A Relation Feature Comparison Network for Cross-Domain Recognition of Motion Intention
The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However, electroencephalogram (EEG) data have cross-session and cross-subject variability due to external factors and individual differences. Therefore...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However, electroencephalogram (EEG) data have cross-session and cross-subject variability due to external factors and individual differences. Therefore cross-domain EEG signal recognition remains challenging. To solve this problem, we propose a feature relation contrastive network (FRCN) in this article. First, we use covariance matrices to align the data distribution between in source and target domains to reduce the difference. Second, we extract feature representations by the pretrained embedding network and align the correlations of the features using a nonlinear transformation. Then, we propose a source domain selection method to measure the similarity of motion-related data distributions between domains by utilizing resting-state data from different domains and the selected appropriate source domain data for fine-tuning. Finally, we propose a metric learning-based interdomain relation contrastive module (RCM) to learn multiple nonlinear distance metrics based on different levels of features simultaneously, which enables interdomain comparison learning and accurately compares the relations between samples to reduce the negative migration. For testing the target task, effective matching and similarity comparison function from multiple abstraction-level features jointly alleviates the reliance on the embedded ability to generate linearly separable features. The experimental results show that the FRCN achieves better results on the BCI Competition IV II-a and II-b dataset, and the ablation experiments validate the effectiveness of the method. |
---|---|
AbstractList | The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However, electroencephalogram (EEG) data have cross-session and cross-subject variability due to external factors and individual differences. Therefore cross-domain EEG signal recognition remains challenging. To solve this problem, we propose a feature relation contrastive network (FRCN) in this article. First, we use covariance matrices to align the data distribution between in source and target domains to reduce the difference. Second, we extract feature representations by the pretrained embedding network and align the correlations of the features using a nonlinear transformation. Then, we propose a source domain selection method to measure the similarity of motion-related data distributions between domains by utilizing resting-state data from different domains and the selected appropriate source domain data for fine-tuning. Finally, we propose a metric learning-based interdomain relation contrastive module (RCM) to learn multiple nonlinear distance metrics based on different levels of features simultaneously, which enables interdomain comparison learning and accurately compares the relations between samples to reduce the negative migration. For testing the target task, effective matching and similarity comparison function from multiple abstraction-level features jointly alleviates the reliance on the embedded ability to generate linearly separable features. The experimental results show that the FRCN achieves better results on the BCI Competition IV II-a and II-b dataset, and the ablation experiments validate the effectiveness of the method. |
Author | Li, Donglin Ma, Dazhong Xu, Jiacan Wang, Zinan Zhou, Peng Zhang, Yuxian |
Author_xml | – sequence: 1 givenname: Jiacan orcidid: 0000-0001-7401-274X surname: Xu fullname: Xu, Jiacan email: xujiacan@126.com organization: School of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang, China – sequence: 2 givenname: Donglin orcidid: 0000-0001-7660-831X surname: Li fullname: Li, Donglin email: linlin.lidonglin@gmail.com organization: College of Electrical Engineering, Shenyang University of Technology, Shenyang, China – sequence: 3 givenname: Peng orcidid: 0000-0002-2968-6937 surname: Zhou fullname: Zhou, Peng email: zhoupeng@sjzu.edu.cn organization: School of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang, China – sequence: 4 givenname: Yuxian orcidid: 0000-0002-7337-9141 surname: Zhang fullname: Zhang, Yuxian email: yuxian524524@163.com organization: College of Electrical Engineering, Shenyang University of Technology, Shenyang, China – sequence: 5 givenname: Zinan orcidid: 0000-0003-1936-8289 surname: Wang fullname: Wang, Zinan organization: School of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang, China – sequence: 6 givenname: Dazhong orcidid: 0000-0001-9647-3694 surname: Ma fullname: Ma, Dazhong email: madazhong@ise.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China |
BookMark | eNpNkDFPwzAQhS0EEm1hZ2CIxJxytuPYHqtAoVILEiqslptcUEprFzsV4t-TtB2Y7t3pfXe6NyTnzjsk5IbCmFLQ98vZYsyAZWOeMeACzsiACiFTnefsnAwAqEp1JvJLMoxxDQAyz-SAfEySN9zYtvEumaJt9wGTwm93NjSxG71g--PDV1L7kBTBx5g--K1tXAeV_tM1B87XycIf1My16Hp1RS5qu4l4faoj8j59XBbP6fz1aVZM5mnJMtGmudRMV1JXtkS7UljzqrKSVxZKLcuqrivBLFgNtGtyqWBFM2VRoYYV0pLzEbk77t0F_73H2Jq13wfXnTQcFMtVJrjqXHB0lf0LAWuzC83Whl9DwfTpmS4906dnTul1yO0RaRDxn11ozZnkf_01bmE |
CODEN | IEIMAO |
Cites_doi | 10.1109/tim.2023.3293544 10.1109/TNNLS.2018.2886414 10.1109/TBME.2010.2082539 10.1016/S1388-2457(02)00057-3 10.1016/j.neunet.2014.05.012 10.1109/IWW-BCI.2019.8737340 10.1109/TNSRE.2023.3285309 10.1109/ICCV.2015.151 10.1109/tsmc.2019.2956022 10.1049/PBCE114E_ch5 10.1109/NER.2017.8008420 10.1007/978-3-319-49409-8_35 10.1088/1741-2552/aace8c 10.3389/fnins.2012.00055 10.1109/TNNLS.2018.2789927 10.1177/155005941104200411 10.1109/tim.2023.3240230 10.1109/TNSRE.2020.2985996 10.1155/2018/9871603 10.1109/tnsre.2020.3037326 10.1109/TNSRE.2021.3059166 10.1145/3065386 10.1109/IJCNN.2008.4634130 10.1109/TBME.2019.2913914 10.1109/tim.2023.3284926 10.1109/TBME.2017.2742541 10.1109/TBME.2018.2889705 10.1109/TNSRE.2023.3241846 10.1002/hbm.23730 10.3389/fnins.2019.01275 10.1109/LSP.2019.2906824 10.1109/TNNLS.2020.3010780 10.1016/j.neuroimage.2010.03.022 10.1109/ACCESS.2022.3178100 10.1109/TNSRE.2023.3259730 10.1109/tnnls.2023.3269512 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3420350 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TIM_2024_3420350 10599327 |
Genre | orig-research |
GrantInformation_xml | – fundername: Doctor Research Project of Liaoning Provincial Science and Technology Department grantid: 2022-BS-193 – fundername: Natural Science Foundation of Liaoning Province grantid: 2022-KF-21-06 funderid: 10.13039/501100005047 – fundername: Liaoning Revitalization Talents Program grantid: XLYC2203104 funderid: 10.13039/501100018617 – fundername: Applied Basic Research of Liaoning Province grantid: 2023JH2/101300133 – fundername: National Natural Science Foundation of China grantid: 62173238; 62273095; 52205117; 52207134 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c245t-67929d79daceab8ef3dda73da0c97cdffd52a0a901cdf6780b148ae8e90be1c33 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:07:04 EDT 2025 Tue Jul 01 05:19:01 EDT 2025 Wed Aug 27 01:42:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-67929d79daceab8ef3dda73da0c97cdffd52a0a901cdf6780b148ae8e90be1c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7337-9141 0000-0001-7660-831X 0000-0001-7401-274X 0000-0001-9647-3694 0000-0003-1936-8289 0000-0002-2968-6937 |
PQID | 3082684538 |
PQPubID | 85462 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3082684538 ieee_primary_10599327 crossref_primary_10_1109_TIM_2024_3420350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Yosinski (ref28) ref24 ref23 ref26 ref25 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Donahue (ref20) ref40 Srivastava (ref30) 2014; 15 Peng (ref18) |
References_xml | – ident: ref6 doi: 10.1109/tim.2023.3293544 – ident: ref5 doi: 10.1109/TNNLS.2018.2886414 – ident: ref12 doi: 10.1109/TBME.2010.2082539 – ident: ref1 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref11 doi: 10.1016/j.neunet.2014.05.012 – ident: ref22 doi: 10.1109/IWW-BCI.2019.8737340 – ident: ref39 doi: 10.1109/TNSRE.2023.3285309 – ident: ref19 doi: 10.1109/ICCV.2015.151 – ident: ref2 doi: 10.1109/tsmc.2019.2956022 – ident: ref7 doi: 10.1049/PBCE114E_ch5 – ident: ref24 doi: 10.1109/NER.2017.8008420 – ident: ref10 doi: 10.1007/978-3-319-49409-8_35 – ident: ref23 doi: 10.1088/1741-2552/aace8c – ident: ref33 doi: 10.3389/fnins.2012.00055 – ident: ref35 doi: 10.1109/TNNLS.2018.2789927 – ident: ref9 doi: 10.1177/155005941104200411 – volume-title: Proc. NIPS ident: ref28 article-title: How transferable are features in deep neural networks? – volume-title: Proc. ICLR Workshop Track ident: ref18 article-title: What do deep CNNs learn about objects? – ident: ref3 doi: 10.1109/tim.2023.3240230 – ident: ref17 doi: 10.1109/TNSRE.2020.2985996 – ident: ref13 doi: 10.1155/2018/9871603 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref30 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref4 doi: 10.1109/tnsre.2020.3037326 – ident: ref27 doi: 10.1109/TNSRE.2021.3059166 – ident: ref29 doi: 10.1145/3065386 – start-page: 647 volume-title: Proc. ICML ident: ref20 article-title: DeCAF: A deep convolutional activation feature for generic visual recognition – ident: ref34 doi: 10.1109/IJCNN.2008.4634130 – ident: ref14 doi: 10.1109/TBME.2019.2913914 – ident: ref8 doi: 10.1109/tim.2023.3284926 – ident: ref15 doi: 10.1109/TBME.2017.2742541 – ident: ref16 doi: 10.1109/TBME.2018.2889705 – ident: ref37 doi: 10.1109/TNSRE.2023.3241846 – ident: ref32 doi: 10.1002/hbm.23730 – ident: ref25 doi: 10.3389/fnins.2019.01275 – ident: ref40 doi: 10.1109/LSP.2019.2906824 – ident: ref26 doi: 10.1109/TNNLS.2020.3010780 – ident: ref31 doi: 10.1016/j.neuroimage.2010.03.022 – ident: ref36 doi: 10.1109/ACCESS.2022.3178100 – ident: ref38 doi: 10.1109/TNSRE.2023.3259730 – ident: ref21 doi: 10.1109/tnnls.2023.3269512 |
SSID | ssj0007647 |
Score | 2.3994832 |
Snippet | The ability to decode between subjects without the additional data recorded for training is crucial for brain-computer interface (BCI) applications. However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Ablation Brain modeling Brain-computer interfaces Covariance matrices Covariance matrix Cross-domain Data models domain adaptation Effectiveness electroencephalogram (EEG) Electroencephalography Embedding Feature extraction Feature recognition Human-computer interface Learning relation contrastive Similarity source domain selection |
Title | A Relation Feature Comparison Network for Cross-Domain Recognition of Motion Intention |
URI | https://ieeexplore.ieee.org/document/10599327 https://www.proquest.com/docview/3082684538 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4gaAHP-bE6ZQcvHho14-0WY9jOqawHWST3UqapCBiK1t78a_3JW3HVAQvJYW0TfOS934v7wvgNkh1jpBUWpLhBSWUa0Uq4ZakXHAepS4LdbzzbB5Ol_RpFazqYHUTC6OUMs5nytZNY8uXuSj1UdlAYwHEG6wFLdTcqmCtLdtlIa0SZLq4gxEWNDZJJxosHmeoCXrU9qmnLWnfZJApqvKLExvxMjmGeTOwyqvkzS6LxBafP3I2_nvkJ3BUA00yqlbGKeyprAOHO-kHO7Bv3D_F5gxeRqTxiiMaFJZrRcbbCoVkXvmKEwS4ZKx_ybrP3_lrRp4b9yPslKdkZkoCEeMWr1tdWE4eFuOpVVdcsIRHg8IKGaIlySLJheLJUKW-lJz5kjsiYkKmqQw87nDEEHiDYs5JUJviaqgiJ1Gu8P1zaGd5pi6AICOlNGFegOyWBjyIlJM6CvUxFJmIQkUP7hoaxB9VYo3YKCROFCO9Yk2vuKZXD7p6Snf6VbPZg35DtbjeeptY598JhxS_f_nHY1dwoN9eHaT0oV2sS3WN0KJIbsyS-gIeLMsu |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9RjFEPfiBGFLUHLx4G--hWdiQoAWUcDBhuS9d2iTGCAXbxr_e12whqTLwsXdKlXV_73u_1fQHc-qnOEZJKSzJ8oIRyrFAl3JKUC87D1GGBjneORkF_Qh-n_rQIVjexMEop43ymmrppbPlyLjJ9VdbSWADxBtuGHRT8vpOHa60ZLwtoniLTwTOMwKC0StphazyIUBd0adOjrralfZNCpqzKL15sBEzvCEbl1HK_krdmtkqa4vNH1sZ_z_0YDguoSTr53jiBLTWrwsFGAsIq7BoHULE8hZcOKf3iiIaF2UKR7rpGIRnl3uIEIS7p6l-y7ufv_HVGnksHJOw0T0lkigIR4xivWzWY9B7G3b5V1FywhEv9lRUwxEuShZILxZO2Sj0pOfMkt0XIhExT6bvc5ogi8AUFnZ2gPsVVW4V2ohzheWdQmc1n6hwIslJKE-b6yHCpz_1Q2amtUCNDoYk4VNThrqRB_JGn1oiNSmKHMdIr1vSKC3rVoaaXdKNfvpp1aJRUi4vDt4x1Bp6gTXH8iz8-u4G9_jgaxsPB6OkS9vVI-bVKAyqrRaauEGiskmuzvb4A5TnOdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Relation+Feature+Comparison+Network+for+Cross-Domain+Recognition+of+Motion+Intention&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Xu%2C+Jiacan&rft.au=Li%2C+Donglin&rft.au=Zhou%2C+Peng&rft.au=Zhang%2C+Yuxian&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2024.3420350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3420350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |