A Dynamic Model for Frequency Response Optimization in Photovoltaic Visible Light Communication
Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVL...
Saved in:
Published in | Journal of lightwave technology Vol. 41; no. 22; pp. 1 - 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVLC model fails to accurately capture the factors affecting the PV module's frequency response. In this paper, we systematically investigate the internal impedance dynamic of PV modules and how that affects PV frequency response under different illuminances. We propose a simplified yet accurate dynamic AC model for PV detection to capture the frequency response characteristics of a self-powered PV module. The proposed model is validated with the impedance spectroscopy characterization methodologies. Experimental results show that a PV module's internal resistance and capacitance depend on incident illuminance, affecting PV's frequency response. The bandwidth is exacerbated under indoor environments with low illuminance levels due to the increased internal resistance of PV modules. We show that adjusting the forward bias conditions can simultaneously reduce the resistance and capacitance values. With the optimization of equivalent trans-impedance based on our proposed model, the data rate of a Cadmium telluride (CdTe) PV module achieves a 3.8 times enhancement under a home scenario illuminance (200 lux). We also demonstrate that the bit error rate (BER) of a 5-Mbits eight-level pulse amplitude modulation (PAM8) signal can be reduced from 9.810 -2 to 1.410 -3 by maximizing the transimpedance gain-bandwidth product. Besides frequency response optimization, the dynamic model is also valuable when investigating other issues in PVLC, such as PV shading and PV layout optimization. |
---|---|
AbstractList | Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVLC model fails to accurately capture the factors affecting the PV module's frequency response. In this paper, we systematically investigate the internal impedance dynamic of PV modules and how that affects PV frequency response under different illuminances. We propose a simplified yet accurate dynamic AC model for PV detection to capture the frequency response characteristics of a self-powered PV module. The proposed model is validated with the impedance spectroscopy characterization methodologies. Experimental results show that a PV module's internal resistance and capacitance depend on incident illuminance, affecting PV's frequency response. The bandwidth is exacerbated under indoor environments with low illuminance levels due to the increased internal resistance of PV modules. We show that adjusting the forward bias conditions can simultaneously reduce the resistance and capacitance values. With the optimization of equivalent trans-impedance based on our proposed model, the data rate of a Cadmium telluride (CdTe) PV module achieves a 3.8 times enhancement under a home scenario illuminance (200 lux). We also demonstrate that the bit error rate (BER) of a 5-Mbits eight-level pulse amplitude modulation (PAM8) signal can be reduced from 9.810 -2 to 1.410 -3 by maximizing the transimpedance gain-bandwidth product. Besides frequency response optimization, the dynamic model is also valuable when investigating other issues in PVLC, such as PV shading and PV layout optimization. Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light communication. A PV-based receiver features a large signal output, easy optical alignment, and self-powered operation. However, the conventional PVLC model fails to accurately capture the factors affecting the PV module's frequency response. In this article, we systematically investigate the internal impedance dynamic of PV modules and how that affects PV frequency response under different illuminances. We propose a simplified yet accurate dynamic AC model for PV detection to capture the frequency response characteristics of a self-powered PV module. The proposed model is validated with the impedance spectroscopy characterization methodologies. Experimental results show that a PV module's internal resistance and capacitance depend on incident illuminance, affecting PV's frequency response. The bandwidth is exacerbated under indoor environments with low illuminance levels due to the increased internal resistance of PV modules. We show that adjusting the forward bias conditions can simultaneously reduce the resistance and capacitance values. With the optimization of equivalent trans-impedance based on our proposed model, the data rate of a Cadmium telluride (CdTe) PV module achieves a 3.8 times enhancement under a home scenario illuminance (200 lux). We also demonstrate that the bit error rate (BER) of a 5-Mbit/s eight-level pulse amplitude modulation (PAM8) signal can be reduced from 9.8 × 10−2 to 1.4 × 10−3 by maximizing the transimpedance gain-bandwidth product. Besides frequency response optimization, the dynamic model is also valuable when investigating other issues in PVLC, such as PV shading and PV layout optimization. |
Author | Yu, Hui Zhao, Ni Chen, Shuyan Chen, Lian-Kuan |
Author_xml | – sequence: 1 givenname: Shuyan orcidid: 0000-0001-8630-1872 surname: Chen fullname: Chen, Shuyan organization: Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR – sequence: 2 givenname: Hui surname: Yu fullname: Yu, Hui organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR – sequence: 3 givenname: Ni orcidid: 0000-0002-1536-8516 surname: Zhao fullname: Zhao, Ni organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR – sequence: 4 givenname: Lian-Kuan orcidid: 0000-0003-0704-7007 surname: Chen fullname: Chen, Lian-Kuan organization: Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR |
BookMark | eNpNkD1PwzAQhi0EEm1hZ2CwxJzijzh2x6pQPhRUhAqr5aQX6iqxQ5wilV-PSzsw3Q3Pe_fqGaJT5x0gdEXJmFIyuX3Ol2NGGB9zNskEYydoQIVQCWOUn6IBkZwnSrL0HA1D2BBC01TJAdJTfLdzprElfvErqHHlOzzv4GsLrtzhNwitdwHwou1tY39Mb73D1uHXte_9t697E5MfNtiiBpzbz3WPZ75pts6Wf-wFOqtMHeDyOEfofX6_nD0m-eLhaTbNk5Klok8ySVKh2IqVAgSQFYASlQRVsIxzYwSVYJQQlKTSSFNxWdBMFSWQDFTcDB-hm8PdtvOxe-j1xm87F19qpiaEUppSGilyoMrOh9BBpdvONqbbaUr0XqOOGvVeoz5qjJHrQ8QCwD-cxjqx2y_UenBV |
CODEN | JLTEDG |
Cites_doi | 10.1063/1.3622617 10.1016/j.solmat.2014.08.003 10.1126/sciadv.abq0187 10.3390/en15082814 10.1109/GLC.2019.8864115 10.1109/LPT.2021.3135419 10.1038/s41377-021-00487-9 10.1109/JPHOTOV.2018.2883703 10.1109/LPT.2021.3128680 10.1109/ICC.2014.6883838 10.1039/b812468j 10.1038/s41467-021-22460-1 10.1364/OE.24.0A1300 10.1142/9781848161269_0001 10.1109/JPHOTOV.2014.2363550 10.1109/JSAC.2015.2391811 10.1109/JPHOTOV.2017.2779779 10.1364/OL.449466 10.1109/JPHOTOV.2013.2276483 10.1109/JPHOTOV.2019.2938882 10.1109/JLT.2020.2981554 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2023.3296522 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 7 |
ExternalDocumentID | 10_1109_JLT_2023_3296522 10185563 |
Genre | orig-research |
GrantInformation_xml | – fundername: HKSAR RGC grantid: GRF 14206123; GRF 14207220 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c245t-6704582d2c5e5e0dee85f7e8b2633aa517ea8551047a7af37b168bce06e8168a3 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 08:21:00 EDT 2025 Tue Jul 01 01:02:12 EDT 2025 Wed Aug 27 02:18:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-6704582d2c5e5e0dee85f7e8b2633aa517ea8551047a7af37b168bce06e8168a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8630-1872 0000-0003-0704-7007 0000-0002-1536-8516 |
PQID | 2890111411 |
PQPubID | 85485 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10185563 crossref_primary_10_1109_JLT_2023_3296522 proquest_journals_2890111411 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-15 |
PublicationDateYYYYMMDD | 2023-11-15 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref24 ref23 ref15 (ref5) 2023 ref14 ref20 ref11 ref22 ref10 ref2 ref1 ref17 (ref19) 2023 ref16 ref18 ref8 ref7 ref9 ref4 (ref21) 2023 ref3 Nelson (ref12) 2003 ref6 |
References_xml | – ident: ref14 doi: 10.1063/1.3622617 – ident: ref15 doi: 10.1016/j.solmat.2014.08.003 – ident: ref22 doi: 10.1126/sciadv.abq0187 – ident: ref23 doi: 10.3390/en15082814 – ident: ref11 doi: 10.1109/GLC.2019.8864115 – ident: ref24 doi: 10.1109/LPT.2021.3135419 – ident: ref3 doi: 10.1038/s41377-021-00487-9 – year: 2023 ident: ref5 article-title: Common operating circuits – ident: ref16 doi: 10.1109/JPHOTOV.2018.2883703 – year: 2023 ident: ref21 article-title: Recommended light levels (Illuminance) for outdoor and indoor venues – ident: ref4 doi: 10.1109/LPT.2021.3128680 – ident: ref1 doi: 10.1109/ICC.2014.6883838 – ident: ref20 doi: 10.1039/b812468j – ident: ref18 doi: 10.1038/s41467-021-22460-1 – ident: ref9 doi: 10.1364/OE.24.0A1300 – start-page: 13 volume-title: Physics of Solar Cells year: 2003 ident: ref12 article-title: Introduction: Parasitic resistances doi: 10.1142/9781848161269_0001 – ident: ref8 doi: 10.1109/JPHOTOV.2014.2363550 – ident: ref13 doi: 10.1109/JSAC.2015.2391811 – ident: ref7 doi: 10.1109/JPHOTOV.2017.2779779 – ident: ref10 doi: 10.1364/OL.449466 – ident: ref17 doi: 10.1109/JPHOTOV.2013.2276483 – ident: ref6 doi: 10.1109/JPHOTOV.2019.2938882 – year: 2023 ident: ref19 article-title: Cadmium telluride solar cells – ident: ref2 doi: 10.1109/JLT.2020.2981554 |
SSID | ssj0014487 |
Score | 2.4278927 |
Snippet | Photovoltaic (PV) modules are recently employed in photovoltaic visible light communication (PVLC) for simultaneous energy harvesting and visible light... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Bandwidth Bandwidths Bit error rate Cadmium telluride Cadmium tellurides Capacitance Communication Dynamic models Energy harvesting Frequency response Frequency response modeling Illuminance Impedance Impedance spectroscopy characterization Indoor environments Optical communication Optimization Photovoltaic cells Photovoltaic systems Pulse amplitude modulation Resistance Solar power generation Visible light communication |
Title | A Dynamic Model for Frequency Response Optimization in Photovoltaic Visible Light Communication |
URI | https://ieeexplore.ieee.org/document/10185563 https://www.proquest.com/docview/2890111411 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60IHixWhWrVfbgxUNispvdbY5FLUVqFaniLWySKYq1lTY96K93Z5OKDwRvOSRhs7Pzysz3DcCx9ZAY6Fx74UhqL8qM8OJMoTdC6xvaUS5zh0q7GqjeXXT5IB8qsLrDwiCiaz5Dny5dLT-fZgv6VXZK7FJEaLUKqzZzK8FanyUDm2c4bLQWwqo4j5Y1ySA-vewPfRoT7gseK8n5Nx_khqr8ssTOvXTrMFgurOwqefYXRepn7z84G_-98k3YqAJN1ilPxhas4KQB9SroZJVKzxuw5npAs_k2JB12Xs6nZzQhbcxsPMu6s7LX-o3dlt20yK6tlXmp4JvsacJuHqfF1Fq5wtgn75-sjo2R9SnpZ9_gJztw170YnvW8av6Cl_FIFp7SVEXlOc8kSgxytPIbaWynXAlhjAw1GvtVRPZgtBkJnYaqnWYYKKRpHkbsQm0yneAesDY3KZEVSsqAFMZpLDGKcpEaaY1AqJpwspRI8lrSbCQuPQnixEovIekllfSasEMb_OW-cm-b0FrKMKkUcZ5QHdWa8ygM9_947ADW6e2ELwxlC2rFbIGHNtAo0iN3wD4AUWvOQQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PTxQxFH9BjNGLKGJcQe1BDx5mmGmn7c7BAwE3CyxozGK41U7nbdwIs4adDVm-C1_Fz8ZrZ5YIhiOJtzlM25n2l997r-8fwHuSkJjoUkfpSOooc1ZEuVMYjZBkQzcrZRmy0g4OVf8o2zuWx0tweZ0Lg4gh-Axj_xh8-eXEzfxV2aavLuULWrUxlPs4PycLbfppd4eO8wPnvc_D7X7UNhGIHM9kHSntXYG85E6ixKRE-oiRxm7BlRDWylSjpUl9xQKr7UjoIlXdwmGi0LeksILmfQAPSdGQvEkPu3ZSkGUTsrG1EEQqPFt4QZN8c28wjH1j8ljwXEnOb0i90MblH-4PAq23An8WW9HEsfyKZ3URu4tbVSL_2716Bk9bVZptNdh_DktYrcJKq1azlrSmq_AoRLm66QswW2xnXtnTsWO-B9wJI42d9c6aaPI5-9bECyP7Qjx62iaosnHFvv6c1BPi8drSyO9jYpETZAN_rcFuJNiswdG9_PBLWK4mFb4C1uW28OUYpbfxFOZFLjHLSlFYSTSXqg58XCDA_G4KiZhggCW5IbQYjxbToqUDa_5A_3qvOcsObCwwY1qqmRrvKSaBlaXp6zuGvYPH_eHBwAx2D_fX4YlfyWdTpnIDluuzGb4htaou3gZwM_hx3wi5AgfiKv0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Model+for+Frequency+Response+Optimization+in+Photovoltaic+Visible+Light+Communication&rft.jtitle=Journal+of+lightwave+technology&rft.au=Chen%2C+Shuyan&rft.au=Yu%2C+Hui&rft.au=Zhao%2C+Ni&rft.au=Chen%2C+Lian-Kuan&rft.date=2023-11-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=41&rft.issue=22&rft.spage=6923&rft.epage=6929&rft_id=info:doi/10.1109%2FJLT.2023.3296522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2023_3296522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |