FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms

Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="La...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cloud computing Vol. 12; no. 4; pp. 1328 - 1343
Main Authors Panda, Abhisek, Sarangi, Smruti R.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq1-3473015.gif"/> </inline-formula>) and latency-sensitive (<inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq2-3473015.gif"/> </inline-formula>). Systems typically do not offer any latency or QoS guarantees for <inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq3-3473015.gif"/> </inline-formula> jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for <inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq4-3473015.gif"/> </inline-formula> jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (<inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq5-3473015.gif"/> </inline-formula>) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the <inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq6-3473015.gif"/> </inline-formula> is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.
AbstractList Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort ([Formula Omitted]) and latency-sensitive ([Formula Omitted]). Systems typically do not offer any latency or QoS guarantees for [Formula Omitted] jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for [Formula Omitted] jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency ([Formula Omitted]) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the [Formula Omitted] is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.
Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq1-3473015.gif"/> </inline-formula>) and latency-sensitive (<inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq2-3473015.gif"/> </inline-formula>). Systems typically do not offer any latency or QoS guarantees for <inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq3-3473015.gif"/> </inline-formula> jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for <inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq4-3473015.gif"/> </inline-formula> jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (<inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq5-3473015.gif"/> </inline-formula>) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the <inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq6-3473015.gif"/> </inline-formula> is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.
Author Sarangi, Smruti R.
Panda, Abhisek
Author_xml – sequence: 1
  givenname: Abhisek
  orcidid: 0000-0003-4322-3899
  surname: Panda
  fullname: Panda, Abhisek
  email: abhisek.panda@cse.iitd.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India
– sequence: 2
  givenname: Smruti R.
  orcidid: 0000-0002-1657-8523
  surname: Sarangi
  fullname: Sarangi, Smruti R.
  email: srsarangi@cse.iitd.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India
BookMark eNpNUMFqAjEQDcVCrfXeQw8LPa-dSbKbbG-yaFsQWtCeQ3Y7S5V1Y5NV8O-N6KFzmHk83pth3j0bdK4jxh4RJohQvKzKcsKBy4mQSgBmN2zIheIpAOpBxJjrVGGOd2wcwgZi6QwLLIZsNrd2Wfa-fU2mSem2O0-_1IX1gdKF7amrj5Hteu_alnzSOJ8syR_ItxRC8tXaPlLb8MBuG9sGGl_niH3PZ6vyPV18vn2U00Vac5n1aUFNrpXmlURBQCqrJIFELlDziJWQuc0KATXyqOf0AzqvbEPVuVmFYsSeL3t33v3tKfRm4_a-iyeNQBkflBJ0VMFFVXsXgqfG7Px6a_3RIJhzXibmZc55mWte0fJ0sayJ6J9cgQReiBMgdGaa
CODEN ITCCF6
Cites_doi 10.1109/TPDS.2020.3023997
10.1109/CCGrid51090.2021.00056
10.1145/3567955.3567960
10.1145/3552326.3567490
10.1109/IPDPS.2009.5161046
10.1137/s0363012901385691
10.1109/TCCN.2019.2952909
10.1145/3297858.3304005
10.1109/TCC.2020.2992461
10.1109/TPDS.2020.3024068
10.1145/3502181.3531459
10.1109/ACSOS52086.2021.00023
10.1109/CCGRID.2019.00042
10.1109/TCC.2019.2930259
10.1109/TPDS.2020.3046737
10.1109/TCC.2020.3006751
10.1145/3366623.3368133
10.1109/ACCESS.2019.2935545
10.1145/3464298.3476133
10.1145/3578245.3585033
10.1109/TII.2021.3095466
10.1109/ICAICA52286.2021.9498165
10.1145/3445814.3446693
10.1145/3431379.3460646
10.1109/SEARIS.2016.7551584
10.1145/3445814.3446701
10.1109/TCC.2022.3140231
10.1609/aaai.v35i10.17088
10.1016/j.eswa.2017.07.001
10.1109/ACSOS49614.2020.00020
10.1109/JIOT.2018.2871020
10.1109/TCC.2022.3169157
10.1109/HPCA.2015.7056026
10.1145/3373376.3378512
10.1109/CLOUD.2019.00091
10.1109/TCC.2022.3151469
10.1109/TCC.2021.3117580
10.1109/TCC.2017.2773078
10.1145/1555228.1555263
10.1109/ISCA52012.2021.00031
10.1109/TCC.2020.3033373
10.1016/j.jpdc.2019.01.008
10.1145/3445814.3446714
10.1109/LCA.2021.3066142
10.1109/TSC.2022.3166553
10.1109/TPDS.2021.3137380
10.1109/TCC.2020.2992537
10.1109/ECTI-CON51831.2021.9454885
10.1145/3419111.3421306
10.1109/HPCA47549.2020.00023
10.1109/TPDS.2022.3218649
10.1145/3352460.3358296
10.1145/2670518.2673876
10.1109/ACCESS.2020.2965548
10.1109/PERCOM56429.2023.10099372
10.1109/TCC.2022.3169619
10.1109/TCC.2021.3117604
10.1145/3472883.3487014
10.1145/3357223.3362709
10.1109/TCC.2022.3192560
10.1145/3431379.3460648
10.1145/3423211.3425682
10.1145/3458817.3476215
10.1109/tnn.1998.712192
10.1287/moor.2023.1370
10.1109/IPDPSW.2019.00012
10.1109/HPCA47549.2020.00025
10.1287/opre.2020.2024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCC.2024.3473015
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-0018
EndPage 1343
ExternalDocumentID 10_1109_TCC_2024_3473015
10704029
Genre orig-research
GrantInformation_xml – fundername: Prime Minister's Research Fellows' scheme
  grantid: 1401192
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-9ef68782b413e0e75b4e041231825b47346a5930c122452ed086bafebbafea713
IEDL.DBID RIE
ISSN 2168-7161
IngestDate Mon Jun 30 12:58:43 EDT 2025
Tue Jul 01 02:57:20 EDT 2025
Wed Aug 27 02:33:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-9ef68782b413e0e75b4e041231825b47346a5930c122452ed086bafebbafea713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1657-8523
0000-0003-4322-3899
PQID 3141614408
PQPubID 2040413
PageCount 16
ParticipantIDs crossref_primary_10_1109_TCC_2024_3473015
proquest_journals_3141614408
ieee_primary_10704029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cloud computing
PublicationTitleAbbrev TCC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
(ref23) 2024
ref58
ref53
ref97
ref52
ref17
ref16
Zahavy (ref96)
ref19
ref18
ref93
ref92
ref51
ref50
ref94
Mahmoudi (ref61)
ref46
ref45
ref89
ref48
(ref24) 2024
ref47
ref42
ref86
ref41
ref85
ref44
ref88
Watkins (ref95) 1989
ref43
ref87
(ref29) 2008
The (ref62) 2022
Poccia (ref33) 2022
ref49
Cai (ref65)
ref7
Galstyan (ref79)
Developers (ref98) 2024
ref4
ref3
ref6
ref82
ref81
ref40
Wu (ref67)
ref83
ref80
ref35
Dean (ref28) 2013; 56
ref78
ref37
ref36
ref31
ref75
ref74
ref77
ref76
(ref25) 2024
ref2
ref1
ref39
ref38
Schurman (ref30) 2009
Haque (ref32)
(ref22) 2024
ref71
ref70
Piccinin (ref27) 2021
ref73
ref72
ref68
ref69
ref20
ref64
ref63
ref66
ref21
(ref34) 2023
(ref26) 2024
ref60
Jonas (ref5) 2019
References_xml – ident: ref20
  doi: 10.1109/TPDS.2020.3023997
– ident: ref76
  doi: 10.1109/CCGrid51090.2021.00056
– year: 2023
  ident: ref34
  article-title: Azure functions premium plan | Microsoft learn
– ident: ref63
  doi: 10.1145/3567955.3567960
– ident: ref21
  doi: 10.1145/3552326.3567490
– ident: ref85
  doi: 10.1109/IPDPS.2009.5161046
– ident: ref66
  doi: 10.1137/s0363012901385691
– ident: ref92
  doi: 10.1109/TCCN.2019.2952909
– year: 2024
  ident: ref22
  article-title: Coca-cola freestyle launches touchless fountain experience in 100 days using AWS lambda | case study | AWS
– ident: ref18
  doi: 10.1145/3297858.3304005
– ident: ref49
  doi: 10.1109/TCC.2020.2992461
– ident: ref68
  doi: 10.1109/TPDS.2020.3024068
– ident: ref73
  doi: 10.1145/3502181.3531459
– ident: ref60
  doi: 10.1109/ACSOS52086.2021.00023
– ident: ref75
  doi: 10.1109/CCGRID.2019.00042
– ident: ref45
  doi: 10.1109/TCC.2019.2930259
– ident: ref42
  doi: 10.1109/TPDS.2020.3046737
– ident: ref48
  doi: 10.1109/TCC.2020.3006751
– ident: ref72
  doi: 10.1145/3366623.3368133
– year: 2022
  ident: ref62
  article-title: Reinforcement learning
– ident: ref93
  doi: 10.1109/ACCESS.2019.2935545
– ident: ref15
  doi: 10.1145/3464298.3476133
– ident: ref37
  doi: 10.1145/3578245.3585033
– start-page: 3566
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref96
  article-title: Learn what not to learn: Action elimination with deep reinforcement learning
– ident: ref17
  doi: 10.1109/TII.2021.3095466
– ident: ref87
  doi: 10.1109/ICAICA52286.2021.9498165
– ident: ref69
  doi: 10.1145/3445814.3446693
– ident: ref7
  doi: 10.1145/3431379.3460646
– ident: ref86
  doi: 10.1109/SEARIS.2016.7551584
– ident: ref12
  doi: 10.1145/3445814.3446701
– ident: ref47
  doi: 10.1109/TCC.2022.3140231
– ident: ref81
  doi: 10.1609/aaai.v35i10.17088
– year: 1989
  ident: ref95
  article-title: Learning from delayed rewards [Ph. D. dissertation]
– ident: ref36
  doi: 10.1016/j.eswa.2017.07.001
– ident: ref14
  doi: 10.1109/ACSOS49614.2020.00020
– ident: ref94
  doi: 10.1109/JIOT.2018.2871020
– ident: ref52
  doi: 10.1109/TCC.2022.3169157
– ident: ref88
  doi: 10.1109/HPCA.2015.7056026
– ident: ref13
  doi: 10.1145/3373376.3378512
– ident: ref16
  doi: 10.1109/CLOUD.2019.00091
– ident: ref77
  doi: 10.1109/TCC.2022.3151469
– year: 2024
  ident: ref98
  publication-title: Kernel Source Code: fair.c
– ident: ref50
  doi: 10.1109/TCC.2021.3117580
– start-page: 1314
  volume-title: Proc. 3rd Int. Joint Conf. Auton. Agents Multiagent Syst.
  ident: ref79
  article-title: Resource allocation in the grid using reinforcement learning
– year: 2019
  ident: ref5
  article-title: Cloud programming simplified: A Berkeley view on serverless computing
– ident: ref43
  doi: 10.1109/TCC.2017.2773078
– ident: ref83
  doi: 10.1145/1555228.1555263
– ident: ref70
  doi: 10.1109/ISCA52012.2021.00031
– ident: ref2
  doi: 10.1109/TCC.2020.3033373
– ident: ref35
  doi: 10.1016/j.jpdc.2019.01.008
– ident: ref58
  doi: 10.1145/3445814.3446714
– ident: ref71
  doi: 10.1109/LCA.2021.3066142
– volume: 56
  start-page: 74
  volume-title: Commun. ACM
  year: 2013
  ident: ref28
  article-title: The tail at scale
– ident: ref6
  doi: 10.1109/TSC.2022.3166553
– ident: ref4
  doi: 10.1109/TPDS.2021.3137380
– year: 2022
  ident: ref33
  article-title: New–provisioned concurrency for lambda functions | AWS news blog
– ident: ref44
  doi: 10.1109/TCC.2020.2992537
– ident: ref97
  doi: 10.1109/ECTI-CON51831.2021.9454885
– ident: ref39
  doi: 10.1145/3419111.3421306
– year: 2024
  ident: ref24
  article-title: Case studies-Optimizing enterprise economics with serverless architectures
– ident: ref82
  doi: 10.1109/HPCA47549.2020.00023
– ident: ref46
  doi: 10.1109/TPDS.2022.3218649
– year: 2008
  ident: ref29
  article-title: The value of a millisecond: Finding the optimal speed of a trading infrastructure | TABB group
– ident: ref78
  doi: 10.1145/3352460.3358296
– year: 2024
  ident: ref23
  article-title: Neiman Marcus case study | AWS amplify | AWS
– start-page: 5285
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref67
  article-title: Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation
– ident: ref31
  doi: 10.1145/2670518.2673876
– ident: ref80
  doi: 10.1109/ACCESS.2020.2965548
– ident: ref1
  doi: 10.1109/PERCOM56429.2023.10099372
– ident: ref3
  doi: 10.1109/TCC.2022.3169619
– ident: ref53
  doi: 10.1109/TCC.2021.3117604
– start-page: 625
  volume-title: Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture
  ident: ref32
  article-title: Exploiting heterogeneity for tail latency and energy efficiency
– ident: ref38
  doi: 10.1145/3472883.3487014
– ident: ref74
  doi: 10.1145/3357223.3362709
– ident: ref51
  doi: 10.1109/TCC.2022.3192560
– year: 2009
  ident: ref30
  article-title: The user and business impact of server delays, additional bytes, and HTTP chunking in web search
– ident: ref41
  doi: 10.1145/3431379.3460648
– start-page: 203
  volume-title: Proc. 29th Annu. Int. Conf. Comput. Sci. Softw. Eng.
  ident: ref61
  article-title: Optimizing serverless computing: Introducing an adaptive function placement algorithm
– ident: ref57
  doi: 10.1145/3423211.3425682
– ident: ref59
  doi: 10.1145/3458817.3476215
– year: 2024
  ident: ref26
  article-title: AWS re:invent 2020: Building the next generation of residential robots - YouTube
– year: 2024
  ident: ref25
  article-title: Netflix: AWS lambda case study
– ident: ref89
  doi: 10.1109/tnn.1998.712192
– year: 2021
  ident: ref27
  article-title: Serverless functions for microservices? Probably yes, but stay flexible to change
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref65
  article-title: Neural temporal-difference learning converges to global optima
  doi: 10.1287/moor.2023.1370
– ident: ref40
  doi: 10.1109/IPDPSW.2019.00012
– ident: ref19
  doi: 10.1109/HPCA47549.2020.00025
– ident: ref64
  doi: 10.1287/opre.2020.2024
SSID ssj0000851919
Score 2.3152559
Snippet Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1328
SubjectTerms Complexity
Degradation
Design optimization
Design standards
Distributed processing
Job colocation
Knobs
Measurement
Optimization
performance interference
Performance measurement
Priority scheduling
Quality of service
Real time
Real-time systems
Reinforcement learning
resource scheduling
Schedules
Serverless computing
Tail
Title FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms
URI https://ieeexplore.ieee.org/document/10704029
https://www.proquest.com/docview/3141614408
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJy_Oj4nTKTl48dCaJWlrvY2yMUSH4Aa7laR7RXBssnUH_et9r2nFDwQvJdAkhLz3kt8v7yWPsUuDpEIrZTzIDXia4huNNMpDtCtFaJRWZfaGh3E4muq7WTCrLquXd2EAoAw-A5-KpS9_vsq2dFSGFh6hzsm4wRrI3Nxlrc8DFcIOcS-uXZEivp4kCRJAqX2lSY-Db1tPmUvl1wJc7irDFhvX43HBJC_-trB-9v7jqcZ_D3if7VX4kvedQhywHVgesladu4FXpnzEBkNjnpJivbjlfU6_1_DsYtm9e0M4-o0nLop9gc0Q2XJaVYBc8xv-uDAFgd1Nm02Hg0ky8qqUCl4mdVB4MeThDYICi3sXCIgCq4Fe3ELLlliOlA5NECuRkcMtkDBHxmNNDpY-BgntMWsuV0s4YRyBDdIZrCNsqJFnWQhARkYYI2Ce26zDrurZTl_dyxlpyThEnKJkUpJMWkmmw9o0eV_quXnrsG4tn7SyrU2qekTKKFP26R_Nztgu9e5i7rqsWay3cI7YobAXpc58AJUGwAE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvRifVSsVs3Bi4fENLtJjLcSWqq2RbCF3pbddIpgaaVND_rrnclDfCB4CQvZJWFnZuf7dmZ3AC41kQophLZxqtGWnN-oPS1sQrueG2ghRVa9oT8IuiN5P_bHxWH17CwMImbJZ-hwM4vlTxbJmrfKyMJD0jkv2oQtcvx-Mz-u9bmlwughakZlMNKNrodxTBTQk46QrMn-N-eTVVP5tQRnfqVThUH5R3k6yYuzTo2TvP-4rPHfv7wHuwXCtFq5SuzDBs4PoFpWb7AKYz6Edkfrpzhdzm6tlsWvl_icZ7PbPc1I-s2K8zz2GQ0jbGvxuoIcnF9ZjzOdMtxd1WDUaQ_jrl0UVbATT_qpHeE0uCFYYMh7oYuhbyTynVtk2x61QyED7UfCTTjk5ns4Ic5j9BQNPzRR2iOozBdzPAaLoA0RGurjmkAS0zLooxdqV2sXJ1OT1OGqnG31mt-doTLO4UaKJKNYMqqQTB1qPHlf-uXzVodGKR9VWNdKiSbTMq6VffLHsAvY7g77PdW7Gzycwg5_Kc_Aa0AlXa7xjJBEas4z_fkAx2bDSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FaaSCtrl%3A+A+Comprehensive-Latency+Controller+for+Serverless+Platforms&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Panda%2C+Abhisek&rft.au=Sarangi%2C+Smruti+R&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2372-0018&rft.volume=12&rft.issue=4&rft.spage=1328&rft_id=info:doi/10.1109%2FTCC.2024.3473015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon