FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms

Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="La...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cloud computing Vol. 12; no. 4; pp. 1328 - 1343
Main Authors Panda, Abhisek, Sarangi, Smruti R.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (<inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq1-3473015.gif"/> </inline-formula>) and latency-sensitive (<inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq2-3473015.gif"/> </inline-formula>). Systems typically do not offer any latency or QoS guarantees for <inline-formula><tex-math notation="LaTeX">BE</tex-math> <mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mi>E</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq3-3473015.gif"/> </inline-formula> jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for <inline-formula><tex-math notation="LaTeX">LS</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mi>S</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq4-3473015.gif"/> </inline-formula> jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (<inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq5-3473015.gif"/> </inline-formula>) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the <inline-formula><tex-math notation="LaTeX">CL</tex-math> <mml:math><mml:mrow><mml:mi>C</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="panda-ieq6-3473015.gif"/> </inline-formula> is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-7161
2372-0018
DOI:10.1109/TCC.2024.3473015