WS-BiLSTM-MA: Wavelet Scattering-Based BiLSTM With Mixed Attention Block for MDD Recognition Using Multichannel EEG Signals

Major depressive disorder (MDD) recognition using multichannel electroencephalography (EEG) signals has profound clinical value with its richness and accessibility of temporal information, but such signals may suffer from nonstationarity and redundant characteristics. To cope with these problems, th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 13
Main Authors Zhang, Feng, Yang, Chunfeng, You, Linlin, Wang, Xiaojia, Yuan, Yonggui, Jeannes, Regine Le Bouquin, Shu, Huazhong, Xiang, Wentao
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Major depressive disorder (MDD) recognition using multichannel electroencephalography (EEG) signals has profound clinical value with its richness and accessibility of temporal information, but such signals may suffer from nonstationarity and redundant characteristics. To cope with these problems, the wavelet scattering-based bidirectional long short-term memory network with mixed attention block (WS-BiLSTM-MA) network is proposed with three core modules: 1) wavelet scattering network is applied to build a wavelet scattering matrix which captures the deformation stability information from multichannel cleaned EEG signals; 2) bidirectional long short-term memory network (LSTM) is used to obtain a relevant scattering matrix which learns the potential temporal relationship from the wavelet scattering matrix; and 3) MA block has two self-attention blocks which gain the ability to further redistribute the weights of features and integrate the key comprehensive information from scattering coefficients (SCs) and relevant matrices, respectively. The performance of our proposed WS-BiLSTM-MA network is evaluated on two MDD datasets in both eyes closed (EC) and eyes open (EO) conditions with 19-channel EEG signals: the Hospital University Sains Malaysia (HUSM) dataset and Zhongda Hospital Southeast University (ZHSU) dataset. To ensure subject independence, the leave-one-subject-out validation (LOSO) experiment and blind test (BT) validation experiment are conducted. In leave-one-subject-out experiment, the WS-BILSTM-MA network, with the zeroth-order, first-order, and second-order SCs, presents high performance in terms of classification accuracy, precision, recall, and <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score whatever conditions in both the datasets. The BT experiment demonstrates the excellent ability of our framework with only zeroth-order and first-order SCs, where the classification accuracy, precision, recall and <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score can reach 98.80%, 99.90%, 99.71%, 99.81% and 99.81%, 99.78%, 99.17%, 99.47% in EC and EO conditions in the HUSM dataset, and 83.29%, 87.97%, 75.65%, 83.60% and 83.41%, 90.59%, 74.20%, 81.58% in EC and EO conditions in the ZHSU dataset, respectively. Compared with some state-of-the-art methods in the HUSM dataset, the WS-BILSTM-MA network can improve the performance of MDD recognition proving its clinical interest.
AbstractList Major depressive disorder (MDD) recognition using multichannel electroencephalography (EEG) signals has profound clinical value with its richness and accessibility of temporal information, but such signals may suffer from nonstationarity and redundant characteristics. To cope with these problems, the wavelet scattering-based bidirectional long short-term memory network with mixed attention block (WS-BiLSTM-MA) network is proposed with three core modules: 1) wavelet scattering network is applied to build a wavelet scattering matrix which captures the deformation stability information from multichannel cleaned EEG signals; 2) bidirectional long short-term memory network (LSTM) is used to obtain a relevant scattering matrix which learns the potential temporal relationship from the wavelet scattering matrix; and 3) MA block has two self-attention blocks which gain the ability to further redistribute the weights of features and integrate the key comprehensive information from scattering coefficients (SCs) and relevant matrices, respectively. The performance of our proposed WS-BiLSTM-MA network is evaluated on two MDD datasets in both eyes closed (EC) and eyes open (EO) conditions with 19-channel EEG signals: the Hospital University Sains Malaysia (HUSM) dataset and Zhongda Hospital Southeast University (ZHSU) dataset. To ensure subject independence, the leave-one-subject-out validation (LOSO) experiment and blind test (BT) validation experiment are conducted. In leave-one-subject-out experiment, the WS-BILSTM-MA network, with the zeroth-order, first-order, and second-order SCs, presents high performance in terms of classification accuracy, precision, recall, and <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score whatever conditions in both the datasets. The BT experiment demonstrates the excellent ability of our framework with only zeroth-order and first-order SCs, where the classification accuracy, precision, recall and <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score can reach 98.80%, 99.90%, 99.71%, 99.81% and 99.81%, 99.78%, 99.17%, 99.47% in EC and EO conditions in the HUSM dataset, and 83.29%, 87.97%, 75.65%, 83.60% and 83.41%, 90.59%, 74.20%, 81.58% in EC and EO conditions in the ZHSU dataset, respectively. Compared with some state-of-the-art methods in the HUSM dataset, the WS-BILSTM-MA network can improve the performance of MDD recognition proving its clinical interest.
Major depressive disorder (MDD) recognition using multichannel electroencephalography (EEG) signals has profound clinical value with its richness and accessibility of temporal information, but such signals may suffer from nonstationarity and redundant characteristics. To cope with these problems, the wavelet scattering-based bidirectional long short-term memory network with mixed attention block (WS-BiLSTM-MA) network is proposed with three core modules: 1) wavelet scattering network is applied to build a wavelet scattering matrix which captures the deformation stability information from multichannel cleaned EEG signals; 2) bidirectional long short-term memory network (LSTM) is used to obtain a relevant scattering matrix which learns the potential temporal relationship from the wavelet scattering matrix; and 3) MA block has two self-attention blocks which gain the ability to further redistribute the weights of features and integrate the key comprehensive information from scattering coefficients (SCs) and relevant matrices, respectively. The performance of our proposed WS-BiLSTM-MA network is evaluated on two MDD datasets in both eyes closed (EC) and eyes open (EO) conditions with 19-channel EEG signals: the Hospital University Sains Malaysia (HUSM) dataset and Zhongda Hospital Southeast University (ZHSU) dataset. To ensure subject independence, the leave-one-subject-out validation (LOSO) experiment and blind test (BT) validation experiment are conducted. In leave-one-subject-out experiment, the WS-BILSTM-MA network, with the zeroth-order, first-order, and second-order SCs, presents high performance in terms of classification accuracy, precision, recall, and [Formula Omitted]-score whatever conditions in both the datasets. The BT experiment demonstrates the excellent ability of our framework with only zeroth-order and first-order SCs, where the classification accuracy, precision, recall and [Formula Omitted]-score can reach 98.80%, 99.90%, 99.71%, 99.81% and 99.81%, 99.78%, 99.17%, 99.47% in EC and EO conditions in the HUSM dataset, and 83.29%, 87.97%, 75.65%, 83.60% and 83.41%, 90.59%, 74.20%, 81.58% in EC and EO conditions in the ZHSU dataset, respectively. Compared with some state-of-the-art methods in the HUSM dataset, the WS-BILSTM-MA network can improve the performance of MDD recognition proving its clinical interest.
Author Yuan, Yonggui
Wang, Xiaojia
You, Linlin
Xiang, Wentao
Yang, Chunfeng
Jeannes, Regine Le Bouquin
Zhang, Feng
Shu, Huazhong
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0009-0005-2360-1137
  surname: Zhang
  fullname: Zhang, Feng
  organization: Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Centre de Recherche en Information Biomédicale Sino-Français, Southeast University, Nanjing, China
– sequence: 2
  givenname: Chunfeng
  orcidid: 0000-0002-9026-0046
  surname: Yang
  fullname: Yang, Chunfeng
  organization: Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, the Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications, Ministry of Education and Centre de Recherche en Information Biomédicale Sino-Français, Southeast University, Nanjing, China
– sequence: 3
  givenname: Linlin
  orcidid: 0000-0002-0557-0059
  surname: You
  fullname: You, Linlin
  organization: Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
– sequence: 4
  givenname: Xiaojia
  orcidid: 0009-0008-7191-0139
  surname: Wang
  fullname: Wang, Xiaojia
  organization: School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, China
– sequence: 5
  givenname: Yonggui
  orcidid: 0000-0001-6496-3998
  surname: Yuan
  fullname: Yuan, Yonggui
  organization: Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
– sequence: 6
  givenname: Regine Le Bouquin
  orcidid: 0000-0002-4050-2895
  surname: Jeannes
  fullname: Jeannes, Regine Le Bouquin
  organization: Inserm, LTSI-UMR 1099, University of Rennes 1, Rennes, France
– sequence: 7
  givenname: Huazhong
  orcidid: 0000-0002-3833-7915
  surname: Shu
  fullname: Shu, Huazhong
  email: shu.list@seu.edu.cn
  organization: Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, the Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications, Ministry of Education and Centre de Recherche en Information Biomédicale Sino-Français, Southeast University, Nanjing, China
– sequence: 8
  givenname: Wentao
  orcidid: 0000-0002-6891-6088
  surname: Xiang
  fullname: Xiang, Wentao
  email: xiangbmu@njmu.edu.cn
  organization: Jiangsu Province Engineering Research Center for Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
BookMark eNpNkL1PwzAQxS0EEuVjZ2CwxJxytmM7ZmuhlEqNkEirjlESX4ohOJCkCMQ_T0o7MD3p7vee7t4JOfS1R0IuGAwZA3O9mMVDDjwcCgk8CsUBGTApdWCU4odkAMCiwIRSHZOTtn0BAK1CPSA_qyQYu3myiIN4dENX2SdW2NGkyLoOG-fXwThr0dIdQ1eue6ax--onox7wnas9HVd18UrLuqHx3R19wqJee_e3WbZ9Ao03VeeK58x7rOhkMqWJW_usas_IUdkLnu_1lCzvJ4vbh2D-OJ3djuZBwUPZBSYXSlut0TK0OrdgMwMhRFKAMqWy_YORtkaKMENujAUmoUTNRM4N5yIXp-Rql_ve1B8bbLv0pd402wtSwUJQQkXAewp2VNHUbdtgmb437i1rvlMG6bbitK843Vac7ivuLZc7i0PEf7iWUcS1-AUeJXcg
CODEN IEIMAO
Cites_doi 10.1016/j.cmpb.2012.10.008
10.1109/TIM.2021.3053999
10.1109/GlobalSIP.2017.8309110
10.1109/ICPR.2010.764
10.3390/s20226526
10.1016/j.jad.2020.12.015
10.1142/S0219622019500342
10.1371/journal.pone.0171409
10.1016/j.bspc.2022.103612
10.1177/070674371405901206
10.1016/j.jneumeth.2003.10.009
10.1109/ACCESS.2023.3270426
10.1007/s10489-021-02426-y
10.1109/ACCESS.2022.3146711
10.1109/TPAMI.2012.230
10.1109/JSEN.2022.3143176
10.1109/CVPR.2018.00745
10.1109/SSCI51031.2022.10022271
10.1007/s42979-022-01250-6
10.1109/EMBC40787.2023.10340299
10.1109/TNSRE.2023.3336467
10.1007/s10916-019-1345-y
10.1093/occmed/kqt161
10.1002/hbm.24949
10.3928/0048-5713-20020901-06
10.1007/s10916-019-1486-z
10.1037/abn0000049
10.1109/TBME.2018.2850356
10.3389/fphys.2022.905447
10.1109/TIM.2022.3211559
10.1007/s00542-018-4075-z
10.48550/ARXIV.1706.03762
10.1609/aaai.v34i07.6693
10.1136/jnnp.23.1.56
10.1016/j.cmpb.2017.11.023
10.1109/TNSRE.2023.3336865
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3502843
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2024_3502843
10758827
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171125; 62001240; 31400842
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Programmer of China
  grantid: 2022YFE0116700
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-9b367d77ed1ed7bd0da9040853069f6d66287d9534ae299d0150fe713b29223b3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:16:06 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
Wed Aug 27 02:28:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-9b367d77ed1ed7bd0da9040853069f6d66287d9534ae299d0150fe713b29223b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3833-7915
0000-0002-9026-0046
0000-0002-6891-6088
0009-0005-2360-1137
0000-0002-4050-2895
0000-0001-6496-3998
0000-0002-0557-0059
0009-0008-7191-0139
PQID 3140636802
PQPubID 85462
PageCount 13
ParticipantIDs ieee_primary_10758827
crossref_primary_10_1109_TIM_2024_3502843
proquest_journals_3140636802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
(ref1) 2023
ref6
ref5
References_xml – ident: ref5
  doi: 10.1016/j.cmpb.2012.10.008
– ident: ref13
  doi: 10.1109/TIM.2021.3053999
– ident: ref24
  doi: 10.1109/GlobalSIP.2017.8309110
– ident: ref32
  doi: 10.1109/ICPR.2010.764
– ident: ref34
  doi: 10.3390/s20226526
– ident: ref30
  doi: 10.1016/j.jad.2020.12.015
– volume-title: World Health Organization
  year: 2023
  ident: ref1
– ident: ref4
  doi: 10.1142/S0219622019500342
– ident: ref7
  doi: 10.1371/journal.pone.0171409
– ident: ref14
  doi: 10.1016/j.bspc.2022.103612
– ident: ref3
  doi: 10.1177/070674371405901206
– ident: ref20
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref17
  doi: 10.1109/ACCESS.2023.3270426
– ident: ref35
  doi: 10.1007/s10489-021-02426-y
– ident: ref31
  doi: 10.1109/ACCESS.2022.3146711
– ident: ref9
  doi: 10.1109/TPAMI.2012.230
– ident: ref29
  doi: 10.1109/JSEN.2022.3143176
– ident: ref19
  doi: 10.1109/CVPR.2018.00745
– ident: ref8
  doi: 10.1109/SSCI51031.2022.10022271
– ident: ref36
  doi: 10.1007/s42979-022-01250-6
– ident: ref18
  doi: 10.1109/EMBC40787.2023.10340299
– ident: ref16
  doi: 10.1109/TNSRE.2023.3336467
– ident: ref12
  doi: 10.1007/s10916-019-1345-y
– ident: ref22
  doi: 10.1093/occmed/kqt161
– ident: ref26
  doi: 10.1002/hbm.24949
– ident: ref21
  doi: 10.3928/0048-5713-20020901-06
– ident: ref33
  doi: 10.1007/s10916-019-1486-z
– ident: ref2
  doi: 10.1037/abn0000049
– ident: ref10
  doi: 10.1109/TBME.2018.2850356
– ident: ref11
  doi: 10.3389/fphys.2022.905447
– ident: ref15
  doi: 10.1109/TIM.2022.3211559
– ident: ref37
  doi: 10.1007/s00542-018-4075-z
– ident: ref27
  doi: 10.48550/ARXIV.1706.03762
– ident: ref28
  doi: 10.1609/aaai.v34i07.6693
– ident: ref23
  doi: 10.1136/jnnp.23.1.56
– ident: ref6
  doi: 10.1016/j.cmpb.2017.11.023
– ident: ref25
  doi: 10.1109/TNSRE.2023.3336865
SSID ssj0007647
Score 2.4354503
Snippet Major depressive disorder (MDD) recognition using multichannel electroencephalography (EEG) signals has profound clinical value with its richness and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Attention mechanism
bidirectional long short-term memory network (BiLSTM)
Character recognition
Classification
Convolutional neural networks
Datasets
Electrodes
Electroencephalography
Experiments
Feature extraction
Hospitals
Long short term memory
major depressive disorder (MDD) recognition
multichannel electroencephalography (EEG) signals
Performance enhancement
Performance evaluation
Recall
Recognition
S matrix theory
Scattering
Scattering coefficient
wavelet scattering network
Title WS-BiLSTM-MA: Wavelet Scattering-Based BiLSTM With Mixed Attention Block for MDD Recognition Using Multichannel EEG Signals
URI https://ieeexplore.ieee.org/document/10758827
https://www.proquest.com/docview/3140636802
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-NSpPgYTBWRKEgP-yFB3dp4tgxb-0osGnhYW1V3qL4o1AVtRNNJQT__M5OgvjQpL1FyUWyfD7f_ey73wF81VMxjQMtKRcBoywOFZU6sFQlSksbJ0ZyVzucXvHLMft5HV9Xxeq-FsZa65PPbMc9-rt8s9Rrd1SGFo7RbRKKDdhA5FYWaz1vu4KzkiCzixaMYUF9JxnIb6MfKSLBkHWiGN0pi175IN9U5d1O7N3L-TZc1QMrs0rmnXWhOvrxDWfjf498Bz5VgSbplSvjM3ywi13YekE_uAsfffqnXn2Bp8mQ9me_hqOUpr1TMsldO4qCDLVn30Rh2kdvZ0gpQyaz4pakswd800MBnzBJ-ugW5wRjYJKenZHfdWISfvFpCcSX-ro644W9I4PBBRnObhx5cxPG54PR90tatWWgOmRxQaWKuDBCWNO1RigTmFwGjigN0YeccsM5ojAj44jlFp2dcWcqU4tgWIUSgxEV7UFjsVzYfSBcJwi3dFdqpZlKcpWLnBvJNBdWsm7SgpNaUdmfkn0j86glkBkqNXNKzSqltqDp5v2FXDnlLWjXqs0q-1xlEeJKHvEkCA_-8dshbIau1a8_bWlDo7hf2yOMPwp17NfdXzDu1NE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIgQceJSiBgrsAQ4cNnXW610vEoeEpCQ07oGkSm_G-wiNilJEHPH6LfwVfhuza7sqII6VuFn22Iedz_PY_WYG4KmZy3kSGUWFjDjlCdNUmchRnWqjXJJaJXztcHYohkf8zXFyvAE_zmthnHOBfOba_jKc5dszs_ZbZfiHY3SbMllzKA_c18-Yoa1ejvqozmeM7Q-mr4a0HiJADeNJSZWOhbRSOttxVmob2UJFvq0XxspqLqwQmDNYlcS8cGiard8BmDtM3TRT6Dp1jN-9Alcx0EhYVR52buil4FVLzg7aDAxEmlPQSO1NRxnmnoy34wQdOI9_83phjMtftj84tP3b8LNZiorHctpel7ptvv3RJfK_Xas7cKsOpUm3wv5d2HDLLbh5ocHiFlwLBFezugffZxPaW4wn04xm3RdkVviBGyWZmNBfFIVpD_25JZUMmS3KE5ItvuCdLgoESijpoeM_JRjlk6zfJ28b6hU-CcQLEoqZfSX10n0gg8FrMlm89-2pt-HoUtbhPmwuz5ZuB4gwKSaUpqOMNlynhS5kIaziRkineCdtwfMGGPnHqr9IHvKySOUIotyDKK9B1IJtr-cLcpWKW7DbQCmvLdAqjzFzFrFII_bgH689gevDaTbOx6PDg4dwg_nBxmFvaRc2y09r9wijrVI_Dpgn8O6ygfML2TMv9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WS-BiLSTM-MA%3A+Wavelet+Scattering-Based+BiLSTM+With+Mixed+Attention+Block+for+MDD+Recognition+Using+Multichannel+EEG+Signals&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Feng&rft.au=Yang%2C+Chunfeng&rft.au=You%2C+Linlin&rft.au=Wang%2C+Xiaojia&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2024.3502843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3502843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon