRm4_a-iyeNQBkflBJ0VMFFVXsXgqfG7Px6a_3RIJhzXibmZc55mWte0fJ0sayJ6J9cgQReiBMgdGaa |
CODEN | ITCCF6 |
Cites_doi | 10.1109/TPDS.2020.3023997 10.1109/CCGrid51090.2021.00056 10.1145/3567955.3567960 10.1145/3552326.3567490 10.1109/IPDPS.2009.5161046 10.1137/s0363012901385691 10.1109/TCCN.2019.2952909 10.1145/3297858.3304005 10.1109/TCC.2020.2992461 10.1109/TPDS.2020.3024068 10.1145/3502181.3531459 10.1109/ACSOS52086.2021.00023 10.1109/CCGRID.2019.00042 10.1109/TCC.2019.2930259 10.1109/TPDS.2020.3046737 10.1109/TCC.2020.3006751 10.1145/3366623.3368133 10.1109/ACCESS.2019.2935545 10.1145/3464298.3476133 10.1145/3578245.3585033 10.1109/TII.2021.3095466 10.1109/ICAICA52286.2021.9498165 10.1145/3445814.3446693 10.1145/3431379.3460646 10.1109/SEARIS.2016.7551584 10.1145/3445814.3446701 10.1109/TCC.2022.3140231 10.1609/aaai.v35i10.17088 10.1016/j.eswa.2017.07.001 10.1109/ACSOS49614.2020.00020 10.1109/JIOT.2018.2871020 10.1109/TCC.2022.3169157 10.1109/HPCA.2015.7056026 10.1145/3373376.3378512 10.1109/CLOUD.2019.00091 10.1109/TCC.2022.3151469 10.1109/TCC.2021.3117580 10.1109/TCC.2017.2773078 10.1145/1555228.1555263 10.1109/ISCA52012.2021.00031 10.1109/TCC.2020.3033373 10.1016/j.jpdc.2019.01.008 10.1145/3445814.3446714 10.1109/LCA.2021.3066142 10.1109/TSC.2022.3166553 10.1109/TPDS.2021.3137380 10.1109/TCC.2020.2992537 10.1109/ECTI-CON51831.2021.9454885 10.1145/3419111.3421306 10.1109/HPCA47549.2020.00023 10.1109/TPDS.2022.3218649 10.1145/3352460.3358296 10.1145/2670518.2673876 10.1109/ACCESS.2020.2965548 10.1109/PERCOM56429.2023.10099372 10.1109/TCC.2022.3169619 10.1109/TCC.2021.3117604 10.1145/3472883.3487014 10.1145/3357223.3362709 10.1109/TCC.2022.3192560 10.1145/3431379.3460648 10.1145/3423211.3425682 10.1145/3458817.3476215 10.1109/tnn.1998.712192 10.1287/moor.2023.1370 10.1109/IPDPSW.2019.00012 10.1109/HPCA47549.2020.00025 10.1287/opre.2020.2024 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCC.2024.3473015 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2372-0018 |
EndPage | 1343 |
ExternalDocumentID | 10_1109_TCC_2024_3473015 10704029 |
Genre | orig-research |
GrantInformation_xml | – fundername: Prime Minister's Research Fellows' scheme grantid: 1401192 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c245t-9ef68782b413e0e75b4e041231825b47346a5930c122452ed086bafebbafea713 |
IEDL.DBID | RIE |
ISSN | 2168-7161 |
IngestDate | Mon Jun 30 12:58:43 EDT 2025 Tue Jul 01 02:57:20 EDT 2025 Wed Aug 27 02:33:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-9ef68782b413e0e75b4e041231825b47346a5930c122452ed086bafebbafea713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1657-8523 0000-0003-4322-3899 |
PQID | 3141614408 |
PQPubID | 2040413 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TCC_2024_3473015 proquest_journals_3141614408 ieee_primary_10704029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cloud computing |
PublicationTitleAbbrev | TCC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 ref14 (ref23) 2024 ref58 ref53 ref97 ref52 ref17 ref16 Zahavy (ref96) ref19 ref18 ref93 ref92 ref51 ref50 ref94 Mahmoudi (ref61) ref46 ref45 ref89 ref48 (ref24) 2024 ref47 ref42 ref86 ref41 ref85 ref44 ref88 Watkins (ref95) 1989 ref43 ref87 (ref29) 2008 The (ref62) 2022 Poccia (ref33) 2022 ref49 Cai (ref65) ref7 Galstyan (ref79) Developers (ref98) 2024 ref4 ref3 ref6 ref82 ref81 ref40 Wu (ref67) ref83 ref80 ref35 Dean (ref28) 2013; 56 ref78 ref37 ref36 ref31 ref75 ref74 ref77 ref76 (ref25) 2024 ref2 ref1 ref39 ref38 Schurman (ref30) 2009 Haque (ref32) (ref22) 2024 ref71 ref70 Piccinin (ref27) 2021 ref73 ref72 ref68 ref69 ref20 ref64 ref63 ref66 ref21 (ref34) 2023 (ref26) 2024 ref60 Jonas (ref5) 2019 |
References_xml | – ident: ref20 doi: 10.1109/TPDS.2020.3023997 – ident: ref76 doi: 10.1109/CCGrid51090.2021.00056 – year: 2023 ident: ref34 article-title: Azure functions premium plan | Microsoft learn – ident: ref63 doi: 10.1145/3567955.3567960 – ident: ref21 doi: 10.1145/3552326.3567490 – ident: ref85 doi: 10.1109/IPDPS.2009.5161046 – ident: ref66 doi: 10.1137/s0363012901385691 – ident: ref92 doi: 10.1109/TCCN.2019.2952909 – year: 2024 ident: ref22 article-title: Coca-cola freestyle launches touchless fountain experience in 100 days using AWS lambda | case study | AWS – ident: ref18 doi: 10.1145/3297858.3304005 – ident: ref49 doi: 10.1109/TCC.2020.2992461 – ident: ref68 doi: 10.1109/TPDS.2020.3024068 – ident: ref73 doi: 10.1145/3502181.3531459 – ident: ref60 doi: 10.1109/ACSOS52086.2021.00023 – ident: ref75 doi: 10.1109/CCGRID.2019.00042 – ident: ref45 doi: 10.1109/TCC.2019.2930259 – ident: ref42 doi: 10.1109/TPDS.2020.3046737 – ident: ref48 doi: 10.1109/TCC.2020.3006751 – ident: ref72 doi: 10.1145/3366623.3368133 – year: 2022 ident: ref62 article-title: Reinforcement learning – ident: ref93 doi: 10.1109/ACCESS.2019.2935545 – ident: ref15 doi: 10.1145/3464298.3476133 – ident: ref37 doi: 10.1145/3578245.3585033 – start-page: 3566 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref96 article-title: Learn what not to learn: Action elimination with deep reinforcement learning – ident: ref17 doi: 10.1109/TII.2021.3095466 – ident: ref87 doi: 10.1109/ICAICA52286.2021.9498165 – ident: ref69 doi: 10.1145/3445814.3446693 – ident: ref7 doi: 10.1145/3431379.3460646 – ident: ref86 doi: 10.1109/SEARIS.2016.7551584 – ident: ref12 doi: 10.1145/3445814.3446701 – ident: ref47 doi: 10.1109/TCC.2022.3140231 – ident: ref81 doi: 10.1609/aaai.v35i10.17088 – year: 1989 ident: ref95 article-title: Learning from delayed rewards [Ph. D. dissertation] – ident: ref36 doi: 10.1016/j.eswa.2017.07.001 – ident: ref14 doi: 10.1109/ACSOS49614.2020.00020 – ident: ref94 doi: 10.1109/JIOT.2018.2871020 – ident: ref52 doi: 10.1109/TCC.2022.3169157 – ident: ref88 doi: 10.1109/HPCA.2015.7056026 – ident: ref13 doi: 10.1145/3373376.3378512 – ident: ref16 doi: 10.1109/CLOUD.2019.00091 – ident: ref77 doi: 10.1109/TCC.2022.3151469 – year: 2024 ident: ref98 publication-title: Kernel Source Code: fair.c – ident: ref50 doi: 10.1109/TCC.2021.3117580 – start-page: 1314 volume-title: Proc. 3rd Int. Joint Conf. Auton. Agents Multiagent Syst. ident: ref79 article-title: Resource allocation in the grid using reinforcement learning – year: 2019 ident: ref5 article-title: Cloud programming simplified: A Berkeley view on serverless computing – ident: ref43 doi: 10.1109/TCC.2017.2773078 – ident: ref83 doi: 10.1145/1555228.1555263 – ident: ref70 doi: 10.1109/ISCA52012.2021.00031 – ident: ref2 doi: 10.1109/TCC.2020.3033373 – ident: ref35 doi: 10.1016/j.jpdc.2019.01.008 – ident: ref58 doi: 10.1145/3445814.3446714 – ident: ref71 doi: 10.1109/LCA.2021.3066142 – volume: 56 start-page: 74 volume-title: Commun. ACM year: 2013 ident: ref28 article-title: The tail at scale – ident: ref6 doi: 10.1109/TSC.2022.3166553 – ident: ref4 doi: 10.1109/TPDS.2021.3137380 – year: 2022 ident: ref33 article-title: New–provisioned concurrency for lambda functions | AWS news blog – ident: ref44 doi: 10.1109/TCC.2020.2992537 – ident: ref97 doi: 10.1109/ECTI-CON51831.2021.9454885 – ident: ref39 doi: 10.1145/3419111.3421306 – year: 2024 ident: ref24 article-title: Case studies-Optimizing enterprise economics with serverless architectures – ident: ref82 doi: 10.1109/HPCA47549.2020.00023 – ident: ref46 doi: 10.1109/TPDS.2022.3218649 – year: 2008 ident: ref29 article-title: The value of a millisecond: Finding the optimal speed of a trading infrastructure | TABB group – ident: ref78 doi: 10.1145/3352460.3358296 – year: 2024 ident: ref23 article-title: Neiman Marcus case study | AWS amplify | AWS – start-page: 5285 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref67 article-title: Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation – ident: ref31 doi: 10.1145/2670518.2673876 – ident: ref80 doi: 10.1109/ACCESS.2020.2965548 – ident: ref1 doi: 10.1109/PERCOM56429.2023.10099372 – ident: ref3 doi: 10.1109/TCC.2022.3169619 – ident: ref53 doi: 10.1109/TCC.2021.3117604 – start-page: 625 volume-title: Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture ident: ref32 article-title: Exploiting heterogeneity for tail latency and energy efficiency – ident: ref38 doi: 10.1145/3472883.3487014 – ident: ref74 doi: 10.1145/3357223.3362709 – ident: ref51 doi: 10.1109/TCC.2022.3192560 – year: 2009 ident: ref30 article-title: The user and business impact of server delays, additional bytes, and HTTP chunking in web search – ident: ref41 doi: 10.1145/3431379.3460648 – start-page: 203 volume-title: Proc. 29th Annu. Int. Conf. Comput. Sci. Softw. Eng. ident: ref61 article-title: Optimizing serverless computing: Introducing an adaptive function placement algorithm – ident: ref57 doi: 10.1145/3423211.3425682 – ident: ref59 doi: 10.1145/3458817.3476215 – year: 2024 ident: ref26 article-title: AWS re:invent 2020: Building the next generation of residential robots - YouTube – year: 2024 ident: ref25 article-title: Netflix: AWS lambda case study – ident: ref89 doi: 10.1109/tnn.1998.712192 – year: 2021 ident: ref27 article-title: Serverless functions for microservices? Probably yes, but stay flexible to change – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref65 article-title: Neural temporal-difference learning converges to global optima doi: 10.1287/moor.2023.1370 – ident: ref40 doi: 10.1109/IPDPSW.2019.00012 – ident: ref19 doi: 10.1109/HPCA47549.2020.00025 – ident: ref64 doi: 10.1287/opre.2020.2024 |
SSID | ssj0000851919 |
Score | 2.3152559 |
Snippet | Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1328 |
SubjectTerms | Complexity Degradation Design optimization Design standards Distributed processing Job colocation Knobs Measurement Optimization performance interference Performance measurement Priority scheduling Quality of service Real time Real-time systems Reinforcement learning resource scheduling Schedules Serverless computing Tail |
Title | FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms |
URI | https://ieeexplore.ieee.org/document/10704029 https://www.proquest.com/docview/3141614408 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJy_Oj4nTKTl48dCaJWlrvY2yMUSH4Aa7laR7RXBssnUH_et9r2nFDwQvJdAkhLz3kt8v7yWPsUuDpEIrZTzIDXia4huNNMpDtCtFaJRWZfaGh3E4muq7WTCrLquXd2EAoAw-A5-KpS9_vsq2dFSGFh6hzsm4wRrI3Nxlrc8DFcIOcS-uXZEivp4kCRJAqX2lSY-Db1tPmUvl1wJc7irDFhvX43HBJC_-trB-9v7jqcZ_D3if7VX4kvedQhywHVgesladu4FXpnzEBkNjnpJivbjlfU6_1_DsYtm9e0M4-o0nLop9gc0Q2XJaVYBc8xv-uDAFgd1Nm02Hg0ky8qqUCl4mdVB4MeThDYICi3sXCIgCq4Fe3ELLlliOlA5NECuRkcMtkDBHxmNNDpY-BgntMWsuV0s4YRyBDdIZrCNsqJFnWQhARkYYI2Ce26zDrurZTl_dyxlpyThEnKJkUpJMWkmmw9o0eV_quXnrsG4tn7SyrU2qekTKKFP26R_Nztgu9e5i7rqsWay3cI7YobAXpc58AJUGwAE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvRifVSsVs3Bi4fENLtJjLcSWqq2RbCF3pbddIpgaaVND_rrnclDfCB4CQvZJWFnZuf7dmZ3AC41kQophLZxqtGWnN-oPS1sQrueG2ghRVa9oT8IuiN5P_bHxWH17CwMImbJZ-hwM4vlTxbJmrfKyMJD0jkv2oQtcvx-Mz-u9bmlwughakZlMNKNrodxTBTQk46QrMn-N-eTVVP5tQRnfqVThUH5R3k6yYuzTo2TvP-4rPHfv7wHuwXCtFq5SuzDBs4PoFpWb7AKYz6Edkfrpzhdzm6tlsWvl_icZ7PbPc1I-s2K8zz2GQ0jbGvxuoIcnF9ZjzOdMtxd1WDUaQ_jrl0UVbATT_qpHeE0uCFYYMh7oYuhbyTynVtk2x61QyED7UfCTTjk5ns4Ic5j9BQNPzRR2iOozBdzPAaLoA0RGurjmkAS0zLooxdqV2sXJ1OT1OGqnG31mt-doTLO4UaKJKNYMqqQTB1qPHlf-uXzVodGKR9VWNdKiSbTMq6VffLHsAvY7g77PdW7Gzycwg5_Kc_Aa0AlXa7xjJBEas4z_fkAx2bDSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FaaSCtrl%3A+A+Comprehensive-Latency+Controller+for+Serverless+Platforms&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Panda%2C+Abhisek&rft.au=Sarangi%2C+Smruti+R&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2372-0018&rft.volume=12&rft.issue=4&rft.spage=1328&rft_id=info:doi/10.1109%2FTCC.2024.3473015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon |