An Optimized Signal Quality Assessment Method for Noncontact Capacitive ECG

Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and powe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 11
Main Authors Jiang, Yunyi, Xiao, Zhijun, Zhang, Yuwei, Ma, Caiyun, Yang, Chenxi, Jin, Weiming, Li, Jianqing, Liu, Chengyu
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2025.3533644

Cover

Loading…
Abstract Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and power line interference (PLI). This study proposed an optimized signal quality assessment method to identify and remove low-quality cECG signals. First, the human body-electrode interface is modeled to analyze the generation mechanism and influence of cECG motion artifacts and PLI. Then, distinct signal quality indices (SQIs) are proposed to target the characteristics of these interferences. Moreover, optimized cECG features and previously proposed ECG features were combined as multifeatures and presented to XGBoost for binary classification training. Finally, Shapley additive explanations (SHAPs) were utilized for feature optimization to reduce redundant information. Validation on a labeled noncontact cECG database yields an impressive binary classification accuracy of 98.786%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98.845%, and a kappa of 97.567%. Moreover, its performance on a subject-independent validation set is also excellent, with an accuracy of 99.130%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 96.937%, and a kappa of 96.430%. The optimized multifeatures also demonstrate favorable performance in a triple classification model. The experimental results show that our method offers a precise and convenient solution for cECG signal quality assessment.
AbstractList Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and power line interference (PLI). This study proposed an optimized signal quality assessment method to identify and remove low-quality cECG signals. First, the human body-electrode interface is modeled to analyze the generation mechanism and influence of cECG motion artifacts and PLI. Then, distinct signal quality indices (SQIs) are proposed to target the characteristics of these interferences. Moreover, optimized cECG features and previously proposed ECG features were combined as multifeatures and presented to XGBoost for binary classification training. Finally, Shapley additive explanations (SHAPs) were utilized for feature optimization to reduce redundant information. Validation on a labeled noncontact cECG database yields an impressive binary classification accuracy of 98.786%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98.845%, and a kappa of 97.567%. Moreover, its performance on a subject-independent validation set is also excellent, with an accuracy of 99.130%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 96.937%, and a kappa of 96.430%. The optimized multifeatures also demonstrate favorable performance in a triple classification model. The experimental results show that our method offers a precise and convenient solution for cECG signal quality assessment.
Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the conventional electrocardiogram (ECG), cECG signal quality is prone to degradation in practical applications due to motion artifacts and power line interference (PLI). This study proposed an optimized signal quality assessment method to identify and remove low-quality cECG signals. First, the human body-electrode interface is modeled to analyze the generation mechanism and influence of cECG motion artifacts and PLI. Then, distinct signal quality indices (SQIs) are proposed to target the characteristics of these interferences. Moreover, optimized cECG features and previously proposed ECG features were combined as multifeatures and presented to XGBoost for binary classification training. Finally, Shapley additive explanations (SHAPs) were utilized for feature optimization to reduce redundant information. Validation on a labeled noncontact cECG database yields an impressive binary classification accuracy of 98.786%, an [Formula Omitted]-score of 98.845%, and a kappa of 97.567%. Moreover, its performance on a subject-independent validation set is also excellent, with an accuracy of 99.130%, an [Formula Omitted]-score of 96.937%, and a kappa of 96.430%. The optimized multifeatures also demonstrate favorable performance in a triple classification model. The experimental results show that our method offers a precise and convenient solution for cECG signal quality assessment.
Author Ma, Caiyun
Xiao, Zhijun
Zhang, Yuwei
Jiang, Yunyi
Li, Jianqing
Liu, Chengyu
Jin, Weiming
Yang, Chenxi
Author_xml – sequence: 1
  givenname: Yunyi
  orcidid: 0009-0003-1252-9825
  surname: Jiang
  fullname: Jiang, Yunyi
  email: 230248531@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Zhijun
  orcidid: 0000-0002-9090-047X
  surname: Xiao
  fullname: Xiao, Zhijun
  email: zhijunxiao@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Yuwei
  orcidid: 0009-0004-7961-4079
  surname: Zhang
  fullname: Zhang, Yuwei
  email: zhangyuwei@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Caiyun
  orcidid: 0000-0001-5429-8760
  surname: Ma
  fullname: Ma, Caiyun
  email: 230208850@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Chenxi
  orcidid: 0000-0003-0180-4126
  surname: Yang
  fullname: Yang, Chenxi
  email: chenxiyang@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 6
  givenname: Weiming
  orcidid: 0009-0006-5390-7134
  surname: Jin
  fullname: Jin, Weiming
  email: jinwm@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 7
  givenname: Jianqing
  orcidid: 0000-0002-3524-8933
  surname: Li
  fullname: Li, Jianqing
  email: ljq@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 8
  givenname: Chengyu
  orcidid: 0000-0003-1965-3020
  surname: Liu
  fullname: Liu, Chengyu
  email: chengyu@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
BookMark eNpNkE1PAjEURRujiYDuXbho4nqw30OXZIJIBIkR103pvNESmI7TYoK_3iGwcHU35768e_rosg41IHRHyZBSoh9Xs8WQESaHXHKuhLhAPSplnmml2CXqEUJHmRZSXaN-jBtCSK5E3kMv4xovm-R3_hdK_O4_a7vFb3u79emAxzFCjDuoE15A-golrkKLX0PtQp2sS7iwjXU--R_Ak2J6g64qu41we84B-niarIrnbL6czorxPHNMyJTlkjMinQXKLVPWloxoLdcUmKBCVFJVutROabG2XDlOyjV3LmeSWwulliUfoIfT3aYN33uIyWzCvu0ej4bTbrqSueYdRU6Ua0OMLVSmaf3OtgdDiTkqM50yc1Rmzsq6yv2p4gHgHz6SsrPI_wBYSmiT
CODEN IEIMAO
Cites_doi 10.1016/j.burns.2012.07.029
10.1109/RBME.2018.2810957
10.1088/0967-3334/33/9/1419
10.1109/LSP.2016.2542881
10.3390/s17112448
10.1016/j.bspc.2014.06.009
10.1109/TIM.2023.3273648
10.1088/0967-3334/21/2/307
10.1007/978-981-15-3824-7_3
10.1007/s11517-017-1647-5
10.1155/2010/926305
10.1364/OE.436293
10.1109/JBHI.2023.3314698
10.1109/JSEN.2020.2986723
10.1016/j.bspc.2022.104064
10.1016/j.artmed.2019.101788
10.1109/TIM.2023.3251392
10.1109/FUZZ.2001.1008855
10.1145/1273496.1273614
10.3389/fphys.2012.00147
10.1109/INFOTEH60418.2024.10495929
10.1016/j.cmpb.2014.09.002
10.1073/pnas.88.6.2297
10.1111/j.1600-0536.2007.01016.x
10.1007/BF02441961
10.1145/2939672.2939785
10.3390/life13051155
10.1016/j.amjcard.2015.10.013
10.1109/JBHI.2014.2338351
10.1088/0967-3334/33/9/1463
10.1098/rspa.1998.0193
10.1109/TBCAS.2023.3270661
10.1109/TBME.1985.325532
10.1016/S0076-6879(04)84011-4
10.1109/TBME.2013.2240452
10.1109/tcbb.2018.2846611
10.1109/tim.2022.3186709
10.1088/0967-3334/37/12/2154
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3533644
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2025_3533644
10855662
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171123; 62071241
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20192004
  funderid: 10.13039/501100004608
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC3603600
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-753205cae13a26aad20995b1e24144f56f9d9c694ba36c30db3cc7253aaed95d3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:11:43 EDT 2025
Tue Jul 01 03:07:51 EDT 2025
Wed Aug 27 01:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-753205cae13a26aad20995b1e24144f56f9d9c694ba36c30db3cc7253aaed95d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0180-4126
0009-0004-7961-4079
0000-0003-1965-3020
0009-0003-1252-9825
0000-0001-5429-8760
0000-0002-3524-8933
0000-0002-9090-047X
0009-0006-5390-7134
PQID 3164465793
PQPubID 85462
PageCount 11
ParticipantIDs ieee_primary_10855662
proquest_journals_3164465793
crossref_primary_10_1109_TIM_2025_3533644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Zaunseder (ref13)
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Lundberg (ref36)
References_xml – ident: ref3
  doi: 10.1016/j.burns.2012.07.029
– ident: ref16
  doi: 10.1109/RBME.2018.2810957
– ident: ref18
  doi: 10.1088/0967-3334/33/9/1419
– ident: ref26
  doi: 10.1109/LSP.2016.2542881
– ident: ref19
  doi: 10.3390/s17112448
– ident: ref32
  doi: 10.1016/j.bspc.2014.06.009
– ident: ref9
  doi: 10.1109/TIM.2023.3273648
– ident: ref4
  doi: 10.1088/0967-3334/21/2/307
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: A unified approach to interpreting model predictions
– ident: ref21
  doi: 10.1007/978-981-15-3824-7_3
– ident: ref27
  doi: 10.1007/s11517-017-1647-5
– ident: ref20
  doi: 10.1155/2010/926305
– ident: ref35
  doi: 10.1364/OE.436293
– ident: ref15
  doi: 10.1109/JBHI.2023.3314698
– ident: ref7
  doi: 10.1109/JSEN.2020.2986723
– ident: ref14
  doi: 10.1016/j.bspc.2022.104064
– ident: ref28
  doi: 10.1016/j.artmed.2019.101788
– ident: ref8
  doi: 10.1109/TIM.2023.3251392
– ident: ref25
  doi: 10.1109/FUZZ.2001.1008855
– ident: ref37
  doi: 10.1145/1273496.1273614
– ident: ref30
  doi: 10.3389/fphys.2012.00147
– ident: ref34
  doi: 10.1109/INFOTEH60418.2024.10495929
– ident: ref12
  doi: 10.1016/j.cmpb.2014.09.002
– ident: ref23
  doi: 10.1073/pnas.88.6.2297
– ident: ref2
  doi: 10.1111/j.1600-0536.2007.01016.x
– start-page: 277
  volume-title: Proc. Comput. Cardiol.
  ident: ref13
  article-title: CinC challenge—Assessing the usability of ECG by ensemble decision trees
– ident: ref17
  doi: 10.1007/BF02441961
– ident: ref33
  doi: 10.1145/2939672.2939785
– ident: ref40
  doi: 10.3390/life13051155
– ident: ref39
  doi: 10.1016/j.amjcard.2015.10.013
– ident: ref10
  doi: 10.1109/JBHI.2014.2338351
– ident: ref11
  doi: 10.1088/0967-3334/33/9/1463
– ident: ref31
  doi: 10.1098/rspa.1998.0193
– ident: ref6
  doi: 10.1109/TBCAS.2023.3270661
– ident: ref38
  doi: 10.1109/TBME.1985.325532
– ident: ref24
  doi: 10.1016/S0076-6879(04)84011-4
– ident: ref22
  doi: 10.1109/TBME.2013.2240452
– ident: ref1
  doi: 10.1109/tcbb.2018.2846611
– ident: ref5
  doi: 10.1109/tim.2022.3186709
– ident: ref29
  doi: 10.1088/0967-3334/37/12/2154
SSID ssj0007647
Score 2.4298317
Snippet Noncontact capacitive electrocardiogram (cECG) is gaining recognition in cardiovascular disease monitoring for its comfort and noninvasiveness. Compared to the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Artifact identification
Classification
Couplings
Electrocardiography
Electrodes
Feature extraction
Feature optimization
Human motion
Identification methods
Impedance
improved complete ensemble empirical mode decomposition (ICEEMDAN)
Interference
Motion artifacts
noncontact capacitive ECG (cECG)
Optimization
Power lines
Quality assessment
Shapley additive explanations (SHAPs)
Signal generation
Signal quality
signal quality index
Title An Optimized Signal Quality Assessment Method for Noncontact Capacitive ECG
URI https://ieeexplore.ieee.org/document/10855662
https://www.proquest.com/docview/3164465793
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEhIMPIsoL3lgYUhbx3bSjFVVKKCWgVbqFtkXB1WIFNF0oL-es5OgAkJiyxAnlu9895199x0hV4xp1kHN8SQH5YnUbqnQVx7TArQPgKDE1jsPR8FgIu6ncloWq7taGGOMSz4zTfvo7vKTOSztUVnLZsoj_ECLu4mRW1Gs9WV2w0AUBJkMf4ewoLqTbEet8d0QI0FfNjmCGwQA33yQa6ryyxI793KzR0bVxIqskpfmMtdNWP3gbPz3zPfJbgk0abfQjAOyYbJDsrNGP3hItlz6JyyOyEM3o49oPF5nK5PQp9mzHVrQa3zQ7hd5Jx26ftMUgS4dzTOb5q4gpz10uOBykGi_d1snk5v-uDfwyjYLHvhC5l5oe0NIUIZx5QdKJbaaVmpm0LkLkcogjZIIgkhoxQPg7URzgNCXXCmTRDLhx6SWzTNzQij4Ucp1JxHAUoGi1lyYlImwk0a2lYzfINfVwsdvBZtG7KKQdhSjkGIrpLgUUoPU7TquvVcsYYOcV6KKy_22iDlGfSKQaGxO_xh2Rrbt14vTk3NSy9-X5gLxRK4vnR59ArACxXY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQCAEH3ojxzIELh46lSdr1OE3AeGwcGBK3KnFTNCE6BN0Bfj1O2iEeQuLWQ6NEsWN_Tj7bAEecG94mzQmUQB3I3B2pONQBNxJNiEigxOU79wdR705e3qv7Olnd58JYaz35zDbdp3_Lz8Y4cVdlJ44pT_CDLO6cctm4VbrWp-GNI1mVyOQ0IQGD6atkKzkZXvQpFgxVUxC8IQjwzQv5tiq_bLF3MGcrMJgureKVPDYnpWni-4-qjf9e-yos11CTdSrdWIMZW6zD0pcChOsw7wmg-LoBV52C3ZD5eBq924zdjh7c0KrAxhvrfJbvZH3fcZoR1GWDceGI7hpL1iWXi56FxE6755twd3Y67PaCutFCgKFUZRC77hAKteVCh5HWmcunVYZbcu9S5irKkyzBKJFGiwhFKzMCMQ6V0NpmicrEFswW48JuA8MwyYVpZxJ5LknYRkibcxm388Q1kwkbcDzd-PS5qqeR-jiklaQkpNQJKa2F1IBNt49f_qu2sAF7U1Gl9Yl7TQXFfTJSZG52_hh2CAu9Yf86vb4YXO3CopupukvZg9nyZWL3CV2U5sDr1Acp9si-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Signal+Quality+Assessment+Method+for+Noncontact+Capacitive+ECG&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiang%2C+Yunyi&rft.au=Xiao%2C+Zhijun&rft.au=Zhang%2C+Yuwei&rft.au=Ma%2C+Caiyun&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3533644&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3533644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon