An Optimized Signal Quality Assessment Method for Noncontact Capacitive ECG
Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and powe...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2025.3533644 |
Cover
Loading…
Abstract | Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and power line interference (PLI). This study proposed an optimized signal quality assessment method to identify and remove low-quality cECG signals. First, the human body-electrode interface is modeled to analyze the generation mechanism and influence of cECG motion artifacts and PLI. Then, distinct signal quality indices (SQIs) are proposed to target the characteristics of these interferences. Moreover, optimized cECG features and previously proposed ECG features were combined as multifeatures and presented to XGBoost for binary classification training. Finally, Shapley additive explanations (SHAPs) were utilized for feature optimization to reduce redundant information. Validation on a labeled noncontact cECG database yields an impressive binary classification accuracy of 98.786%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98.845%, and a kappa of 97.567%. Moreover, its performance on a subject-independent validation set is also excellent, with an accuracy of 99.130%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 96.937%, and a kappa of 96.430%. The optimized multifeatures also demonstrate favorable performance in a triple classification model. The experimental results show that our method offers a precise and convenient solution for cECG signal quality assessment. |
---|---|
AbstractList | Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and power line interference (PLI). This study proposed an optimized signal quality assessment method to identify and remove low-quality cECG signals. First, the human body-electrode interface is modeled to analyze the generation mechanism and influence of cECG motion artifacts and PLI. Then, distinct signal quality indices (SQIs) are proposed to target the characteristics of these interferences. Moreover, optimized cECG features and previously proposed ECG features were combined as multifeatures and presented to XGBoost for binary classification training. Finally, Shapley additive explanations (SHAPs) were utilized for feature optimization to reduce redundant information. Validation on a labeled noncontact cECG database yields an impressive binary classification accuracy of 98.786%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98.845%, and a kappa of 97.567%. Moreover, its performance on a subject-independent validation set is also excellent, with an accuracy of 99.130%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 96.937%, and a kappa of 96.430%. The optimized multifeatures also demonstrate favorable performance in a triple classification model. The experimental results show that our method offers a precise and convenient solution for cECG signal quality assessment. Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and power line interference (PLI). This study proposed an optimized signal quality assessment method to identify and remove low-quality cECG signals. First, the human body-electrode interface is modeled to analyze the generation mechanism and influence of cECG motion artifacts and PLI. Then, distinct signal quality indices (SQIs) are proposed to target the characteristics of these interferences. Moreover, optimized cECG features and previously proposed ECG features were combined as multifeatures and presented to XGBoost for binary classification training. Finally, Shapley additive explanations (SHAPs) were utilized for feature optimization to reduce redundant information. Validation on a labeled noncontact cECG database yields an impressive binary classification accuracy of 98.786%, an [Formula Omitted]-score of 98.845%, and a kappa of 97.567%. Moreover, its performance on a subject-independent validation set is also excellent, with an accuracy of 99.130%, an [Formula Omitted]-score of 96.937%, and a kappa of 96.430%. The optimized multifeatures also demonstrate favorable performance in a triple classification model. The experimental results show that our method offers a precise and convenient solution for cECG signal quality assessment. |
Author | Ma, Caiyun Xiao, Zhijun Zhang, Yuwei Jiang, Yunyi Li, Jianqing Liu, Chengyu Jin, Weiming Yang, Chenxi |
Author_xml | – sequence: 1 givenname: Yunyi orcidid: 0009-0003-1252-9825 surname: Jiang fullname: Jiang, Yunyi email: 230248531@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Zhijun orcidid: 0000-0002-9090-047X surname: Xiao fullname: Xiao, Zhijun email: zhijunxiao@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Yuwei orcidid: 0009-0004-7961-4079 surname: Zhang fullname: Zhang, Yuwei email: zhangyuwei@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Caiyun orcidid: 0000-0001-5429-8760 surname: Ma fullname: Ma, Caiyun email: 230208850@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Chenxi orcidid: 0000-0003-0180-4126 surname: Yang fullname: Yang, Chenxi email: chenxiyang@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 6 givenname: Weiming orcidid: 0009-0006-5390-7134 surname: Jin fullname: Jin, Weiming email: jinwm@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 7 givenname: Jianqing orcidid: 0000-0002-3524-8933 surname: Li fullname: Li, Jianqing email: ljq@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 8 givenname: Chengyu orcidid: 0000-0003-1965-3020 surname: Liu fullname: Liu, Chengyu email: chengyu@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China |
BookMark | eNpNkE1PAjEURRujiYDuXbho4nqw30OXZIJIBIkR103pvNESmI7TYoK_3iGwcHU35768e_rosg41IHRHyZBSoh9Xs8WQESaHXHKuhLhAPSplnmml2CXqEUJHmRZSXaN-jBtCSK5E3kMv4xovm-R3_hdK_O4_a7vFb3u79emAxzFCjDuoE15A-golrkKLX0PtQp2sS7iwjXU--R_Ak2J6g64qu41we84B-niarIrnbL6czorxPHNMyJTlkjMinQXKLVPWloxoLdcUmKBCVFJVutROabG2XDlOyjV3LmeSWwulliUfoIfT3aYN33uIyWzCvu0ej4bTbrqSueYdRU6Ua0OMLVSmaf3OtgdDiTkqM50yc1Rmzsq6yv2p4gHgHz6SsrPI_wBYSmiT |
CODEN | IEIMAO |
Cites_doi | 10.1016/j.burns.2012.07.029 10.1109/RBME.2018.2810957 10.1088/0967-3334/33/9/1419 10.1109/LSP.2016.2542881 10.3390/s17112448 10.1016/j.bspc.2014.06.009 10.1109/TIM.2023.3273648 10.1088/0967-3334/21/2/307 10.1007/978-981-15-3824-7_3 10.1007/s11517-017-1647-5 10.1155/2010/926305 10.1364/OE.436293 10.1109/JBHI.2023.3314698 10.1109/JSEN.2020.2986723 10.1016/j.bspc.2022.104064 10.1016/j.artmed.2019.101788 10.1109/TIM.2023.3251392 10.1109/FUZZ.2001.1008855 10.1145/1273496.1273614 10.3389/fphys.2012.00147 10.1109/INFOTEH60418.2024.10495929 10.1016/j.cmpb.2014.09.002 10.1073/pnas.88.6.2297 10.1111/j.1600-0536.2007.01016.x 10.1007/BF02441961 10.1145/2939672.2939785 10.3390/life13051155 10.1016/j.amjcard.2015.10.013 10.1109/JBHI.2014.2338351 10.1088/0967-3334/33/9/1463 10.1098/rspa.1998.0193 10.1109/TBCAS.2023.3270661 10.1109/TBME.1985.325532 10.1016/S0076-6879(04)84011-4 10.1109/TBME.2013.2240452 10.1109/tcbb.2018.2846611 10.1109/tim.2022.3186709 10.1088/0967-3334/37/12/2154 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2025.3533644 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2025_3533644 10855662 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171123; 62071241 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20192004 funderid: 10.13039/501100004608 – fundername: National Key Research and Development Program of China grantid: 2023YFC3603600 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c245t-753205cae13a26aad20995b1e24144f56f9d9c694ba36c30db3cc7253aaed95d3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:11:43 EDT 2025 Tue Jul 01 03:07:51 EDT 2025 Wed Aug 27 01:53:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-753205cae13a26aad20995b1e24144f56f9d9c694ba36c30db3cc7253aaed95d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0180-4126 0009-0004-7961-4079 0000-0003-1965-3020 0009-0003-1252-9825 0000-0001-5429-8760 0000-0002-3524-8933 0000-0002-9090-047X 0009-0006-5390-7134 |
PQID | 3164465793 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10855662 proquest_journals_3164465793 crossref_primary_10_1109_TIM_2025_3533644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 Zaunseder (ref13) ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Lundberg (ref36) |
References_xml | – ident: ref3 doi: 10.1016/j.burns.2012.07.029 – ident: ref16 doi: 10.1109/RBME.2018.2810957 – ident: ref18 doi: 10.1088/0967-3334/33/9/1419 – ident: ref26 doi: 10.1109/LSP.2016.2542881 – ident: ref19 doi: 10.3390/s17112448 – ident: ref32 doi: 10.1016/j.bspc.2014.06.009 – ident: ref9 doi: 10.1109/TIM.2023.3273648 – ident: ref4 doi: 10.1088/0967-3334/21/2/307 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref36 article-title: A unified approach to interpreting model predictions – ident: ref21 doi: 10.1007/978-981-15-3824-7_3 – ident: ref27 doi: 10.1007/s11517-017-1647-5 – ident: ref20 doi: 10.1155/2010/926305 – ident: ref35 doi: 10.1364/OE.436293 – ident: ref15 doi: 10.1109/JBHI.2023.3314698 – ident: ref7 doi: 10.1109/JSEN.2020.2986723 – ident: ref14 doi: 10.1016/j.bspc.2022.104064 – ident: ref28 doi: 10.1016/j.artmed.2019.101788 – ident: ref8 doi: 10.1109/TIM.2023.3251392 – ident: ref25 doi: 10.1109/FUZZ.2001.1008855 – ident: ref37 doi: 10.1145/1273496.1273614 – ident: ref30 doi: 10.3389/fphys.2012.00147 – ident: ref34 doi: 10.1109/INFOTEH60418.2024.10495929 – ident: ref12 doi: 10.1016/j.cmpb.2014.09.002 – ident: ref23 doi: 10.1073/pnas.88.6.2297 – ident: ref2 doi: 10.1111/j.1600-0536.2007.01016.x – start-page: 277 volume-title: Proc. Comput. Cardiol. ident: ref13 article-title: CinC challenge—Assessing the usability of ECG by ensemble decision trees – ident: ref17 doi: 10.1007/BF02441961 – ident: ref33 doi: 10.1145/2939672.2939785 – ident: ref40 doi: 10.3390/life13051155 – ident: ref39 doi: 10.1016/j.amjcard.2015.10.013 – ident: ref10 doi: 10.1109/JBHI.2014.2338351 – ident: ref11 doi: 10.1088/0967-3334/33/9/1463 – ident: ref31 doi: 10.1098/rspa.1998.0193 – ident: ref6 doi: 10.1109/TBCAS.2023.3270661 – ident: ref38 doi: 10.1109/TBME.1985.325532 – ident: ref24 doi: 10.1016/S0076-6879(04)84011-4 – ident: ref22 doi: 10.1109/TBME.2013.2240452 – ident: ref1 doi: 10.1109/tcbb.2018.2846611 – ident: ref5 doi: 10.1109/tim.2022.3186709 – ident: ref29 doi: 10.1088/0967-3334/37/12/2154 |
SSID | ssj0007647 |
Score | 2.4298317 |
Snippet | Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Artifact identification Classification Couplings Electrocardiography Electrodes Feature extraction Feature optimization Human motion Identification methods Impedance improved complete ensemble empirical mode decomposition (ICEEMDAN) Interference Motion artifacts noncontact capacitive ECG (cECG) Optimization Power lines Quality assessment Shapley additive explanations (SHAPs) Signal generation Signal quality signal quality index |
Title | An Optimized Signal Quality Assessment Method for Noncontact Capacitive ECG |
URI | https://ieeexplore.ieee.org/document/10855662 https://www.proquest.com/docview/3164465793 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEhIMPIsoL3lgYUhbx3bSjFVVKKCWgVbqFtkXB1WIFNF0oL-es5OgAkJiyxAnlu9895199x0hV4xp1kHN8SQH5YnUbqnQVx7TArQPgKDE1jsPR8FgIu6ncloWq7taGGOMSz4zTfvo7vKTOSztUVnLZsoj_ECLu4mRW1Gs9WV2w0AUBJkMf4ewoLqTbEet8d0QI0FfNjmCGwQA33yQa6ryyxI793KzR0bVxIqskpfmMtdNWP3gbPz3zPfJbgk0abfQjAOyYbJDsrNGP3hItlz6JyyOyEM3o49oPF5nK5PQp9mzHVrQa3zQ7hd5Jx26ftMUgS4dzTOb5q4gpz10uOBykGi_d1snk5v-uDfwyjYLHvhC5l5oe0NIUIZx5QdKJbaaVmpm0LkLkcogjZIIgkhoxQPg7URzgNCXXCmTRDLhx6SWzTNzQij4Ucp1JxHAUoGi1lyYlImwk0a2lYzfINfVwsdvBZtG7KKQdhSjkGIrpLgUUoPU7TquvVcsYYOcV6KKy_22iDlGfSKQaGxO_xh2Rrbt14vTk3NSy9-X5gLxRK4vnR59ArACxXY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQCAEH3ojxzIELh46lSdr1OE3AeGwcGBK3KnFTNCE6BN0Bfj1O2iEeQuLWQ6NEsWN_Tj7bAEecG94mzQmUQB3I3B2pONQBNxJNiEigxOU79wdR705e3qv7Olnd58JYaz35zDbdp3_Lz8Y4cVdlJ44pT_CDLO6cctm4VbrWp-GNI1mVyOQ0IQGD6atkKzkZXvQpFgxVUxC8IQjwzQv5tiq_bLF3MGcrMJgureKVPDYnpWni-4-qjf9e-yos11CTdSrdWIMZW6zD0pcChOsw7wmg-LoBV52C3ZD5eBq924zdjh7c0KrAxhvrfJbvZH3fcZoR1GWDceGI7hpL1iWXi56FxE6755twd3Y67PaCutFCgKFUZRC77hAKteVCh5HWmcunVYZbcu9S5irKkyzBKJFGiwhFKzMCMQ6V0NpmicrEFswW48JuA8MwyYVpZxJ5LknYRkibcxm388Q1kwkbcDzd-PS5qqeR-jiklaQkpNQJKa2F1IBNt49f_qu2sAF7U1Gl9Yl7TQXFfTJSZG52_hh2CAu9Yf86vb4YXO3CopupukvZg9nyZWL3CV2U5sDr1Acp9si- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Signal+Quality+Assessment+Method+for+Noncontact+Capacitive+ECG&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiang%2C+Yunyi&rft.au=Xiao%2C+Zhijun&rft.au=Zhang%2C+Yuwei&rft.au=Ma%2C+Caiyun&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3533644&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3533644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |