A Dynamic Model for Frequency Response Optimization in Photovoltaic Visible Light Communication

Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVL...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 41; no. 22; pp. 1 - 7
Main Authors Chen, Shuyan, Yu, Hui, Zhao, Ni, Chen, Lian-Kuan
Format Journal Article
LanguageEnglish
Published New York IEEE 15.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVLC model fails to accurately capture the factors affecting the PV module's frequency response. In this paper, we systematically investigate the internal impedance dynamic of PV modules and how that affects PV frequency response under different illuminances. We propose a simplified yet accurate dynamic AC model for PV detection to capture the frequency response characteristics of a self-powered PV module. The proposed model is validated with the impedance spectroscopy characterization methodologies. Experimental results show that a PV module's internal resistance and capacitance depend on incident illuminance, affecting PV's frequency response. The bandwidth is exacerbated under indoor environments with low illuminance levels due to the increased internal resistance of PV modules. We show that adjusting the forward bias conditions can simultaneously reduce the resistance and capacitance values. With the optimization of equivalent trans-impedance based on our proposed model, the data rate of a Cadmium telluride (CdTe) PV module achieves a 3.8 times enhancement under a home scenario illuminance (200 lux). We also demonstrate that the bit error rate (BER) of a 5-Mbits eight-level pulse amplitude modulation (PAM8) signal can be reduced from 9.810 -2 to 1.410 -3 by maximizing the transimpedance gain-bandwidth product. Besides frequency response optimization, the dynamic model is also valuable when investigating other issues in PVLC, such as PV shading and PV layout optimization.
AbstractList Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVLC model fails to accurately capture the factors affecting the PV module's frequency response. In this paper, we systematically investigate the internal impedance dynamic of PV modules and how that affects PV frequency response under different illuminances. We propose a simplified yet accurate dynamic AC model for PV detection to capture the frequency response characteristics of a self-powered PV module. The proposed model is validated with the impedance spectroscopy characterization methodologies. Experimental results show that a PV module's internal resistance and capacitance depend on incident illuminance, affecting PV's frequency response. The bandwidth is exacerbated under indoor environments with low illuminance levels due to the increased internal resistance of PV modules. We show that adjusting the forward bias conditions can simultaneously reduce the resistance and capacitance values. With the optimization of equivalent trans-impedance based on our proposed model, the data rate of a Cadmium telluride (CdTe) PV module achieves a 3.8 times enhancement under a home scenario illuminance (200 lux). We also demonstrate that the bit error rate (BER) of a 5-Mbits eight-level pulse amplitude modulation (PAM8) signal can be reduced from 9.810 -2 to 1.410 -3 by maximizing the transimpedance gain-bandwidth product. Besides frequency response optimization, the dynamic model is also valuable when investigating other issues in PVLC, such as PV shading and PV layout optimization.
Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVLC model fails to accurately capture the factors affecting the PV module's frequency response. In this article, we systematically investigate the internal impedance dynamic of PV modules and how that affects PV frequency response under different illuminances. We propose a simplified yet accurate dynamic AC model for PV detection to capture the frequency response characteristics of a self-powered PV module. The proposed model is validated with the impedance spectroscopy characterization methodologies. Experimental results show that a PV module's internal resistance and capacitance depend on incident illuminance, affecting PV's frequency response. The bandwidth is exacerbated under indoor environments with low illuminance levels due to the increased internal resistance of PV modules. We show that adjusting the forward bias conditions can simultaneously reduce the resistance and capacitance values. With the optimization of equivalent trans-impedance based on our proposed model, the data rate of a Cadmium telluride (CdTe) PV module achieves a 3.8 times enhancement under a home scenario illuminance (200 lux). We also demonstrate that the bit error rate (BER) of a 5-Mbit/s eight-level pulse amplitude modulation (PAM8) signal can be reduced from 9.8 × 10−2 to 1.4 × 10−3 by maximizing the transimpedance gain-bandwidth product. Besides frequency response optimization, the dynamic model is also valuable when investigating other issues in PVLC, such as PV shading and PV layout optimization.
Author Yu, Hui
Zhao, Ni
Chen, Shuyan
Chen, Lian-Kuan
Author_xml – sequence: 1
  givenname: Shuyan
  orcidid: 0000-0001-8630-1872
  surname: Chen
  fullname: Chen, Shuyan
  organization: Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR
– sequence: 2
  givenname: Hui
  surname: Yu
  fullname: Yu, Hui
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR
– sequence: 3
  givenname: Ni
  orcidid: 0000-0002-1536-8516
  surname: Zhao
  fullname: Zhao, Ni
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR
– sequence: 4
  givenname: Lian-Kuan
  orcidid: 0000-0003-0704-7007
  surname: Chen
  fullname: Chen, Lian-Kuan
  organization: Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR
BookMark eNpNkD1PwzAQhi0EEm1hZ2CwxJzijzh2x6pQPhRUhAqr5aQX6iqxQ5wilV-PSzsw3Q3Pe_fqGaJT5x0gdEXJmFIyuX3Ol2NGGB9zNskEYydoQIVQCWOUn6IBkZwnSrL0HA1D2BBC01TJAdJTfLdzprElfvErqHHlOzzv4GsLrtzhNwitdwHwou1tY39Mb73D1uHXte_9t697E5MfNtiiBpzbz3WPZ75pts6Wf-wFOqtMHeDyOEfofX6_nD0m-eLhaTbNk5Klok8ySVKh2IqVAgSQFYASlQRVsIxzYwSVYJQQlKTSSFNxWdBMFSWQDFTcDB-hm8PdtvOxe-j1xm87F19qpiaEUppSGilyoMrOh9BBpdvONqbbaUr0XqOOGvVeoz5qjJHrQ8QCwD-cxjqx2y_UenBV
CODEN JLTEDG
Cites_doi 10.1063/1.3622617
10.1016/j.solmat.2014.08.003
10.1126/sciadv.abq0187
10.3390/en15082814
10.1109/GLC.2019.8864115
10.1109/LPT.2021.3135419
10.1038/s41377-021-00487-9
10.1109/JPHOTOV.2018.2883703
10.1109/LPT.2021.3128680
10.1109/ICC.2014.6883838
10.1039/b812468j
10.1038/s41467-021-22460-1
10.1364/OE.24.0A1300
10.1142/9781848161269_0001
10.1109/JPHOTOV.2014.2363550
10.1109/JSAC.2015.2391811
10.1109/JPHOTOV.2017.2779779
10.1364/OL.449466
10.1109/JPHOTOV.2013.2276483
10.1109/JPHOTOV.2019.2938882
10.1109/JLT.2020.2981554
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2023.3296522
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 7
ExternalDocumentID 10_1109_JLT_2023_3296522
10185563
Genre orig-research
GrantInformation_xml – fundername: HKSAR RGC
  grantid: GRF 14206123; GRF 14207220
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c245t-6704582d2c5e5e0dee85f7e8b2633aa517ea8551047a7af37b168bce06e8168a3
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 08:21:00 EDT 2025
Tue Jul 01 01:02:12 EDT 2025
Wed Aug 27 02:18:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-6704582d2c5e5e0dee85f7e8b2633aa517ea8551047a7af37b168bce06e8168a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8630-1872
0000-0003-0704-7007
0000-0002-1536-8516
PQID 2890111411
PQPubID 85485
PageCount 7
ParticipantIDs ieee_primary_10185563
crossref_primary_10_1109_JLT_2023_3296522
proquest_journals_2890111411
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref23
ref15
(ref5) 2023
ref14
ref20
ref11
ref22
ref10
ref2
ref1
ref17
(ref19) 2023
ref16
ref18
ref8
ref7
ref9
ref4
(ref21) 2023
ref3
Nelson (ref12) 2003
ref6
References_xml – ident: ref14
  doi: 10.1063/1.3622617
– ident: ref15
  doi: 10.1016/j.solmat.2014.08.003
– ident: ref22
  doi: 10.1126/sciadv.abq0187
– ident: ref23
  doi: 10.3390/en15082814
– ident: ref11
  doi: 10.1109/GLC.2019.8864115
– ident: ref24
  doi: 10.1109/LPT.2021.3135419
– ident: ref3
  doi: 10.1038/s41377-021-00487-9
– year: 2023
  ident: ref5
  article-title: Common operating circuits
– ident: ref16
  doi: 10.1109/JPHOTOV.2018.2883703
– year: 2023
  ident: ref21
  article-title: Recommended light levels (Illuminance) for outdoor and indoor venues
– ident: ref4
  doi: 10.1109/LPT.2021.3128680
– ident: ref1
  doi: 10.1109/ICC.2014.6883838
– ident: ref20
  doi: 10.1039/b812468j
– ident: ref18
  doi: 10.1038/s41467-021-22460-1
– ident: ref9
  doi: 10.1364/OE.24.0A1300
– start-page: 13
  volume-title: Physics of Solar Cells
  year: 2003
  ident: ref12
  article-title: Introduction: Parasitic resistances
  doi: 10.1142/9781848161269_0001
– ident: ref8
  doi: 10.1109/JPHOTOV.2014.2363550
– ident: ref13
  doi: 10.1109/JSAC.2015.2391811
– ident: ref7
  doi: 10.1109/JPHOTOV.2017.2779779
– ident: ref10
  doi: 10.1364/OL.449466
– ident: ref17
  doi: 10.1109/JPHOTOV.2013.2276483
– ident: ref6
  doi: 10.1109/JPHOTOV.2019.2938882
– year: 2023
  ident: ref19
  article-title: Cadmium telluride solar cells
– ident: ref2
  doi: 10.1109/JLT.2020.2981554
SSID ssj0014487
Score 2.4278927
Snippet Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Bandwidth
Bandwidths
Bit error rate
Cadmium telluride
Cadmium tellurides
Capacitance
Communication
Dynamic models
Energy harvesting
Frequency response
Frequency response modeling
Illuminance
Impedance
Impedance spectroscopy characterization
Indoor environments
Optical communication
Optimization
Photovoltaic cells
Photovoltaic systems
Pulse amplitude modulation
Resistance
Solar power generation
Visible light communication
Title A Dynamic Model for Frequency Response Optimization in Photovoltaic Visible Light Communication
URI https://ieeexplore.ieee.org/document/10185563
https://www.proquest.com/docview/2890111411
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60IHixWhWrVfbgxUNispvdbY5FLUVqFaniLWySKYq1lTY96K93Z5OKDwRvOSRhs7Pzysz3DcCx9ZAY6Fx74UhqL8qM8OJMoTdC6xvaUS5zh0q7GqjeXXT5IB8qsLrDwiCiaz5Dny5dLT-fZgv6VXZK7FJEaLUKqzZzK8FanyUDm2c4bLQWwqo4j5Y1ySA-vewPfRoT7gseK8n5Nx_khqr8ssTOvXTrMFgurOwqefYXRepn7z84G_-98k3YqAJN1ilPxhas4KQB9SroZJVKzxuw5npAs_k2JB12Xs6nZzQhbcxsPMu6s7LX-o3dlt20yK6tlXmp4JvsacJuHqfF1Fq5wtgn75-sjo2R9SnpZ9_gJztw170YnvW8av6Cl_FIFp7SVEXlOc8kSgxytPIbaWynXAlhjAw1GvtVRPZgtBkJnYaqnWYYKKRpHkbsQm0yneAesDY3KZEVSsqAFMZpLDGKcpEaaY1AqJpwspRI8lrSbCQuPQnixEovIekllfSasEMb_OW-cm-b0FrKMKkUcZ5QHdWa8ygM9_947ADW6e2ELwxlC2rFbIGHNtAo0iN3wD4AUWvOQQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PTxQxFH9BjNGLKGJcQe1BDx5mmGmn7c7BAwE3CyxozGK41U7nbdwIs4adDVm-C1_Fz8ZrZ5YIhiOJtzlM25n2l997r-8fwHuSkJjoUkfpSOooc1ZEuVMYjZBkQzcrZRmy0g4OVf8o2zuWx0tweZ0Lg4gh-Axj_xh8-eXEzfxV2aavLuULWrUxlPs4PycLbfppd4eO8wPnvc_D7X7UNhGIHM9kHSntXYG85E6ixKRE-oiRxm7BlRDWylSjpUl9xQKr7UjoIlXdwmGi0LeksILmfQAPSdGQvEkPu3ZSkGUTsrG1EEQqPFt4QZN8c28wjH1j8ljwXEnOb0i90MblH-4PAq23An8WW9HEsfyKZ3URu4tbVSL_2716Bk9bVZptNdh_DktYrcJKq1azlrSmq_AoRLm66QswW2xnXtnTsWO-B9wJI42d9c6aaPI5-9bECyP7Qjx62iaosnHFvv6c1BPi8drSyO9jYpETZAN_rcFuJNiswdG9_PBLWK4mFb4C1uW28OUYpbfxFOZFLjHLSlFYSTSXqg58XCDA_G4KiZhggCW5IbQYjxbToqUDa_5A_3qvOcsObCwwY1qqmRrvKSaBlaXp6zuGvYPH_eHBwAx2D_fX4YlfyWdTpnIDluuzGb4htaou3gZwM_hx3wi5AgfiKv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Model+for+Frequency+Response+Optimization+in+Photovoltaic+Visible+Light+Communication&rft.jtitle=Journal+of+lightwave+technology&rft.au=Chen%2C+Shuyan&rft.au=Yu%2C+Hui&rft.au=Zhao%2C+Ni&rft.au=Chen%2C+Lian-Kuan&rft.date=2023-11-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=41&rft.issue=22&rft.spage=6923&rft.epage=6929&rft_id=info:doi/10.1109%2FJLT.2023.3296522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2023_3296522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon