A Relation Feature Comparison Network for Cross-Domain Recognition of Motion Intention

The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However, electroencephalogram (EEG) data have cross-session and cross-subject variability due to external factors and individual differences. Therefore...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 13
Main Authors Xu, Jiacan, Li, Donglin, Zhou, Peng, Zhang, Yuxian, Wang, Zinan, Ma, Dazhong
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However, electroencephalogram (EEG) data have cross-session and cross-subject variability due to external factors and individual differences. Therefore cross-domain EEG signal recognition remains challenging. To solve this problem, we propose a feature relation contrastive network (FRCN) in this article. First, we use covariance matrices to align the data distribution between in source and target domains to reduce the difference. Second, we extract feature representations by the pretrained embedding network and align the correlations of the features using a nonlinear transformation. Then, we propose a source domain selection method to measure the similarity of motion-related data distributions between domains by utilizing resting-state data from different domains and the selected appropriate source domain data for fine-tuning. Finally, we propose a metric learning-based interdomain relation contrastive module (RCM) to learn multiple nonlinear distance metrics based on different levels of features simultaneously, which enables interdomain comparison learning and accurately compares the relations between samples to reduce the negative migration. For testing the target task, effective matching and similarity comparison function from multiple abstraction-level features jointly alleviates the reliance on the embedded ability to generate linearly separable features. The experimental results show that the FRCN achieves better results on the BCI Competition IV II-a and II-b dataset, and the ablation experiments validate the effectiveness of the method.
AbstractList The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However, electroencephalogram (EEG) data have cross-session and cross-subject variability due to external factors and individual differences. Therefore cross-domain EEG signal recognition remains challenging. To solve this problem, we propose a feature relation contrastive network (FRCN) in this article. First, we use covariance matrices to align the data distribution between in source and target domains to reduce the difference. Second, we extract feature representations by the pretrained embedding network and align the correlations of the features using a nonlinear transformation. Then, we propose a source domain selection method to measure the similarity of motion-related data distributions between domains by utilizing resting-state data from different domains and the selected appropriate source domain data for fine-tuning. Finally, we propose a metric learning-based interdomain relation contrastive module (RCM) to learn multiple nonlinear distance metrics based on different levels of features simultaneously, which enables interdomain comparison learning and accurately compares the relations between samples to reduce the negative migration. For testing the target task, effective matching and similarity comparison function from multiple abstraction-level features jointly alleviates the reliance on the embedded ability to generate linearly separable features. The experimental results show that the FRCN achieves better results on the BCI Competition IV II-a and II-b dataset, and the ablation experiments validate the effectiveness of the method.
Author Li, Donglin
Ma, Dazhong
Xu, Jiacan
Wang, Zinan
Zhou, Peng
Zhang, Yuxian
Author_xml – sequence: 1
  givenname: Jiacan
  orcidid: 0000-0001-7401-274X
  surname: Xu
  fullname: Xu, Jiacan
  email: xujiacan@126.com
  organization: School of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang, China
– sequence: 2
  givenname: Donglin
  orcidid: 0000-0001-7660-831X
  surname: Li
  fullname: Li, Donglin
  email: linlin.lidonglin@gmail.com
  organization: College of Electrical Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0002-2968-6937
  surname: Zhou
  fullname: Zhou, Peng
  email: zhoupeng@sjzu.edu.cn
  organization: School of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang, China
– sequence: 4
  givenname: Yuxian
  orcidid: 0000-0002-7337-9141
  surname: Zhang
  fullname: Zhang, Yuxian
  email: yuxian524524@163.com
  organization: College of Electrical Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 5
  givenname: Zinan
  orcidid: 0000-0003-1936-8289
  surname: Wang
  fullname: Wang, Zinan
  organization: School of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang, China
– sequence: 6
  givenname: Dazhong
  orcidid: 0000-0001-9647-3694
  surname: Ma
  fullname: Ma, Dazhong
  email: madazhong@ise.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
BookMark eNpNkDFPwzAQhS0EEm1hZ2CIxJxytuPYHqtAoVILEiqslptcUEprFzsV4t-TtB2Y7t3pfXe6NyTnzjsk5IbCmFLQ98vZYsyAZWOeMeACzsiACiFTnefsnAwAqEp1JvJLMoxxDQAyz-SAfEySN9zYtvEumaJt9wGTwm93NjSxG71g--PDV1L7kBTBx5g--K1tXAeV_tM1B87XycIf1My16Hp1RS5qu4l4faoj8j59XBbP6fz1aVZM5mnJMtGmudRMV1JXtkS7UljzqrKSVxZKLcuqrivBLFgNtGtyqWBFM2VRoYYV0pLzEbk77t0F_73H2Jq13wfXnTQcFMtVJrjqXHB0lf0LAWuzC83Whl9DwfTpmS4906dnTul1yO0RaRDxn11ozZnkf_01bmE
CODEN IEIMAO
Cites_doi 10.1109/tim.2023.3293544
10.1109/TNNLS.2018.2886414
10.1109/TBME.2010.2082539
10.1016/S1388-2457(02)00057-3
10.1016/j.neunet.2014.05.012
10.1109/IWW-BCI.2019.8737340
10.1109/TNSRE.2023.3285309
10.1109/ICCV.2015.151
10.1109/tsmc.2019.2956022
10.1049/PBCE114E_ch5
10.1109/NER.2017.8008420
10.1007/978-3-319-49409-8_35
10.1088/1741-2552/aace8c
10.3389/fnins.2012.00055
10.1109/TNNLS.2018.2789927
10.1177/155005941104200411
10.1109/tim.2023.3240230
10.1109/TNSRE.2020.2985996
10.1155/2018/9871603
10.1109/tnsre.2020.3037326
10.1109/TNSRE.2021.3059166
10.1145/3065386
10.1109/IJCNN.2008.4634130
10.1109/TBME.2019.2913914
10.1109/tim.2023.3284926
10.1109/TBME.2017.2742541
10.1109/TBME.2018.2889705
10.1109/TNSRE.2023.3241846
10.1002/hbm.23730
10.3389/fnins.2019.01275
10.1109/LSP.2019.2906824
10.1109/TNNLS.2020.3010780
10.1016/j.neuroimage.2010.03.022
10.1109/ACCESS.2022.3178100
10.1109/TNSRE.2023.3259730
10.1109/tnnls.2023.3269512
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3420350
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2024_3420350
10599327
Genre orig-research
GrantInformation_xml – fundername: Doctor Research Project of Liaoning Provincial Science and Technology Department
  grantid: 2022-BS-193
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 2022-KF-21-06
  funderid: 10.13039/501100005047
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC2203104
  funderid: 10.13039/501100018617
– fundername: Applied Basic Research of Liaoning Province
  grantid: 2023JH2/101300133
– fundername: National Natural Science Foundation of China
  grantid: 62173238; 62273095; 52205117; 52207134
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-67929d79daceab8ef3dda73da0c97cdffd52a0a901cdf6780b148ae8e90be1c33
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:07:04 EDT 2025
Tue Jul 01 05:19:01 EDT 2025
Wed Aug 27 01:42:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-67929d79daceab8ef3dda73da0c97cdffd52a0a901cdf6780b148ae8e90be1c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7337-9141
0000-0001-7660-831X
0000-0001-7401-274X
0000-0001-9647-3694
0000-0003-1936-8289
0000-0002-2968-6937
PQID 3082684538
PQPubID 85462
PageCount 13
ParticipantIDs proquest_journals_3082684538
ieee_primary_10599327
crossref_primary_10_1109_TIM_2024_3420350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Yosinski (ref28)
ref24
ref23
ref26
ref25
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Donahue (ref20)
ref40
Srivastava (ref30) 2014; 15
Peng (ref18)
References_xml – ident: ref6
  doi: 10.1109/tim.2023.3293544
– ident: ref5
  doi: 10.1109/TNNLS.2018.2886414
– ident: ref12
  doi: 10.1109/TBME.2010.2082539
– ident: ref1
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref11
  doi: 10.1016/j.neunet.2014.05.012
– ident: ref22
  doi: 10.1109/IWW-BCI.2019.8737340
– ident: ref39
  doi: 10.1109/TNSRE.2023.3285309
– ident: ref19
  doi: 10.1109/ICCV.2015.151
– ident: ref2
  doi: 10.1109/tsmc.2019.2956022
– ident: ref7
  doi: 10.1049/PBCE114E_ch5
– ident: ref24
  doi: 10.1109/NER.2017.8008420
– ident: ref10
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref23
  doi: 10.1088/1741-2552/aace8c
– ident: ref33
  doi: 10.3389/fnins.2012.00055
– ident: ref35
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref9
  doi: 10.1177/155005941104200411
– volume-title: Proc. NIPS
  ident: ref28
  article-title: How transferable are features in deep neural networks?
– volume-title: Proc. ICLR Workshop Track
  ident: ref18
  article-title: What do deep CNNs learn about objects?
– ident: ref3
  doi: 10.1109/tim.2023.3240230
– ident: ref17
  doi: 10.1109/TNSRE.2020.2985996
– ident: ref13
  doi: 10.1155/2018/9871603
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref30
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref4
  doi: 10.1109/tnsre.2020.3037326
– ident: ref27
  doi: 10.1109/TNSRE.2021.3059166
– ident: ref29
  doi: 10.1145/3065386
– start-page: 647
  volume-title: Proc. ICML
  ident: ref20
  article-title: DeCAF: A deep convolutional activation feature for generic visual recognition
– ident: ref34
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref14
  doi: 10.1109/TBME.2019.2913914
– ident: ref8
  doi: 10.1109/tim.2023.3284926
– ident: ref15
  doi: 10.1109/TBME.2017.2742541
– ident: ref16
  doi: 10.1109/TBME.2018.2889705
– ident: ref37
  doi: 10.1109/TNSRE.2023.3241846
– ident: ref32
  doi: 10.1002/hbm.23730
– ident: ref25
  doi: 10.3389/fnins.2019.01275
– ident: ref40
  doi: 10.1109/LSP.2019.2906824
– ident: ref26
  doi: 10.1109/TNNLS.2020.3010780
– ident: ref31
  doi: 10.1016/j.neuroimage.2010.03.022
– ident: ref36
  doi: 10.1109/ACCESS.2022.3178100
– ident: ref38
  doi: 10.1109/TNSRE.2023.3259730
– ident: ref21
  doi: 10.1109/tnnls.2023.3269512
SSID ssj0007647
Score 2.3994832
Snippet The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Brain modeling
Brain-computer interfaces
Covariance matrices
Covariance matrix
Cross-domain
Data models
domain adaptation
Effectiveness
electroencephalogram (EEG)
Electroencephalography
Embedding
Feature extraction
Feature recognition
Human-computer interface
Learning
relation contrastive
Similarity
source domain selection
Title A Relation Feature Comparison Network for Cross-Domain Recognition of Motion Intention
URI https://ieeexplore.ieee.org/document/10599327
https://www.proquest.com/docview/3082684538
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4gaAHP-bE6ZQcvHho14-0WY9jOqawHWST3UqapCBiK1t78a_3JW3HVAQvJYW0TfOS934v7wvgNkh1jpBUWpLhBSWUa0Uq4ZakXHAepS4LdbzzbB5Ol_RpFazqYHUTC6OUMs5nytZNY8uXuSj1UdlAYwHEG6wFLdTcqmCtLdtlIa0SZLq4gxEWNDZJJxosHmeoCXrU9qmnLWnfZJApqvKLExvxMjmGeTOwyqvkzS6LxBafP3I2_nvkJ3BUA00yqlbGKeyprAOHO-kHO7Bv3D_F5gxeRqTxiiMaFJZrRcbbCoVkXvmKEwS4ZKx_ybrP3_lrRp4b9yPslKdkZkoCEeMWr1tdWE4eFuOpVVdcsIRHg8IKGaIlySLJheLJUKW-lJz5kjsiYkKmqQw87nDEEHiDYs5JUJviaqgiJ1Gu8P1zaGd5pi6AICOlNGFegOyWBjyIlJM6CvUxFJmIQkUP7hoaxB9VYo3YKCROFCO9Yk2vuKZXD7p6Snf6VbPZg35DtbjeeptY598JhxS_f_nHY1dwoN9eHaT0oV2sS3WN0KJIbsyS-gIeLMsu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9RjFEPfiBGFLUHLx4G--hWdiQoAWUcDBhuS9d2iTGCAXbxr_e12whqTLwsXdKlXV_73u_1fQHc-qnOEZJKSzJ8oIRyrFAl3JKUC87D1GGBjneORkF_Qh-n_rQIVjexMEop43ymmrppbPlyLjJ9VdbSWADxBtuGHRT8vpOHa60ZLwtoniLTwTOMwKC0StphazyIUBd0adOjrralfZNCpqzKL15sBEzvCEbl1HK_krdmtkqa4vNH1sZ_z_0YDguoSTr53jiBLTWrwsFGAsIq7BoHULE8hZcOKf3iiIaF2UKR7rpGIRnl3uIEIS7p6l-y7ufv_HVGnksHJOw0T0lkigIR4xivWzWY9B7G3b5V1FywhEv9lRUwxEuShZILxZO2Sj0pOfMkt0XIhExT6bvc5ogi8AUFnZ2gPsVVW4V2ohzheWdQmc1n6hwIslJKE-b6yHCpz_1Q2amtUCNDoYk4VNThrqRB_JGn1oiNSmKHMdIr1vSKC3rVoaaXdKNfvpp1aJRUi4vDt4x1Bp6gTXH8iz8-u4G9_jgaxsPB6OkS9vVI-bVKAyqrRaauEGiskmuzvb4A5TnOdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Relation+Feature+Comparison+Network+for+Cross-Domain+Recognition+of+Motion+Intention&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Xu%2C+Jiacan&rft.au=Li%2C+Donglin&rft.au=Zhou%2C+Peng&rft.au=Zhang%2C+Yuxian&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2024.3420350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3420350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon