Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 145; p. 103921 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2022
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 103921 |
---|---|
Author | Li, Wanxin Meese, Collin Shaygan, Maryam Nejad, Mark Zhao, Xiaoliang (George) |
Author_xml | – sequence: 1 givenname: Maryam surname: Shaygan fullname: Shaygan, Maryam – sequence: 2 givenname: Collin surname: Meese fullname: Meese, Collin – sequence: 3 givenname: Wanxin surname: Li fullname: Li, Wanxin – sequence: 4 givenname: Xiaoliang (George) orcidid: 0000-0001-9193-2070 surname: Zhao fullname: Zhao, Xiaoliang (George) – sequence: 5 givenname: Mark orcidid: 0000-0003-2231-5735 surname: Nejad fullname: Nejad, Mark |
BookMark | eNp9kE1OwzAUhL0oEm3hAOx8gRTbiWPCDlX8SZWQUJHYRY79HL0qdSLbLeI2nIWTkaisWLAajUbfLL4FmfneAyFXnK044-X1bpWCWQkmxNjzSvAZmbOqvMlYxd7PySLGHWOMV1LNSbsN2jk0dAhg0STsPT1E9C3VIeE4oO4o-gRdhy14A7f0FY4IH7R3NIABn76_tD3qcYpUe0thD6GdDvph6EM6eEwI8YKcOd1FuPzNJXl7uN-un7LNy-Pz-m6TGVHIlJU5bzi3plRGcuZyKRtplFDSClWAKhwwVeUqF05aLZTSYJllrlFcqEbwIl8Sfvo1oY8xgKuHgHsdPmvO6slOvatHO_Vkpz7ZGRn1hzGY9KQiBY3dP-QPs-5yPg |
CitedBy_id | crossref_primary_10_1016_j_trc_2025_105080 crossref_primary_10_1109_ACCESS_2024_3395430 crossref_primary_10_1109_TVT_2024_3457917 crossref_primary_10_1016_j_eswa_2024_124466 crossref_primary_10_3390_app14010412 crossref_primary_10_1088_1748_9326_ad984d crossref_primary_10_1109_TITS_2023_3271436 crossref_primary_10_3390_network5010001 crossref_primary_10_3390_smartcities7010010 crossref_primary_10_3390_smartcities8010025 crossref_primary_10_3390_electronics13112094 crossref_primary_10_1016_j_rsma_2025_104106 crossref_primary_10_1007_s11116_024_10504_6 crossref_primary_10_1109_TITS_2024_3447282 crossref_primary_10_1093_jcde_qwaf011 crossref_primary_10_1109_TITS_2024_3520511 crossref_primary_10_1002_sd_3131 crossref_primary_10_1016_j_neunet_2024_107074 crossref_primary_10_1016_j_inffus_2023_102146 crossref_primary_10_1080_10447318_2024_2415751 crossref_primary_10_61186_jgst_14_2_1 crossref_primary_10_1016_j_neunet_2023_12_016 crossref_primary_10_1109_ACCESS_2023_3270395 crossref_primary_10_1142_S1469026824500111 crossref_primary_10_1111_mice_13214 crossref_primary_10_1016_j_engappai_2024_109154 crossref_primary_10_1109_JIOT_2024_3496795 crossref_primary_10_3390_su16062468 crossref_primary_10_3390_su17010068 crossref_primary_10_1007_s42488_025_00141_8 crossref_primary_10_1061_JTEPBS_TEENG_8376 crossref_primary_10_1016_j_ins_2024_121142 crossref_primary_10_3390_math12040555 crossref_primary_10_3390_su16010190 crossref_primary_10_1016_j_knosys_2024_112578 crossref_primary_10_1109_ACCESS_2024_3434691 crossref_primary_10_1109_ACCESS_2024_3521242 crossref_primary_10_3390_s25041225 crossref_primary_10_1002_ett_4789 crossref_primary_10_1177_03611981241248160 crossref_primary_10_1016_j_knosys_2024_112178 crossref_primary_10_1109_ACCESS_2024_3509572 crossref_primary_10_1016_j_inffus_2024_102695 crossref_primary_10_1109_TITS_2024_3397077 crossref_primary_10_1007_s41060_024_00604_y crossref_primary_10_1109_TITS_2024_3362129 crossref_primary_10_32604_cmc_2024_049260 crossref_primary_10_3390_su16177763 crossref_primary_10_56294_dm2024378 crossref_primary_10_3389_fenvs_2024_1461656 crossref_primary_10_3390_smartcities7060133 crossref_primary_10_1080_23249935_2024_2419499 crossref_primary_10_3390_app14062285 crossref_primary_10_21015_vtse_v12i3_1866 crossref_primary_10_1109_OJVT_2024_3457499 crossref_primary_10_1109_TAI_2024_3459857 crossref_primary_10_1061_JTEPBS_TEENG_8207 crossref_primary_10_1109_TSUSC_2024_3395350 crossref_primary_10_1016_j_treng_2024_100272 crossref_primary_10_3390_math12213338 crossref_primary_10_1007_s40747_023_01299_7 crossref_primary_10_1109_ACCESS_2024_3466527 crossref_primary_10_3389_fphar_2024_1181183 crossref_primary_10_46632_jbab_3_3_9 crossref_primary_10_1109_TSC_2023_3318990 crossref_primary_10_38159_jelt_202451015 crossref_primary_10_7717_peerj_cs_1913 crossref_primary_10_1016_j_knosys_2024_112709 crossref_primary_10_1007_s10479_024_05990_x crossref_primary_10_1007_s00146_023_01673_6 crossref_primary_10_1016_j_eswa_2023_123009 crossref_primary_10_1049_itr2_12390 crossref_primary_10_1016_j_landusepol_2025_107507 crossref_primary_10_1016_j_neucom_2024_128175 crossref_primary_10_1109_TITS_2024_3391053 crossref_primary_10_1371_journal_pone_0288427 crossref_primary_10_1016_j_eswa_2024_125001 crossref_primary_10_1016_j_eswa_2025_127200 |
Cites_doi | 10.1016/j.eswa.2022.117511 10.1016/j.aej.2020.09.003 10.1016/j.pmcj.2018.07.004 10.1007/s11116-010-9291-z 10.1145/3292500.3330887 10.1016/j.neucom.2013.09.055 10.1016/j.ins.2022.05.127 10.1145/3474717.3483923 10.3390/su14106351 10.1145/3219819.3219895 10.1016/j.scriptamat.2020.05.038 10.1007/s11707-016-0634-8 10.1080/15389588.2020.1723794 10.1016/j.neucom.2017.02.039 10.1162/neco.1997.9.8.1735 10.1145/3474838 10.1504/IJBDI.2016.073903 10.1109/MITS.2020.3014074 10.1016/j.is.2019.101444 10.1016/j.trc.2007.05.002 10.1016/S0968-090X(03)00004-4 10.1145/3430195 10.1145/3292500.3330877 10.1109/ACCESS.2019.2917228 10.1155/2020/8863724 10.1145/3318464.3389771 10.1016/j.trc.2015.02.017 10.1109/CVPR.2016.90 10.1155/2021/8878011 10.1145/3314413 10.1016/j.trc.2018.12.004 10.1007/s12204-010-9712-3 10.1007/s10707-020-00429-4 10.1103/PhysRevE.100.032410 10.1007/s12544-015-0170-8 10.1061/(ASCE)TE.1943-5436.0000672 10.1109/ACCESS.2018.2888561 10.1016/j.eswa.2021.114573 10.1016/j.trc.2021.103008 10.1109/MITS.2018.2806634 10.1145/3436239 10.1016/j.trpro.2020.08.130 10.1145/3394486.3403118 10.1016/j.trc.2020.102611 10.1016/j.proeng.2017.04.417 10.1145/3219819.3220033 10.1016/j.trc.2015.11.002 10.1109/TBDATA.2016.2623320 10.1109/IOTM.0001.2000031 10.1080/0144164042000195072 10.1109/TKDE.2017.2776927 10.1016/j.procs.2019.04.117 10.1109/ACCESS.2018.2846550 10.1016/j.neucom.2018.08.067 10.1109/TII.2019.2942190 10.1145/3394486.3403122 10.1145/3373419.3373429 10.1155/2019/4858546 10.1016/j.ejor.2005.02.036 10.1016/j.ifacol.2018.07.049 10.1109/ACCESS.2021.3050836 10.3390/ijgi6070187 10.1016/j.trc.2010.10.002 10.1007/s10489-020-01718-z 10.1049/iet-its.2018.0064 10.14778/3213880.3213885 10.1109/OJCS.2020.2992630 10.3390/electronics9091474 10.24963/ijcai.2019/274 10.1109/TETC.2017.2756908 10.1016/j.trc.2020.102620 10.1145/2743025 10.1109/TITS.2018.2879497 10.1061/(ASCE)CP.1943-5487.0000825 10.1109/5.58337 10.1002/wics.1383 10.1016/j.trc.2020.02.013 10.1016/j.trc.2020.102938 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.3390/s21103314 10.1007/978-3-030-13705-2_5 10.1016/j.compenvurbsys.2009.07.009 10.1016/j.trc.2019.02.002 10.1145/3269206.3271757 10.14778/3425879.3425885 10.1016/j.future.2020.12.003 10.3390/ijgi7010025 10.24963/ijcai.2019/262 10.1016/j.trc.2018.05.008 10.1016/j.knosys.2020.106294 10.1145/3274895.3274896 10.1109/ACCESS.2021.3049556 10.1109/ACCESS.2021.3103456 10.1155/2020/9628957 10.1016/j.comnet.2020.107530 10.1109/TITS.2018.2871269 10.3390/s21041121 10.1016/j.trc.2020.102639 10.1109/ACCESS.2019.2941280 10.1016/j.eswa.2022.117921 10.1016/j.trc.2020.102763 10.1145/3366423.3380186 10.1016/j.trc.2018.03.001 10.1109/TITS.2022.3148358 10.1109/TKDE.2017.2718525 10.1109/TNN.2008.2005605 10.1109/TNNLS.2018.2790388 10.1007/s13369-019-04247-1 10.1016/j.trb.2013.03.008 10.1016/j.measurement.2020.107534 10.1109/TITS.2018.2801808 10.1016/j.trip.2020.100112 10.1109/ACCESS.2021.3071174 10.1109/JIOT.2020.2974494 10.1609/aaai.v31i1.10735 10.1109/TITS.2013.2247040 10.14778/2536360.2536375 10.3390/s19183836 10.1109/JIOT.2020.2991401 10.1016/j.trc.2020.102951 10.1145/3448016.3457247 10.1016/j.trc.2007.07.002 10.1109/TNNLS.2019.2957109 10.1016/j.physa.2022.126988 10.1016/j.treng.2020.100025 10.1016/j.trc.2014.01.005 10.1145/3209978.3210006 10.3115/v1/D14-1179 10.1109/TITS.2019.2939290 10.1109/TITS.2018.2873092 10.1109/LSP.2020.3048849 10.1073/pnas.1903070116 10.1007/s41965-019-00023-0 10.24963/ijcai.2020/326 10.1155/2019/4145353 10.1109/TITS.2018.2877785 10.1016/j.aej.2020.09.038 10.1145/3292500.3330884 10.1109/JPROC.2020.2976475 10.1016/0041-1647(76)90059-9 10.1145/3340531.3411940 10.1109/72.165591 10.1016/j.trc.2013.11.011 10.1109/TVT.2019.2952605 10.1109/TITS.2015.2513411 10.24963/ijcai.2018/505 10.3390/ijgi7060218 10.1016/j.ins.2020.01.043 10.1145/2525314.2525456 10.1111/tgis.12644 10.1016/j.trc.2019.12.022 10.1016/j.datak.2017.12.001 10.14778/3450980.3450987 10.1016/j.trc.2021.103185 10.1016/j.trc.2019.05.039 10.1109/TITS.2017.2706143 10.1145/2396761.2398477 10.1080/713930748 10.1016/j.trc.2020.102858 10.1016/j.aap.2020.105610 10.1007/s41019-020-00151-z 10.1145/2623330.2623656 10.3390/s17071501 10.3390/s22093348 10.1109/TIT.2018.2854560 10.1016/j.trc.2020.01.010 10.1007/s10994-019-05815-0 10.1109/TKDE.2021.3077056 10.1016/j.ins.2014.09.037 10.1109/ACCESS.2020.3011186 10.1109/HotICN50779.2020.9350858 10.3141/2024-14 10.1371/journal.pone.0119044 10.1109/TKDE.2020.3001195 10.1145/3357384.3357832 10.1080/15472450.2018.1502667 10.1109/TITS.2018.2873137 10.1016/j.inffus.2020.01.002 10.1177/03611981211011169 10.1016/j.sbspro.2013.08.076 10.1016/j.adhoc.2020.102224 10.1080/00207721.2020.1760957 10.1145/3231541.3231544 10.1186/s13638-021-01958-8 10.1007/s11036-019-01458-6 10.3141/2175-04 10.1109/ACCESS.2020.2975310 10.24963/ijcai.2019/402 10.1080/01441647.2018.1442887 10.1007/s11704-011-1192-6 10.1145/3226116.3226130 10.1016/j.knosys.2020.106733 10.1016/j.ejor.2003.08.005 10.1016/j.matcom.2019.12.013 10.1016/j.eswa.2018.12.031 10.1145/3219819.3219900 10.1080/15472450.2018.1542304 10.3390/rs13122329 10.1109/TITS.2019.2915525 10.1016/j.trc.2020.102671 10.1109/TITS.2013.2262376 10.1016/j.trc.2020.102851 10.1016/j.comnet.2018.07.007 10.1016/j.engappai.2019.08.018 10.1016/j.trc.2014.02.005 10.1016/j.eswa.2009.06.008 10.1109/ACCESS.2020.2974575 10.1016/j.compenvurbsys.2021.101619 10.1109/TITS.2019.2935152 10.3390/app11052306 10.1016/j.trc.2021.103466 10.1016/j.bdr.2020.100179 10.1016/j.aei.2020.101092 10.1109/ACCESS.2020.2971008 10.3390/asi5010023 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2022.103921 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
ExternalDocumentID | 10_1016_j_trc_2022_103921 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABLJU ABMAC ABMMH ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AOUOD APLSM APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSH SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- |
ID | FETCH-LOGICAL-c245t-631b11dc67c510f355b5c7275d274e74fe0793732f5da277aed0d0fb7127b2143 |
ISSN | 0968-090X |
IngestDate | Tue Jul 01 01:45:16 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c245t-631b11dc67c510f355b5c7275d274e74fe0793732f5da277aed0d0fb7127b2143 |
ORCID | 0000-0001-9193-2070 0000-0003-2231-5735 |
ParticipantIDs | crossref_primary_10_1016_j_trc_2022_103921 crossref_citationtrail_10_1016_j_trc_2022_103921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2022 |
References | 10.1016/j.trc.2022.103921_b307 Nguyen (10.1016/j.trc.2022.103921_b201) 2018; 12 Bengio (10.1016/j.trc.2022.103921_b22) 2015; 28 Gehring (10.1016/j.trc.2022.103921_b82) 2017 Wang (10.1016/j.trc.2022.103921_b273) 2016 Li (10.1016/j.trc.2022.103921_b157) 2021; 147 10.1016/j.trc.2022.103921_b301 Kumar (10.1016/j.trc.2022.103921_b133) 2017; 187 Guan (10.1016/j.trc.2022.103921_b89) 2018; 6 Elleuch (10.1016/j.trc.2022.103921_b71) 2020; 51 Di (10.1016/j.trc.2022.103921_b61) 2021; 125 Lee (10.1016/j.trc.2022.103921_b141) 2021; 9 Soltanolkotabi (10.1016/j.trc.2022.103921_b240) 2018; 65 Duggimpudi (10.1016/j.trc.2022.103921_b69) 2019; 122 Li (10.1016/j.trc.2022.103921_b144) 2021; 9 Min (10.1016/j.trc.2022.103921_b197) 2010 10.1016/j.trc.2022.103921_b314 Cai (10.1016/j.trc.2022.103921_b31) 2020; 24 Guo (10.1016/j.trc.2022.103921_b92) 2021 Li (10.1016/j.trc.2022.103921_b148) 2020 Lin (10.1016/j.trc.2022.103921_b165) 2019; 2019 Wang (10.1016/j.trc.2022.103921_b282) 2021; 28 10.1016/j.trc.2022.103921_b312 Chao (10.1016/j.trc.2022.103921_b37) 2020 Wu (10.1016/j.trc.2022.103921_b297) 2014; 140 Jin (10.1016/j.trc.2022.103921_b121) 2022 Lu (10.1016/j.trc.2022.103921_b179) 2019; 16 Ziat (10.1016/j.trc.2022.103921_b347) 2017 Bielli (10.1016/j.trc.2022.103921_b25) 2006; 175 Cai (10.1016/j.trc.2022.103921_b32) 2020; 50 Wang (10.1016/j.trc.2022.103921_b265) 2020 Wagner-Muns (10.1016/j.trc.2022.103921_b263) 2017; 19 Wang (10.1016/j.trc.2022.103921_b266) 2017 Abid (10.1016/j.trc.2022.103921_b2) 2021 Ma (10.1016/j.trc.2022.103921_b183) 2020; 111 Davis (10.1016/j.trc.2022.103921_b57) 2016 Wang (10.1016/j.trc.2022.103921_b284) 2018; vol. 32 Salinas (10.1016/j.trc.2022.103921_b222) 2019; 32 Faghih (10.1016/j.trc.2022.103921_b74) 2019; 33 Huang (10.1016/j.trc.2022.103921_b111) 2019 Zhong (10.1016/j.trc.2022.103921_b342) 2020; 115 Zhong (10.1016/j.trc.2022.103921_b343) 2020; 13 James (10.1016/j.trc.2022.103921_b114) 2021; 212 Kullberg (10.1016/j.trc.2022.103921_b132) 2021 Tran (10.1016/j.trc.2022.103921_b256) 2022; 14 Carlini (10.1016/j.trc.2022.103921_b34) 2016; 8 Shahbazi (10.1016/j.trc.2022.103921_b227) 2021; 21 Högberg (10.1016/j.trc.2022.103921_b104) 1976; 10 Shen (10.1016/j.trc.2022.103921_b230) 2020; 1682 Lu (10.1016/j.trc.2022.103921_b181) 2022; 593 Yu (10.1016/j.trc.2022.103921_b310) 2020; 114 Yao (10.1016/j.trc.2022.103921_b305) 2021; 124 Zhang (10.1016/j.trc.2022.103921_b328) 2020 Hochreiter (10.1016/j.trc.2022.103921_b103) 1997; 9 Cai (10.1016/j.trc.2022.103921_b33) 2016; 62 Dai (10.1016/j.trc.2022.103921_b54) 2020; 3 Ding (10.1016/j.trc.2022.103921_b63) 2015 Guo (10.1016/j.trc.2022.103921_b95) 2020; 115 Wu (10.1016/j.trc.2022.103921_b296) 2018; 90 Panait (10.1016/j.trc.2022.103921_b210) 2020 Downs (10.1016/j.trc.2022.103921_b66) 2004; 1 Zhou (10.1016/j.trc.2022.103921_b345) 2022 Hassan (10.1016/j.trc.2022.103921_b98) 2019; 151 Springenberg (10.1016/j.trc.2022.103921_b243) 2014 Cui (10.1016/j.trc.2022.103921_b52) 2020; 117 Zhou (10.1016/j.trc.2022.103921_b344) 2008; 16 Cheng (10.1016/j.trc.2022.103921_b46) 2018; 7 FHWA (10.1016/j.trc.2022.103921_b75) 2019 Essien (10.1016/j.trc.2022.103921_b73) 2020 Zhang (10.1016/j.trc.2022.103921_b322) 2010; 15 Kong (10.1016/j.trc.2022.103921_b129) 2020; 8 Stathopoulos (10.1016/j.trc.2022.103921_b244) 2003; 11 Palm (10.1016/j.trc.2022.103921_b205) 2012; 5 Yin (10.1016/j.trc.2022.103921_b309) 2021 Vlahogianni (10.1016/j.trc.2022.103921_b261) 2004; 24 10.1016/j.trc.2022.103921_b109 Roy (10.1016/j.trc.2022.103921_b220) 2021 Zhao (10.1016/j.trc.2022.103921_b335) 2019; 21 10.1016/j.trc.2022.103921_b226 Gong (10.1016/j.trc.2022.103921_b85) 2020; vol. 34 Jenelius (10.1016/j.trc.2022.103921_b116) 2013; 53 Barros (10.1016/j.trc.2022.103921_b18) 2015 Bermingham (10.1016/j.trc.2022.103921_b23) 2017; 31 Sutskever (10.1016/j.trc.2022.103921_b246) 2014; 27 10.1016/j.trc.2022.103921_b102 Peng (10.1016/j.trc.2022.103921_b213) 2020; 521 Li (10.1016/j.trc.2022.103921_b155) 2012; 6 Guo (10.1016/j.trc.2022.103921_b93) 2019; vol. 33 Qu (10.1016/j.trc.2022.103921_b216) 2019; 121 Werbos (10.1016/j.trc.2022.103921_b290) 1990; 78 Ye (10.1016/j.trc.2022.103921_b308) 2020 Zhang (10.1016/j.trc.2022.103921_b327) 2021 Xu (10.1016/j.trc.2022.103921_b299) 2018; 12 Ghosh (10.1016/j.trc.2022.103921_b83) 2017 Hassija (10.1016/j.trc.2022.103921_b99) 2020 Zhang (10.1016/j.trc.2022.103921_b316) 1992; 3 Kessler (10.1016/j.trc.2022.103921_b127) 2018; 51 Do (10.1016/j.trc.2022.103921_b65) 2019; 9 Zhang (10.1016/j.trc.2022.103921_b321) 2018; 92 John (10.1016/j.trc.2022.103921_b123) 2021 Lippi (10.1016/j.trc.2022.103921_b167) 2013; 14 Shin (10.1016/j.trc.2022.103921_b238) 2020 Zhao (10.1016/j.trc.2022.103921_b332) 2018 Gobezie (10.1016/j.trc.2022.103921_b84) 2020 Liao (10.1016/j.trc.2022.103921_b163) 2018 Bao (10.1016/j.trc.2022.103921_b17) 2021; 60 Dai (10.1016/j.trc.2022.103921_b55) 2019; 7 Ke (10.1016/j.trc.2022.103921_b126) 2021; 122 Li (10.1016/j.trc.2022.103921_b153) 2020 Pan (10.1016/j.trc.2022.103921_b209) 2020 Pham (10.1016/j.trc.2022.103921_b214) 2018 Defferrard (10.1016/j.trc.2022.103921_b59) 2016; 29 10.1016/j.trc.2022.103921_b112 10.1016/j.trc.2022.103921_b233 Sun (10.1016/j.trc.2022.103921_b245) 2021; 9 Chen (10.1016/j.trc.2022.103921_b38) 2020; vol. 34 Liu (10.1016/j.trc.2022.103921_b175) 2020; 206 Zafar (10.1016/j.trc.2022.103921_b315) 2022; 22 Tian (10.1016/j.trc.2022.103921_b254) 2020; 186 Kwon (10.1016/j.trc.2022.103921_b136) 2021 Zhang (10.1016/j.trc.2022.103921_b331) 2021 Angarita-Zapata (10.1016/j.trc.2022.103921_b10) 2019; 7 Chen (10.1016/j.trc.2022.103921_b39) 2019; vol. 33 Zhao (10.1016/j.trc.2022.103921_b334) 2022; 204 Yang (10.1016/j.trc.2022.103921_b304) 2020; 2020 Zhang (10.1016/j.trc.2022.103921_b326) 2014; 43 10.1016/j.trc.2022.103921_b208 Wang (10.1016/j.trc.2022.103921_b268) 2019; 100 Tedjopurnomo (10.1016/j.trc.2022.103921_b252) 2020 Cui (10.1016/j.trc.2022.103921_b50) 2021; 25 10.1016/j.trc.2022.103921_b207 Yuan (10.1016/j.trc.2022.103921_b313) 2021; 6 Al-Hussaeni (10.1016/j.trc.2022.103921_b6) 2018; 143 Moreira-Matias (10.1016/j.trc.2022.103921_b199) 2013; 14 10.1016/j.trc.2022.103921_b202 10.1016/j.trc.2022.103921_b323 Chen (10.1016/j.trc.2022.103921_b41) 2020; 11 Homayoun (10.1016/j.trc.2022.103921_b105) 2017; 8 Liou (10.1016/j.trc.2022.103921_b166) 2014; 139 Ermagun (10.1016/j.trc.2022.103921_b72) 2018; 38 Quddus (10.1016/j.trc.2022.103921_b217) 2007; 15 Elamrani Abou Elassad (10.1016/j.trc.2022.103921_b70) 2020; 21 Gao (10.1016/j.trc.2022.103921_b78) 2018; 18 Zhang (10.1016/j.trc.2022.103921_b324) 2019 Wang (10.1016/j.trc.2022.103921_b274) 2020; 119 Chen (10.1016/j.trc.2022.103921_b43) 2020 Liu (10.1016/j.trc.2022.103921_b177) 2021; 13 Lee (10.1016/j.trc.2022.103921_b142) 2022; 134 Wang (10.1016/j.trc.2022.103921_b270) 2014; 43 Li (10.1016/j.trc.2022.103921_b154) 2019 Li (10.1016/j.trc.2022.103921_b143) 2018; 20 Tang (10.1016/j.trc.2022.103921_b251) 2018; 20 Zhang (10.1016/j.trc.2022.103921_b329) 2021; 2021 Bai (10.1016/j.trc.2022.103921_b15) 2020; 33 Liu (10.1016/j.trc.2022.103921_b169) 2020 Zhao (10.1016/j.trc.2022.103921_b333) 2020 Zhao (10.1016/j.trc.2022.103921_b336) 2019; 69 Yu (10.1016/j.trc.2022.103921_b311) 2017; 17 10.1016/j.trc.2022.103921_b337 Tian (10.1016/j.trc.2022.103921_b255) 2018; 318 Atif (10.1016/j.trc.2022.103921_b12) 2020; 31 10.1016/j.trc.2022.103921_b211 Thompson (10.1016/j.trc.2022.103921_b253) 2020 Zheng (10.1016/j.trc.2022.103921_b340) 2020; vol. 34 Kowalek (10.1016/j.trc.2022.103921_b130) 2019; 100 10.1016/j.trc.2022.103921_b330 Li (10.1016/j.trc.2022.103921_b150) 2010; 37 Chen (10.1016/j.trc.2022.103921_b42) 2018; 20 Wang (10.1016/j.trc.2022.103921_b281) 2019; 10 Li (10.1016/j.trc.2022.103921_b156) 2018; 10 Kazemi (10.1016/j.trc.2022.103921_b125) 2021; 9 Wang (10.1016/j.trc.2022.103921_b264) 2018 Belkin (10.1016/j.trc.2022.103921_b20) 2019; 116 Shi (10.1016/j.trc.2022.103921_b232) 2015; 28 Advani (10.1016/j.trc.2022.103921_b3) 2020; 48 Li (10.1016/j.trc.2022.103921_b160) 2017 Lea (10.1016/j.trc.2022.103921_b140) 2016 Jiang (10.1016/j.trc.2022.103921_b119) 2022; 5 Vanajakshi (10.1016/j.trc.2022.103921_b260) 2004 Wu (10.1016/j.trc.2022.103921_b295) 2019 Wu (10.1016/j.trc.2022.103921_b293) 2020; 2020 Shih (10.1016/j.trc.2022.103921_b236) 2019; 108 Litman (10.1016/j.trc.2022.103921_b168) 2020 Meese (10.1016/j.trc.2022.103921_b194) 2022 Huang (10.1016/j.trc.2022.103921_b110) 2021; 23 Peng (10.1016/j.trc.2022.103921_b212) 2020; 144 10.1016/j.trc.2022.103921_b147 Min (10.1016/j.trc.2022.103921_b198) 2011; 19 Tang (10.1016/j.trc.2022.103921_b249) 2017; 241 Deng (10.1016/j.trc.2022.103921_b60) 2020; 108 Song (10.1016/j.trc.2022.103921_b242) 2020; vol. 34 10.1016/j.trc.2022.103921_b271 Zhou (10.1016/j.trc.2022.103921_b346) 2020; 7 10.1016/j.trc.2022.103921_b272 Kuang (10.1016/j.trc.2022.103921_b131) 2020; 25 Shen (10.1016/j.trc.2022.103921_b231) 2015; 294 Tu (10.1016/j.trc.2022.103921_b258) 2019; 3 Guo (10.1016/j.trc.2022.103921_b91) 2021; vol. 35 Hajirahimi (10.1016/j.trc.2022.103921_b96) 2019; 86 Zhang (10.1016/j.trc.2022.103921_b318) 2018; 11 Fu (10.1016/j.trc.2022.103921_b77) 2016 Bogaerts (10.1016/j.trc.2022.103921_b26) 2020; 112 Gori (10.1016/j.trc.2022.103921_b87) 2005 Lana (10.1016/j.trc.2022.103921_b138) 2018; 10 Ma (10.1016/j.trc.2022.103921_b185) 2015; 10 Riahi-Madvar (10.1016/j.trc.2022.103921_b219) 2021; 216 Jiang (10.1016/j.trc.2022.103921_b118) 2021 10.1016/j.trc.2022.103921_b277 Li (10.1016/j.trc.2022.103921_b149) 2021; 128 10.1016/j.trc.2022.103921_b158 10.1016/j.trc.2022.103921_b159 10.1016/j.trc.2022.103921_b152 Cheng (10.1016/j.trc.2022.103921_b45) 2017; 6 10.1016/j.trc.2022.103921_b275 Wang (10.1016/j.trc.2022.103921_b288) 2020 10.1016/j.trc.2022.103921_b280 10.1016/j.trc.2022.103921_b161 Vlahogianni (10.1016/j.trc.2022.103921_b262) 2014; 43 10.1016/j.trc.2022.103921_b162 10.1016/j.trc.2022.103921_b283 Schrank (10.1016/j.trc.2022.103921_b225) 2019 Chan (10.1016/j.trc.2022.103921_b36) 2021; 171 Li (10.1016/j.trc.2022.103921_b145) 2021; 14 Li (10.1016/j.trc.2022.103921_b146) 2020; 8 Wang (10.1016/j.trc.2022.103921_b286) 2019; 99 Liu (10.1016/j.trc.2022.103921_b171) 2020; 7 Mallick (10.1016/j.trc.2022.103921_b191) 2021 Bhowmick (10.1016/j.trc.2022.103921_b24) 2018 Scarselli (10.1016/j |
References_xml | – start-page: 47 year: 2016 ident: 10.1016/j.trc.2022.103921_b140 article-title: Temporal convolutional networks: A unified approach to action segmentation – volume: 204 year: 2022 ident: 10.1016/j.trc.2022.103921_b334 article-title: Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117511 – year: 2020 ident: 10.1016/j.trc.2022.103921_b90 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 1 start-page: 19 issue: 25 year: 2004 ident: 10.1016/j.trc.2022.103921_b66 article-title: Why traffic congestion is here to stay.... and will get worse publication-title: Access Mag. – volume: 60 start-page: 413 issue: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b17 article-title: An improved deep belief network for traffic prediction considering weather factors publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.09.003 – volume: 50 start-page: 148 year: 2018 ident: 10.1016/j.trc.2022.103921_b200 article-title: Survey on traffic prediction in smart cities publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2018.07.004 – volume: 37 start-page: 751 issue: 5 year: 2010 ident: 10.1016/j.trc.2022.103921_b150 article-title: An activity-based approach for scheduling multimodal transit services publication-title: Transportation doi: 10.1007/s11116-010-9291-z – ident: 10.1016/j.trc.2022.103921_b307 doi: 10.1145/3292500.3330887 – volume: 139 start-page: 84 year: 2014 ident: 10.1016/j.trc.2022.103921_b166 article-title: Autoencoder for words publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – volume: 607 start-page: 869 year: 2022 ident: 10.1016/j.trc.2022.103921_b276 article-title: Attention based spatiotemporal graph attention networks for traffic flow forecasting publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.05.127 – start-page: 499 year: 2016 ident: 10.1016/j.trc.2022.103921_b273 article-title: Traffic speed prediction and congestion source exploration: A deep learning method – ident: 10.1016/j.trc.2022.103921_b275 doi: 10.1145/3474717.3483923 – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b132 article-title: Learning motion patterns in AIS data and detecting anomalous vessel behavior – volume: vol. 32 year: 2018 ident: 10.1016/j.trc.2022.103921_b306 article-title: Deep multi-view spatial-temporal network for taxi demand prediction – year: 2021 ident: 10.1016/j.trc.2022.103921_b221 article-title: Multivariate uncertainty in deep learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 6307 year: 2017 ident: 10.1016/j.trc.2022.103921_b83 article-title: Denoising autoencoders for fast real-time traffic estimation on urban road networks – volume: 14 start-page: 6351 issue: 10 year: 2022 ident: 10.1016/j.trc.2022.103921_b256 article-title: Short-term traffic speed forecasting model for a parallel multi-lane arterial road using GPS-monitored data based on deep learning approach publication-title: Sustainability doi: 10.3390/su14106351 – ident: 10.1016/j.trc.2022.103921_b162 doi: 10.1145/3219819.3219895 – year: 2020 ident: 10.1016/j.trc.2022.103921_b267 article-title: Deep learning for spatio-temporal data mining: A survey publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 291 year: 2019 ident: 10.1016/j.trc.2022.103921_b170 article-title: DeepRTP: A deep spatio-temporal residual network for regional traffic prediction – start-page: 317 year: 2022 ident: 10.1016/j.trc.2022.103921_b194 article-title: BFRT: Blockchained federated learning for real-time traffic flow prediction – volume: vol. 32 year: 2018 ident: 10.1016/j.trc.2022.103921_b284 article-title: When will you arriveEstimating travel time based on deep neural networks – volume: 186 start-page: 185 year: 2020 ident: 10.1016/j.trc.2022.103921_b254 article-title: Identifying flow defects in amorphous alloys using machine learning outlier detection methods publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.05.038 – volume: 12 start-page: 253 issue: 2 year: 2018 ident: 10.1016/j.trc.2022.103921_b299 article-title: Trip-oriented travel time prediction (TOTTP) with historical vehicle trajectories publication-title: Front. Earth Sci. doi: 10.1007/s11707-016-0634-8 – volume: 21 start-page: 201 issue: 3 year: 2020 ident: 10.1016/j.trc.2022.103921_b70 article-title: Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2020.1723794 – volume: 241 start-page: 171 year: 2017 ident: 10.1016/j.trc.2022.103921_b249 article-title: A local density-based approach for outlier detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.039 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.trc.2022.103921_b103 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2020 ident: 10.1016/j.trc.2022.103921_b169 article-title: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 13 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.trc.2022.103921_b81 article-title: Generative adversarial networks for spatio-temporal data: A survey publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3474838 – volume: 3 start-page: 28 issue: 1 year: 2016 ident: 10.1016/j.trc.2022.103921_b203 article-title: Computer network traffic prediction: A comparison between traditional and deep learning neural networks publication-title: Int. J. Big Data Intell. doi: 10.1504/IJBDI.2016.073903 – volume: 13 start-page: 53 issue: 2 year: 2020 ident: 10.1016/j.trc.2022.103921_b343 article-title: Autonomous and semiautonomous intersection management: A survey publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2020.3014074 – volume: 98 year: 2021 ident: 10.1016/j.trc.2022.103921_b189 article-title: Speed prediction in large and dynamic traffic sensor networks publication-title: Inf. Syst. doi: 10.1016/j.is.2019.101444 – volume: 15 start-page: 312 issue: 5 year: 2007 ident: 10.1016/j.trc.2022.103921_b217 article-title: Current map-matching algorithms for transport applications: State-of-the art and future research directions publication-title: Transp. Res. C doi: 10.1016/j.trc.2007.05.002 – start-page: 705 year: 2017 ident: 10.1016/j.trc.2022.103921_b347 article-title: Spatio-temporal neural networks for space-time series forecasting and relations discovery – volume: 11 start-page: 121 issue: 2 year: 2003 ident: 10.1016/j.trc.2022.103921_b244 article-title: A multivariate state space approach for urban traffic flow modeling and prediction publication-title: Transp. Res. C doi: 10.1016/S0968-090X(03)00004-4 – volume: 12 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.trc.2022.103921_b19 article-title: Machine learning for identifying group trajectory outliers publication-title: ACM Trans. Manag. Inf. Syst. (TMIS) doi: 10.1145/3430195 – ident: 10.1016/j.trc.2022.103921_b283 doi: 10.1145/3292500.3330877 – volume: 7 start-page: 68185 year: 2019 ident: 10.1016/j.trc.2022.103921_b10 article-title: A taxonomy of traffic forecasting regression problems from a supervised learning perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917228 – volume: 2020 year: 2020 ident: 10.1016/j.trc.2022.103921_b293 article-title: A combined deep learning method with attention-based LSTM model for short-term traffic speed forecasting publication-title: J. Adv. Transp. doi: 10.1155/2020/8863724 – ident: 10.1016/j.trc.2022.103921_b314 doi: 10.1145/3318464.3389771 – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b259 article-title: Data quality evaluation, outlier detection and missing data imputation methods for IoT in smart cities – start-page: 729 year: 2005 ident: 10.1016/j.trc.2022.103921_b87 article-title: A new model for learning in graph domains – volume: 55 start-page: 328 year: 2015 ident: 10.1016/j.trc.2022.103921_b218 article-title: Shortest path and vehicle trajectory aided map-matching for low frequency GPS data publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.02.017 – volume: vol. 34 start-page: 3529 year: 2020 ident: 10.1016/j.trc.2022.103921_b38 article-title: Multi-range attentive bicomponent graph convolutional network for traffic forecasting – ident: 10.1016/j.trc.2022.103921_b102 doi: 10.1109/CVPR.2016.90 – volume: 2021 year: 2021 ident: 10.1016/j.trc.2022.103921_b5 article-title: A review of traffic congestion prediction using artificial intelligence publication-title: J. Adv. Transp. doi: 10.1155/2021/8878011 – volume: 3 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.trc.2022.103921_b258 article-title: From fingerprint to footprint: cold-start location recommendation by learning user interest from app data publication-title: Proc. ACM Interact., Mob., Wearable Ubiquitous Technol. doi: 10.1145/3314413 – volume: 99 start-page: 144 year: 2019 ident: 10.1016/j.trc.2022.103921_b286 article-title: Enhancing transportation systems via deep learning: A survey publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.12.004 – volume: 15 start-page: 188 issue: 2 year: 2010 ident: 10.1016/j.trc.2022.103921_b322 article-title: Comparison of several traffic forecasting methods based on travel time index data on weekends publication-title: J. Shanghai Jiaotong Univ. (Science) doi: 10.1007/s12204-010-9712-3 – volume: 2022 year: 2022 ident: 10.1016/j.trc.2022.103921_b117 article-title: Spatiotemporal DeepWalk gated recurrent neural network: A deep learning framework for traffic learning and forecasting publication-title: J. Adv. Transp. – year: 2020 ident: 10.1016/j.trc.2022.103921_b308 article-title: How to build a graph-based deep learning architecture in traffic domain: A survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 25 start-page: 179 issue: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b50 article-title: Hidden Markov map matching based on trajectory segmentation with heading homogeneity publication-title: GeoInformatica doi: 10.1007/s10707-020-00429-4 – volume: 100 issue: 3 year: 2019 ident: 10.1016/j.trc.2022.103921_b130 article-title: Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.032410 – volume: 7 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.trc.2022.103921_b135 article-title: Short-term traffic flow prediction using seasonal ARIMA model with limited input data publication-title: Eur. Transp. Res. Rev. doi: 10.1007/s12544-015-0170-8 – volume: 140 issue: 7 year: 2014 ident: 10.1016/j.trc.2022.103921_b297 article-title: Improved k-nn for short-term traffic forecasting using temporal and spatial information publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000672 – ident: 10.1016/j.trc.2022.103921_b13 – volume: 7 start-page: 4795 year: 2018 ident: 10.1016/j.trc.2022.103921_b100 article-title: STANN: A spatio–temporal attentive neural network for traffic prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888561 – volume: 171 year: 2021 ident: 10.1016/j.trc.2022.103921_b36 article-title: A neural network approach for traffic prediction and routing with missing data imputation for intelligent transportation system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114573 – volume: 125 year: 2021 ident: 10.1016/j.trc.2022.103921_b61 article-title: A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103008 – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b136 article-title: Multilayered LSTM with parameter transfer for vehicle speed data imputation – volume: 10 start-page: 93 issue: 2 year: 2018 ident: 10.1016/j.trc.2022.103921_b138 article-title: Road traffic forecasting: Recent advances and new challenges publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2018.2806634 – ident: 10.1016/j.trc.2022.103921_b202 – year: 2020 ident: 10.1016/j.trc.2022.103921_b341 article-title: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b43 article-title: Short-term traffic flow prediction based on improved wavelet neural network publication-title: Neural Comput. Appl. – volume: 8 year: 2016 ident: 10.1016/j.trc.2022.103921_b34 article-title: The drivers and benefits of edge computing publication-title: Schneider Electric–Data Center Sci. Center – volume: 13 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.trc.2022.103921_b177 article-title: EXPERIENCE: Algorithms and case study for explaining repairs with uniform profiles over IoT data publication-title: J. Data Inf. Qual. (JDIQ) doi: 10.1145/3436239 – volume: 48 start-page: 1022 year: 2020 ident: 10.1016/j.trc.2022.103921_b3 article-title: Performance evaluation of urban arterial network using Wi-Fi sensors under heterogeneous traffic conditions publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2020.08.130 – ident: 10.1016/j.trc.2022.103921_b294 doi: 10.1145/3394486.3403118 – volume: 33 start-page: 17804 year: 2020 ident: 10.1016/j.trc.2022.103921_b15 article-title: Adaptive graph convolutional recurrent network for traffic forecasting publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.trc.2022.103921_b29 – volume: 14 start-page: 1 year: 2019 ident: 10.1016/j.trc.2022.103921_b223 article-title: Repairing outlier behaviour in event logs using contextual behaviour publication-title: Enterp. Model. Inf. Syst. Archit. (EMISAJ) – volume: 115 year: 2020 ident: 10.1016/j.trc.2022.103921_b342 article-title: Influence of CAV clustering strategies on mixed traffic flow characteristics: An analysis of vehicle trajectory data publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102611 – volume: 187 start-page: 582 year: 2017 ident: 10.1016/j.trc.2022.103921_b133 article-title: Traffic flow prediction using Kalman filtering technique publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.04.417 – ident: 10.1016/j.trc.2022.103921_b147 doi: 10.1145/3219819.3220033 – start-page: 10367 year: 2021 ident: 10.1016/j.trc.2022.103921_b191 article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting – volume: 62 start-page: 21 year: 2016 ident: 10.1016/j.trc.2022.103921_b33 article-title: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.11.002 – ident: 10.1016/j.trc.2022.103921_b323 – volume: 11 start-page: 1473 issue: 10 year: 2018 ident: 10.1016/j.trc.2022.103921_b115 article-title: Integration of big data to predict transportation for smart cities publication-title: Int. J. Archit. Environ. Engineering – year: 2020 ident: 10.1016/j.trc.2022.103921_b228 – volume: 27 year: 2014 ident: 10.1016/j.trc.2022.103921_b246 article-title: Sequence to sequence learning with neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 3 start-page: 126 issue: 2 year: 2017 ident: 10.1016/j.trc.2022.103921_b64 article-title: Detecting and analyzing urban regions with high impact of weather change on transport publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2016.2623320 – volume: 3 start-page: 66 issue: 4 year: 2020 ident: 10.1016/j.trc.2022.103921_b54 article-title: Spatio-temporal deep learning framework for traffic speed forecasting in IoT publication-title: IEEE Internet Things Mag. doi: 10.1109/IOTM.0001.2000031 – year: 2021 ident: 10.1016/j.trc.2022.103921_b331 article-title: MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 24 start-page: 533 issue: 5 year: 2004 ident: 10.1016/j.trc.2022.103921_b261 article-title: Short-term traffic forecasting: Overview of objectives and methods publication-title: Transp. Rev. doi: 10.1080/0144164042000195072 – start-page: 1 year: 2009 ident: 10.1016/j.trc.2022.103921_b196 article-title: Short-term traffic flow forecasting of urban network based on dynamic STARIMA model – volume: 30 start-page: 613 issue: 4 year: 2017 ident: 10.1016/j.trc.2022.103921_b303 article-title: A novel representation and compression for queries on trajectories in road networks publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2776927 – volume: 151 start-page: 852 year: 2019 ident: 10.1016/j.trc.2022.103921_b98 article-title: Spatio-temporal anomaly detection in intelligent transportation systems publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.04.117 – start-page: 194 year: 2004 ident: 10.1016/j.trc.2022.103921_b260 article-title: A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed – volume: 6 start-page: 32005 year: 2018 ident: 10.1016/j.trc.2022.103921_b89 article-title: A unified framework for predicting kpis of on-demand transport services publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2846550 – volume: 318 start-page: 297 year: 2018 ident: 10.1016/j.trc.2022.103921_b255 article-title: LSTM-based traffic flow prediction with missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.067 – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b300 article-title: MTLM: A multi-task learning model for travel time estimation publication-title: GeoInformatica – volume: 18 start-page: 218 issue: 3 year: 2018 ident: 10.1016/j.trc.2022.103921_b78 article-title: Online compression algorithm of AIS trajectory data based on improved sliding window publication-title: J. Traffic Transp. Eng. – year: 2018 ident: 10.1016/j.trc.2022.103921_b113 article-title: Inferring latent traffic demand offered to an overloaded link with modeling qos-degradation effect publication-title: IEICE Trans. Commun. – volume: 16 start-page: 4177 issue: 6 year: 2019 ident: 10.1016/j.trc.2022.103921_b179 article-title: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2942190 – ident: 10.1016/j.trc.2022.103921_b161 doi: 10.1145/3394486.3403122 – start-page: 701 year: 2019 ident: 10.1016/j.trc.2022.103921_b21 article-title: Scalable zero knowledge with no trusted setup – ident: 10.1016/j.trc.2022.103921_b233 doi: 10.1145/3373419.3373429 – volume: 2019 year: 2019 ident: 10.1016/j.trc.2022.103921_b165 article-title: A spatial-temporal hybrid model for short-term traffic prediction publication-title: Math. Probl. Eng. doi: 10.1155/2019/4858546 – volume: 175 start-page: 1705 issue: 3 year: 2006 ident: 10.1016/j.trc.2022.103921_b25 article-title: Object modeling and path computation for multimodal travel systems publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2005.02.036 – year: 2021 ident: 10.1016/j.trc.2022.103921_b76 – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b122 article-title: HetGAT: A heterogeneous graph attention network for freeway traffic speed prediction publication-title: J. Ambient Intell. Humaniz. Comput. – volume: vol. 34 start-page: 914 year: 2020 ident: 10.1016/j.trc.2022.103921_b242 article-title: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting – volume: 51 start-page: 299 issue: 9 year: 2018 ident: 10.1016/j.trc.2022.103921_b127 article-title: Comparing speed data from stationary detectors against floating-car data publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.07.049 – volume: 9 start-page: 11264 year: 2021 ident: 10.1016/j.trc.2022.103921_b144 article-title: A hybrid deep learning framework for long-term traffic flow prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050836 – volume: 6 start-page: 187 issue: 7 year: 2017 ident: 10.1016/j.trc.2022.103921_b45 article-title: A two-step method for missing spatio-temporal data reconstruction publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi6070187 – volume: 19 start-page: 606 issue: 4 year: 2011 ident: 10.1016/j.trc.2022.103921_b198 article-title: Real-time road traffic prediction with spatio-temporal correlations publication-title: Transp. Res. C doi: 10.1016/j.trc.2010.10.002 – volume: 50 start-page: 3452 issue: 10 year: 2020 ident: 10.1016/j.trc.2022.103921_b32 article-title: UWFP-outlier: An efficient frequent-pattern-based outlier detection method for uncertain weighted data streams publication-title: Appl. Intell. doi: 10.1007/s10489-020-01718-z – volume: 12 start-page: 998 issue: 9 year: 2018 ident: 10.1016/j.trc.2022.103921_b201 article-title: Deep learning methods in transportation domain: A review publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2018.0064 – volume: 11 start-page: 934 issue: 9 year: 2018 ident: 10.1016/j.trc.2022.103921_b318 article-title: Trajectory simplification: An experimental study and quality analysis publication-title: Proc. VLDB Endow. doi: 10.14778/3213880.3213885 – volume: 1 start-page: 45 year: 2020 ident: 10.1016/j.trc.2022.103921_b67 article-title: Federated learning for vehicular internet of things: Recent advances and open issues publication-title: IEEE Open J. Comput. Soc. doi: 10.1109/OJCS.2020.2992630 – volume: 28 year: 2015 ident: 10.1016/j.trc.2022.103921_b232 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 1474 issue: 9 year: 2020 ident: 10.1016/j.trc.2022.103921_b180 article-title: St-trafficnet: A spatial-temporal deep learning network for traffic forecasting publication-title: Electronics doi: 10.3390/electronics9091474 – ident: 10.1016/j.trc.2022.103921_b14 doi: 10.24963/ijcai.2019/274 – volume: 8 start-page: 341 issue: 2 year: 2017 ident: 10.1016/j.trc.2022.103921_b105 article-title: Know abnormal, find evil: Fequent pattern mining for ransomware threat hunting and intelligence publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2017.2756908 – volume: 5 year: 2012 ident: 10.1016/j.trc.2022.103921_b205 article-title: Prediction as a candidate for learning deep hierarchical models of data publication-title: Techn. Univ. Denmark – volume: 115 year: 2020 ident: 10.1016/j.trc.2022.103921_b51 article-title: Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102620 – volume: 6 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.trc.2022.103921_b339 article-title: Trajectory data mining: An overview publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/2743025 – start-page: 1293 year: 2017 ident: 10.1016/j.trc.2022.103921_b241 article-title: Traffic speed prediction under weekday using convolutional neural networks concepts – volume: 20 start-page: 3613 issue: 10 year: 2018 ident: 10.1016/j.trc.2022.103921_b251 article-title: Forecasting short-term passenger flow: An empirical study on shenzhen metro publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2879497 – volume: 33 issue: 3 year: 2019 ident: 10.1016/j.trc.2022.103921_b74 article-title: Predicting short-term uber demand in new york city using spatiotemporal modeling publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000825 – volume: 11 start-page: 1450 issue: 2 year: 2021 ident: 10.1016/j.trc.2022.103921_b234 article-title: A comprehensive review on hybrid network traffic prediction model publication-title: Int. J. Electr. Comput. Eng. – volume: 28 year: 2015 ident: 10.1016/j.trc.2022.103921_b22 article-title: Scheduled sampling for sequence prediction with recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 1682 year: 2020 ident: 10.1016/j.trc.2022.103921_b230 article-title: Short-term traffic flow prediction based on harmony search algorithm optimized wavelet neural network – start-page: 999 year: 2020 ident: 10.1016/j.trc.2022.103921_b328 article-title: Spatial-temporal graph attention model on traffic forecasting – volume: 78 start-page: 1550 issue: 10 year: 1990 ident: 10.1016/j.trc.2022.103921_b290 article-title: Backpropagation through time: What it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – volume: 8 start-page: 162 issue: 5 year: 2016 ident: 10.1016/j.trc.2022.103921_b56 article-title: On nearest-neighbor Gaussian process models for massive spatial data publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.1383 – volume: 114 start-page: 189 year: 2020 ident: 10.1016/j.trc.2022.103921_b310 article-title: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN) publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.02.013 – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b2 article-title: Improved approaches for density-based outlier detection in wireless sensor networks publication-title: Computing – volume: 124 year: 2021 ident: 10.1016/j.trc.2022.103921_b305 article-title: From Twitter to traffic predictor: Next-day morning traffic prediction using social media data publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102938 – volume: 129 start-page: 664 issue: 6 year: 2003 ident: 10.1016/j.trc.2022.103921_b291 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 21 start-page: 3314 issue: 10 year: 2021 ident: 10.1016/j.trc.2022.103921_b227 article-title: A framework of vehicular security and demand service prediction based on data analysis integrated with blockchain approach publication-title: Sensors doi: 10.3390/s21103314 – start-page: 223 year: 2016 ident: 10.1016/j.trc.2022.103921_b57 article-title: A multi-level clustering approach for forecasting taxi travel demand – start-page: 115 year: 2020 ident: 10.1016/j.trc.2022.103921_b8 article-title: Hybrid statistical and machine learning methods for road traffic prediction: A review and tutorial publication-title: Smart Infrastruct. Appl. doi: 10.1007/978-3-030-13705-2_5 – start-page: 33 year: 2019 ident: 10.1016/j.trc.2022.103921_b154 article-title: A blockchain-based architecture for traffic signal control systems – volume: 33 start-page: 448 issue: 6 year: 2009 ident: 10.1016/j.trc.2022.103921_b178 article-title: On path anomaly detection in a large transportation network publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2009.07.009 – volume: 100 start-page: 372 year: 2019 ident: 10.1016/j.trc.2022.103921_b268 article-title: Traffic speed prediction for urban transportation network: A path based deep learning approach publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.02.002 – ident: 10.1016/j.trc.2022.103921_b86 doi: 10.1145/3269206.3271757 – volume: 14 start-page: 141 issue: 2 year: 2020 ident: 10.1016/j.trc.2022.103921_b257 article-title: Real-time distance-based outlier detection in data streams publication-title: Proc. VLDB Endow. doi: 10.14778/3425879.3425885 – volume: 117 start-page: 328 year: 2021 ident: 10.1016/j.trc.2022.103921_b215 article-title: Privacy-preserving blockchain-based federated learning for traffic flow prediction publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.12.003 – volume: 7 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.trc.2022.103921_b279 article-title: Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi GPS data publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi7010025 – start-page: 37 year: 2018 ident: 10.1016/j.trc.2022.103921_b24 article-title: Trajectory outlier detection for traffic events: A survey – start-page: 1 year: 2018 ident: 10.1016/j.trc.2022.103921_b264 article-title: A network traffic flow prediction with deep learning approach for large-scale metropolitan area network – ident: 10.1016/j.trc.2022.103921_b272 doi: 10.24963/ijcai.2019/262 – volume: 92 start-page: 392 year: 2018 ident: 10.1016/j.trc.2022.103921_b321 article-title: User-centric interdependent urban systems: Using time-of-day electricity usage data to predict morning roadway congestion publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.05.008 – volume: vol. 33 start-page: 922 year: 2019 ident: 10.1016/j.trc.2022.103921_b93 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting – volume: 206 year: 2020 ident: 10.1016/j.trc.2022.103921_b175 article-title: Predicting taxi demands via an attention-based convolutional recurrent neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106294 – volume: vol. 34 start-page: 1234 year: 2020 ident: 10.1016/j.trc.2022.103921_b340 article-title: Gman: A graph multi-attention network for traffic prediction – ident: 10.1016/j.trc.2022.103921_b35 doi: 10.1145/3274895.3274896 – volume: 9 start-page: 8581 year: 2021 ident: 10.1016/j.trc.2022.103921_b245 article-title: Modeling global spatial–temporal graph attention network for traffic prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049556 – volume: 9 start-page: 112966 year: 2021 ident: 10.1016/j.trc.2022.103921_b125 article-title: IGANI: Iterative generative adversarial networks for imputation with application to traffic data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3103456 – volume: 2020 year: 2020 ident: 10.1016/j.trc.2022.103921_b304 article-title: Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models publication-title: J. Adv. Transp. doi: 10.1155/2020/9628957 – volume: 181 year: 2020 ident: 10.1016/j.trc.2022.103921_b27 article-title: Machine learning-based traffic prediction models for intelligent transportation systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107530 – volume: 20 start-page: 3049 issue: 8 year: 2018 ident: 10.1016/j.trc.2022.103921_b42 article-title: Detecting traffic information from social media texts with deep learning approaches publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2871269 – volume: 21 start-page: 1121 issue: 4 year: 2021 ident: 10.1016/j.trc.2022.103921_b139 article-title: From data to actions in intelligent transportation systems: A prescription of functional requirements for model actionability publication-title: Sensors doi: 10.3390/s21041121 – volume: 115 year: 2020 ident: 10.1016/j.trc.2022.103921_b95 article-title: A residual spatio-temporal architecture for travel demand forecasting publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102639 – volume: 7 start-page: 143025 year: 2019 ident: 10.1016/j.trc.2022.103921_b55 article-title: Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941280 – year: 2022 ident: 10.1016/j.trc.2022.103921_b120 article-title: Graph neural network for traffic forecasting: A survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117921 – volume: 119 year: 2020 ident: 10.1016/j.trc.2022.103921_b274 article-title: Forecast network-wide traffic states for multiple steps ahead: A deep learning approach considering dynamic non-local spatial correlation and non-stationary temporal dependency publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102763 – ident: 10.1016/j.trc.2022.103921_b112 – ident: 10.1016/j.trc.2022.103921_b277 doi: 10.1145/3366423.3380186 – volume: 90 start-page: 166 year: 2018 ident: 10.1016/j.trc.2022.103921_b296 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.03.001 – year: 2022 ident: 10.1016/j.trc.2022.103921_b121 article-title: A GAN-based short-term link traffic prediction approach for urban road networks under a parallel learning framework publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3148358 – volume: 30 start-page: 1310 issue: 7 year: 2017 ident: 10.1016/j.trc.2022.103921_b164 article-title: Road traffic speed prediction: A probabilistic model fusing multi-source data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2718525 – year: 2021 ident: 10.1016/j.trc.2022.103921_b192 article-title: Deep learning for road traffic forecasting: Does it make a difference? publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2020 ident: 10.1016/j.trc.2022.103921_b235 article-title: A spatial-temporal attention approach for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 243 year: 2017 ident: 10.1016/j.trc.2022.103921_b266 article-title: DeepSD: Supply-demand prediction for online car-hailing services using deep neural networks – volume: 20 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.trc.2022.103921_b224 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 29 start-page: 2063 issue: 6 year: 2018 ident: 10.1016/j.trc.2022.103921_b190 article-title: Applications of deep learning and reinforcement learning to biological data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2790388 – volume: 45 start-page: 2587 issue: 4 year: 2020 ident: 10.1016/j.trc.2022.103921_b239 article-title: Genetic-inspired map matching algorithm for real-time GPS trajectories publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-04247-1 – volume: 53 start-page: 64 year: 2013 ident: 10.1016/j.trc.2022.103921_b116 article-title: Travel time estimation for urban road networks using low frequency probe vehicle data publication-title: Transp. Res. B doi: 10.1016/j.trb.2013.03.008 – volume: 156 year: 2020 ident: 10.1016/j.trc.2022.103921_b97 article-title: Traffic congestion monitoring using an improved kNN strategy publication-title: Measurement doi: 10.1016/j.measurement.2020.107534 – volume: 20 start-page: 75 issue: 1 year: 2018 ident: 10.1016/j.trc.2022.103921_b278 article-title: Missing data estimation for traffic volume by searching an optimum closed cut in urban networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2801808 – volume: 20 year: 2019 ident: 10.1016/j.trc.2022.103921_b195 article-title: Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges publication-title: Veh. Commun. – year: 2020 ident: 10.1016/j.trc.2022.103921_b253 – volume: 5 year: 2020 ident: 10.1016/j.trc.2022.103921_b58 article-title: A framework for end-to-end deep learning-based anomaly detection in transportation networks publication-title: Transp. Res. Interdiscipl. Perspect. doi: 10.1016/j.trip.2020.100112 – volume: 9 start-page: 54739 year: 2021 ident: 10.1016/j.trc.2022.103921_b141 article-title: Short-term traffic prediction with deep neural networks: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071174 – volume: 7 start-page: 6414 issue: 7 year: 2020 ident: 10.1016/j.trc.2022.103921_b346 article-title: Reinforced spatiotemporal attentive graph neural networks for traffic forecasting publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2974494 – year: 2020 ident: 10.1016/j.trc.2022.103921_b238 article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting publication-title: IEEE Trans. Intell. Transp. Syst. – ident: 10.1016/j.trc.2022.103921_b330 doi: 10.1609/aaai.v31i1.10735 – volume: 14 start-page: 871 issue: 2 year: 2013 ident: 10.1016/j.trc.2022.103921_b167 article-title: Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2247040 – volume: 31 start-page: 1128 issue: 6 year: 2017 ident: 10.1016/j.trc.2022.103921_b23 article-title: A framework of spatio-temporal trajectory simplification methods publication-title: Int. J. Geogr. Inf. Sci. – volume: 6 start-page: 769 issue: 9 year: 2013 ident: 10.1016/j.trc.2022.103921_b302 article-title: Travel cost inference from sparse, spatio temporally correlated time series using Markov models publication-title: Proc. VLDB Endow. doi: 10.14778/2536360.2536375 – volume: 19 start-page: 3836 issue: 18 year: 2019 ident: 10.1016/j.trc.2022.103921_b174 article-title: Traffic speed prediction: An attention-based method publication-title: Sensors doi: 10.3390/s19183836 – volume: 7 start-page: 7751 issue: 8 year: 2020 ident: 10.1016/j.trc.2022.103921_b171 article-title: Privacy-preserving traffic flow prediction: A federated learning approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2991401 – volume: 124 year: 2021 ident: 10.1016/j.trc.2022.103921_b250 article-title: Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102951 – year: 2019 ident: 10.1016/j.trc.2022.103921_b295 article-title: Graph WaveNet for deep spatial-temporal graph modeling – start-page: 303 year: 2020 ident: 10.1016/j.trc.2022.103921_b134 article-title: A review of deep learning models for traffic flow prediction in autonomous vehicles – ident: 10.1016/j.trc.2022.103921_b280 doi: 10.1145/3448016.3457247 – volume: 16 start-page: 167 issue: 2 year: 2008 ident: 10.1016/j.trc.2022.103921_b344 article-title: Dynamic micro-assignment modeling approach for integrated multimodal urban corridor management publication-title: Transp. Res. C doi: 10.1016/j.trc.2007.07.002 – volume: 31 start-page: 4405 issue: 11 year: 2020 ident: 10.1016/j.trc.2022.103921_b172 article-title: When Gaussian process meets big data: A review of scalable GPs publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2957109 – volume: 593 year: 2022 ident: 10.1016/j.trc.2022.103921_b181 article-title: Traffic speed forecasting for urban roads: A deep ensemble neural network model publication-title: Physica A doi: 10.1016/j.physa.2022.126988 – year: 2021 ident: 10.1016/j.trc.2022.103921_b108 article-title: Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images publication-title: Int. J. Transp. Sci. Technol. – volume: vol. 35 start-page: 151 year: 2021 ident: 10.1016/j.trc.2022.103921_b91 article-title: Hierarchical graph convolution network for traffic forecasting – year: 2022 ident: 10.1016/j.trc.2022.103921_b187 article-title: A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b124 article-title: Reinforcement learning-designed LSTM for trajectory and traffic flow prediction – volume: 2 year: 2020 ident: 10.1016/j.trc.2022.103921_b247 article-title: A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources publication-title: Transp. Eng. doi: 10.1016/j.treng.2020.100025 – start-page: 1535 year: 2010 ident: 10.1016/j.trc.2022.103921_b197 article-title: Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model – volume: 43 start-page: 3 year: 2014 ident: 10.1016/j.trc.2022.103921_b262 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.01.005 – volume: 1549 issue: 4 year: 2020 ident: 10.1016/j.trc.2022.103921_b292 article-title: Graph wavelet long short-term memory neural network: A novel spatial-temporal network for traffic prediction publication-title: J. Phys.: Conf. Ser. – ident: 10.1016/j.trc.2022.103921_b137 doi: 10.1145/3209978.3210006 – ident: 10.1016/j.trc.2022.103921_b47 doi: 10.3115/v1/D14-1179 – volume: 21 start-page: 1332 issue: 3 year: 2019 ident: 10.1016/j.trc.2022.103921_b88 article-title: An improved Bayesian combination model for short-term traffic prediction with deep learning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2939290 – start-page: 132 year: 2015 ident: 10.1016/j.trc.2022.103921_b18 article-title: Short-term real-time traffic prediction methods: A survey – volume: 20 start-page: 2820 issue: 8 year: 2018 ident: 10.1016/j.trc.2022.103921_b143 article-title: A general framework for unmet demand prediction in on-demand transport services publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2873092 – volume: 28 start-page: 239 year: 2021 ident: 10.1016/j.trc.2022.103921_b282 article-title: GraphTTE: Travel time estimation based on attention-spatiotemporal graphs publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.3048849 – volume: 116 start-page: 15849 issue: 32 year: 2019 ident: 10.1016/j.trc.2022.103921_b20 article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1903070116 – volume: 1 start-page: 279 issue: 4 year: 2019 ident: 10.1016/j.trc.2022.103921_b9 article-title: Hyperparameter optimization in learning systems publication-title: J. Membrane Comput. doi: 10.1007/s41965-019-00023-0 – ident: 10.1016/j.trc.2022.103921_b109 doi: 10.24963/ijcai.2020/326 – volume: vol. 34 start-page: 4020 year: 2020 ident: 10.1016/j.trc.2022.103921_b85 article-title: Potential passenger flow prediction: A novel study for urban transportation development – volume: 2019 year: 2019 ident: 10.1016/j.trc.2022.103921_b182 article-title: Spatiotemporal traffic flow prediction with KNN and LSTM publication-title: J. Adv. Transp. doi: 10.1155/2019/4145353 – volume: 20 start-page: 3201 issue: 9 year: 2018 ident: 10.1016/j.trc.2022.103921_b237 article-title: Vehicle speed prediction using a Markov chain with speed constraints publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2877785 – volume: 60 start-page: 597 issue: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b106 article-title: The effect of the dataset on evaluating urban traffic prediction publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.09.038 – ident: 10.1016/j.trc.2022.103921_b207 doi: 10.1145/3292500.3330884 – volume: vol. 35 start-page: 9233 year: 2021 ident: 10.1016/j.trc.2022.103921_b204 article-title: FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting – volume: 108 start-page: 485 issue: 4 year: 2020 ident: 10.1016/j.trc.2022.103921_b60 article-title: Model compression and hardware acceleration for neural networks: A comprehensive survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.2976475 – volume: 10 start-page: 263 issue: 4 year: 1976 ident: 10.1016/j.trc.2022.103921_b104 article-title: Estimation of parameters in models for traffic prediction: A non-linear regression approach publication-title: Transp. Res. doi: 10.1016/0041-1647(76)90059-9 – ident: 10.1016/j.trc.2022.103921_b211 doi: 10.1145/3340531.3411940 – volume: 3 start-page: 889 issue: 6 year: 1992 ident: 10.1016/j.trc.2022.103921_b316 article-title: Wavelet networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.165591 – volume: 43 start-page: 65 year: 2014 ident: 10.1016/j.trc.2022.103921_b326 article-title: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model publication-title: Transp. Res. C doi: 10.1016/j.trc.2013.11.011 – volume: 69 start-page: 101 issue: 1 year: 2019 ident: 10.1016/j.trc.2022.103921_b336 article-title: EnLSTM-WPEO: Short-term traffic flow prediction by ensemble LSTM, NNCT weight integration, and population extremal optimization publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2952605 – volume: 17 start-page: 2123 issue: 8 year: 2016 ident: 10.1016/j.trc.2022.103921_b248 article-title: Short-term traffic prediction based on dynamic tensor completion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2513411 – year: 2020 ident: 10.1016/j.trc.2022.103921_b101 article-title: STNN: A spatio-temporal neural network for traffic predictions publication-title: IEEE Trans. Intell. Transp. Syst. – ident: 10.1016/j.trc.2022.103921_b312 doi: 10.24963/ijcai.2018/505 – volume: 7 start-page: 218 issue: 6 year: 2018 ident: 10.1016/j.trc.2022.103921_b46 article-title: A spatiotemporal multi-view-based learning method for short-term traffic forecasting publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi7060218 – volume: 521 start-page: 277 year: 2020 ident: 10.1016/j.trc.2022.103921_b213 article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.01.043 – volume: 32 year: 2019 ident: 10.1016/j.trc.2022.103921_b222 article-title: High-dimensional multivariate forecasting with low-rank Gaussian copula processes publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.trc.2022.103921_b159 – year: 2021 ident: 10.1016/j.trc.2022.103921_b327 article-title: FASTGNN: A topological information protected federated learning approach for traffic speed forecasting publication-title: IEEE Trans. Ind. Inform. – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b288 article-title: An effective dynamic spatiotemporal framework with external features information for traffic prediction publication-title: Appl. Intell. – ident: 10.1016/j.trc.2022.103921_b289 doi: 10.1145/2525314.2525456 – start-page: 42 year: 2018 ident: 10.1016/j.trc.2022.103921_b16 article-title: DeepHyper: Asynchronous hyperparameter search for deep neural networks – volume: 212 year: 2021 ident: 10.1016/j.trc.2022.103921_b114 article-title: Citywide traffic speed prediction: A geometric deep learning approach publication-title: Knowl.-Based Syst. – volume: 24 start-page: 736 issue: 3 year: 2020 ident: 10.1016/j.trc.2022.103921_b31 article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting publication-title: Trans. in GIS doi: 10.1111/tgis.12644 – volume: 111 start-page: 352 year: 2020 ident: 10.1016/j.trc.2022.103921_b183 article-title: Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.12.022 – volume: 122 start-page: 1 year: 2019 ident: 10.1016/j.trc.2022.103921_b69 article-title: Spatio-temporal outlier detection algorithms based on computing behavioral outlierness factor publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2017.12.001 – volume: 14 start-page: 1175 issue: 7 year: 2021 ident: 10.1016/j.trc.2022.103921_b145 article-title: TRACE: Real-time compression of streaming trajectories in road networks publication-title: Proc. VLDB Endow. doi: 10.14778/3450980.3450987 – volume: 128 year: 2021 ident: 10.1016/j.trc.2022.103921_b149 article-title: Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103185 – volume: 105 start-page: 297 year: 2019 ident: 10.1016/j.trc.2022.103921_b319 article-title: Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.05.039 – volume: 19 start-page: 878 issue: 3 year: 2017 ident: 10.1016/j.trc.2022.103921_b263 article-title: A functional data analysis approach to traffic volume forecasting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2706143 – start-page: 78 year: 2019 ident: 10.1016/j.trc.2022.103921_b338 article-title: Layerwise recurrent autoencoder for real-world traffic flow forecasting – ident: 10.1016/j.trc.2022.103921_b79 doi: 10.1145/2396761.2398477 – volume: 2021 year: 2021 ident: 10.1016/j.trc.2022.103921_b329 article-title: Trajectory data compression algorithm based on motion state changing publication-title: Math. Probl. Eng. – year: 2014 ident: 10.1016/j.trc.2022.103921_b243 – ident: 10.1016/j.trc.2022.103921_b301 – volume: 7 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.trc.2022.103921_b1 article-title: Short-term traffic flow prediction using neuro-genetic algorithms publication-title: ITS J.-Intell. Transp. Syst. J. doi: 10.1080/713930748 – start-page: 1 year: 2000 ident: 10.1016/j.trc.2022.103921_b62 article-title: Ensemble methods in machine learning – volume: 122 year: 2021 ident: 10.1016/j.trc.2022.103921_b126 article-title: Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102858 – volume: 147 issue: 3 year: 2021 ident: 10.1016/j.trc.2022.103921_b157 article-title: New model of travel-time prediction considering weather conditions: Case study of urban expressway publication-title: J. Transp. Eng., Part A: Syst. – volume: 144 year: 2020 ident: 10.1016/j.trc.2022.103921_b212 article-title: Examining imbalanced classification algorithms in predicting real-time traffic crash risk publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2020.105610 – year: 2021 ident: 10.1016/j.trc.2022.103921_b123 – volume: 6 start-page: 63 issue: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b313 article-title: A survey of traffic prediction: From spatio-temporal data to intelligent transportation publication-title: Data Sci. Eng. doi: 10.1007/s41019-020-00151-z – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b41 article-title: Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation publication-title: Nature Commun. – start-page: 18 year: 2020 ident: 10.1016/j.trc.2022.103921_b153 article-title: Blockchain-enabled identity verification for safe ridesharing leveraging zero-knowledge proof – ident: 10.1016/j.trc.2022.103921_b287 doi: 10.1145/2623330.2623656 – year: 2016 ident: 10.1016/j.trc.2022.103921_b128 article-title: Semi-supervised classification with graph convolutional networks publication-title: J. Int. Conf. Learn. Representations (ICLR 2017) – year: 2021 ident: 10.1016/j.trc.2022.103921_b309 article-title: Deep learning on traffic prediction: Methods, analysis and future directions publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 17 start-page: 1501 issue: 7 year: 2017 ident: 10.1016/j.trc.2022.103921_b311 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors doi: 10.3390/s17071501 – volume: 22 start-page: 3348 issue: 9 year: 2022 ident: 10.1016/j.trc.2022.103921_b315 article-title: Applying hybrid Lstm-Gru model based on heterogeneous data sources for traffic speed prediction in urban areas publication-title: Sensors doi: 10.3390/s22093348 – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b73 article-title: A deep-learning model for urban traffic flow prediction with traffic events mined from twitter publication-title: World Wide Web – volume: 65 start-page: 742 issue: 2 year: 2018 ident: 10.1016/j.trc.2022.103921_b240 article-title: Theoretical insights into the optimization landscape of over-parameterized shallow neural networks publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2018.2854560 – volume: 112 start-page: 62 year: 2020 ident: 10.1016/j.trc.2022.103921_b26 article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.01.010 – volume: 108 start-page: 1421 issue: 8 year: 2019 ident: 10.1016/j.trc.2022.103921_b236 article-title: Temporal pattern attention for multivariate time series forecasting publication-title: Mach. Learn. doi: 10.1007/s10994-019-05815-0 – ident: 10.1016/j.trc.2022.103921_b49 – year: 2018 ident: 10.1016/j.trc.2022.103921_b11 article-title: Marvellous: A STARK-friendly family of cryptographic primitives publication-title: Cryptol. EPrint Archive – year: 2021 ident: 10.1016/j.trc.2022.103921_b118 article-title: DeepCrowd: A deep model for large-scale citywide crowd density and flow prediction publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3077056 – volume: vol. 34 start-page: 1177 year: 2020 ident: 10.1016/j.trc.2022.103921_b317 article-title: Spatio-temporal graph structure learning for traffic forecasting – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b148 article-title: Short-term traffic prediction with deep neural networks and adaptive transfer learning – volume: 294 start-page: 242 year: 2015 ident: 10.1016/j.trc.2022.103921_b231 article-title: Outlier detection from vehicle trajectories to discover roaming events publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.09.037 – volume: 8 start-page: 134363 year: 2020 ident: 10.1016/j.trc.2022.103921_b129 article-title: STGAT: Spatial-temporal graph attention networks for traffic flow forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011186 – ident: 10.1016/j.trc.2022.103921_b152 doi: 10.1109/HotICN50779.2020.9350858 – year: 2019 ident: 10.1016/j.trc.2022.103921_b75 – volume: 2024 start-page: 116 issue: 1 year: 2007 ident: 10.1016/j.trc.2022.103921_b229 article-title: Adaptive seasonal time series models for forecasting short-term traffic flow publication-title: Transp. Res. Rec. doi: 10.3141/2024-14 – volume: 10 issue: 3 year: 2015 ident: 10.1016/j.trc.2022.103921_b185 article-title: Large-scale transportation network congestion evolution prediction using deep learning theory publication-title: PLoS One doi: 10.1371/journal.pone.0119044 – year: 2020 ident: 10.1016/j.trc.2022.103921_b252 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3001195 – ident: 10.1016/j.trc.2022.103921_b208 doi: 10.1145/3357384.3357832 – start-page: 121 year: 2020 ident: 10.1016/j.trc.2022.103921_b37 article-title: A survey on map-matching algorithms – volume: 23 start-page: 103 issue: 2 year: 2019 ident: 10.1016/j.trc.2022.103921_b4 article-title: Quantitative analysis of probe data characteristics: Coverage, speed bias and congestion detection precision publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2018.1502667 – start-page: 324 year: 2016 ident: 10.1016/j.trc.2022.103921_b77 article-title: Using LSTM and GRU neural network methods for traffic flow prediction – volume: 7 start-page: 7751 issue: 8 year: 2020 ident: 10.1016/j.trc.2022.103921_b176 article-title: Privacy-preserving traffic flow prediction: A federated learning approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2991401 – volume: vol. 33 start-page: 485 year: 2019 ident: 10.1016/j.trc.2022.103921_b39 article-title: Gated residual recurrent graph neural networks for traffic prediction – start-page: 277 year: 2020 ident: 10.1016/j.trc.2022.103921_b30 article-title: Predicting hard disk failures in data centers using temporal convolutional neural networks – volume: 20 start-page: 3212 issue: 9 year: 2018 ident: 10.1016/j.trc.2022.103921_b68 article-title: A unified spatio-temporal model for short-term traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2873137 – start-page: 1243 year: 2017 ident: 10.1016/j.trc.2022.103921_b82 article-title: Convolutional sequence to sequence learning – volume: 59 start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b298 article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.002 – start-page: 595 year: 2012 ident: 10.1016/j.trc.2022.103921_b206 article-title: Utilizing real-world transportation data for accurate traffic prediction – start-page: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b92 article-title: A location-based and hierarchical framework for fast consensus in blockchain networks – year: 2021 ident: 10.1016/j.trc.2022.103921_b80 article-title: Synchronized entry-traffic flow prediction for regional expressway system based on multidimensional tensor publication-title: Transp. Res. Rec. doi: 10.1177/03611981211011169 – start-page: 41 year: 2021 ident: 10.1016/j.trc.2022.103921_b220 article-title: Compression of time evolutionary image data through predictive deep neural networks – year: 2020 ident: 10.1016/j.trc.2022.103921_b209 article-title: Spatio-temporal meta learning for urban traffic prediction publication-title: IEEE Trans. Knowl. Data Eng. – volume: 96 start-page: 653 year: 2013 ident: 10.1016/j.trc.2022.103921_b320 article-title: An improved k-nearest neighbor model for short-term traffic flow prediction publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2013.08.076 – volume: 106 year: 2020 ident: 10.1016/j.trc.2022.103921_b28 article-title: A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2020.102224 – volume: 51 start-page: 1373 issue: 8 year: 2020 ident: 10.1016/j.trc.2022.103921_b71 article-title: Neural congestion prediction system for trip modelling in heterogeneous spatio-temporal patterns publication-title: Internat. J. Systems Sci. doi: 10.1080/00207721.2020.1760957 – volume: 10 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.trc.2022.103921_b156 article-title: A brief overview of machine learning methods for short-term traffic forecasting and future directions publication-title: Sigspatial Special doi: 10.1145/3231541.3231544 – volume: 2021 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.trc.2022.103921_b269 article-title: A survey: Applications of blockchain in the internet of vehicles publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1186/s13638-021-01958-8 – volume: 25 start-page: 1405 issue: 4 year: 2020 ident: 10.1016/j.trc.2022.103921_b131 article-title: Traffic volume prediction based on multi-sources GPS trajectory data by temporal convolutional network publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-019-01458-6 – volume: 2175 start-page: 28 issue: 1 year: 2010 ident: 10.1016/j.trc.2022.103921_b94 article-title: Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters publication-title: Transp. Res. Rec. doi: 10.3141/2175-04 – volume: 8 start-page: 37632 year: 2020 ident: 10.1016/j.trc.2022.103921_b146 article-title: Energy-efficient computation offloading in vehicular edge cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975310 – ident: 10.1016/j.trc.2022.103921_b193 – ident: 10.1016/j.trc.2022.103921_b158 doi: 10.24963/ijcai.2019/402 – volume: 38 start-page: 786 issue: 6 year: 2018 ident: 10.1016/j.trc.2022.103921_b72 article-title: Spatiotemporal traffic forecasting: Review and proposed directions publication-title: Transp. Rev. doi: 10.1080/01441647.2018.1442887 – volume: 6 start-page: 111 issue: 1 year: 2012 ident: 10.1016/j.trc.2022.103921_b155 article-title: Prediction of urban human mobility using large-scale taxi traces and its applications publication-title: Front. Comput. Sci. doi: 10.1007/s11704-011-1192-6 – ident: 10.1016/j.trc.2022.103921_b337 doi: 10.1145/3226116.3226130 – volume: 216 year: 2021 ident: 10.1016/j.trc.2022.103921_b219 article-title: A new density-based subspace selection method using mutual information for high dimensional outlier detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106733 – ident: 10.1016/j.trc.2022.103921_b226 – volume: 155 start-page: 558 issue: 3 year: 2004 ident: 10.1016/j.trc.2022.103921_b48 article-title: Different methods of traffic forecast based on real data publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2003.08.005 – start-page: 678 year: 2019 ident: 10.1016/j.trc.2022.103921_b111 article-title: Diffusion convolutional recurrent neural network with rank influence learning for traffic forecasting – year: 2019 ident: 10.1016/j.trc.2022.103921_b225 – volume: 171 start-page: 264 year: 2020 ident: 10.1016/j.trc.2022.103921_b285 article-title: An interpretable model for short term traffic flow prediction publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2019.12.013 – volume: 31 issue: 5 year: 2020 ident: 10.1016/j.trc.2022.103921_b12 article-title: Internet of things data analytics for parking availability prediction and guidance publication-title: Trans. Emerg. Telecommun. Technol. – year: 2018 ident: 10.1016/j.trc.2022.103921_b332 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.trc.2022.103921_b65 article-title: Survey of neural network-based models for short-term traffic state prediction publication-title: Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. – volume: 121 start-page: 304 year: 2019 ident: 10.1016/j.trc.2022.103921_b216 article-title: Daily long-term traffic flow forecasting based on a deep neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.031 – ident: 10.1016/j.trc.2022.103921_b271 doi: 10.1145/3219819.3219900 – volume: 24 start-page: 109 issue: 2 year: 2020 ident: 10.1016/j.trc.2022.103921_b40 article-title: Long-term travel time prediction using gradient boosting publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2018.1542304 – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b99 article-title: Traffic jam probability estimation based on blockchain and deep neural networks publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 130 year: 2020 ident: 10.1016/j.trc.2022.103921_b210 article-title: On using zk-SNARKs and zk-STARKs in blockchain-based identity management – volume: 13 start-page: 2329 issue: 12 year: 2021 ident: 10.1016/j.trc.2022.103921_b188 article-title: Extracting road traffic volume in the city before and during COVID-19 through video remote sensing publication-title: Remote Sens. doi: 10.3390/rs13122329 – volume: 20 start-page: 3875 issue: 10 year: 2019 ident: 10.1016/j.trc.2022.103921_b173 article-title: Contextualized spatial–temporal network for taxi origin-destination demand prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2915525 – volume: 117 year: 2020 ident: 10.1016/j.trc.2022.103921_b52 article-title: Graph Markov network for traffic forecasting with missing data publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102671 – volume: 14 start-page: 1393 issue: 3 year: 2013 ident: 10.1016/j.trc.2022.103921_b199 article-title: Predicting taxi–passenger demand using streaming data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2262376 – start-page: 739 year: 2015 ident: 10.1016/j.trc.2022.103921_b63 article-title: Dissecting regional weather-traffic sensitivity throughout a city – volume: 122 year: 2021 ident: 10.1016/j.trc.2022.103921_b325 article-title: DNEAT: A novel dynamic node-edge attention network for origin-destination demand prediction publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102851 – volume: 143 start-page: 126 year: 2018 ident: 10.1016/j.trc.2022.103921_b6 article-title: SafePath: Differentially-private publishing of passenger trajectories in transportation systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.07.007 – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b265 article-title: The scalability analysis of machine learning based models in road traffic flow prediction – start-page: 4095 year: 2018 ident: 10.1016/j.trc.2022.103921_b214 article-title: Efficient neural architecture search via parameters sharing – volume: 86 start-page: 83 year: 2019 ident: 10.1016/j.trc.2022.103921_b96 article-title: Hybrid structures in time series modeling and forecasting: A review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.018 – volume: 43 start-page: 79 year: 2014 ident: 10.1016/j.trc.2022.103921_b270 article-title: New Bayesian combination method for short-term traffic flow forecasting publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.02.005 – volume: 37 start-page: 1169 issue: 2 year: 2010 ident: 10.1016/j.trc.2022.103921_b44 article-title: A comparison of outlier detection algorithms for ITS data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.06.008 – start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103921_b333 article-title: Unifying uber and taxi data via deep models for taxi passenger demand prediction publication-title: Pers. Ubiquitous Comput. – volume: 8 start-page: 34629 year: 2020 ident: 10.1016/j.trc.2022.103921_b186 article-title: Multi-lane short-term traffic forecasting with convolutional LSTM network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974575 – volume: 29 year: 2016 ident: 10.1016/j.trc.2022.103921_b59 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – volume: 87 year: 2021 ident: 10.1016/j.trc.2022.103921_b107 article-title: Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2021.101619 – volume: 21 start-page: 3848 issue: 9 year: 2019 ident: 10.1016/j.trc.2022.103921_b335 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2935152 – start-page: 2804 year: 2017 ident: 10.1016/j.trc.2022.103921_b160 article-title: Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ann – start-page: 428 year: 2018 ident: 10.1016/j.trc.2022.103921_b163 article-title: Large-scale short-term urban taxi demand forecasting using deep learning – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.trc.2022.103921_b281 article-title: A simple baseline for travel time estimation using large-scale trip data publication-title: ACM Trans. Intell. Syst. Technol. – volume: 11 start-page: 2306 issue: 5 year: 2021 ident: 10.1016/j.trc.2022.103921_b53 article-title: A survey of methods and technologies for congestion estimation based on multisource data fusion publication-title: Appl. Sci. doi: 10.3390/app11052306 – volume: 134 year: 2022 ident: 10.1016/j.trc.2022.103921_b142 article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103466 – volume: 23 year: 2021 ident: 10.1016/j.trc.2022.103921_b110 article-title: A data-driven method for hybrid data assimilation with multilayer perceptron publication-title: Big Data Res. doi: 10.1016/j.bdr.2020.100179 – volume: 44 year: 2020 ident: 10.1016/j.trc.2022.103921_b184 article-title: Transfer learning for long-interval consecutive missing values imputation without external features in air pollution time series publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101092 – volume: 8 start-page: 24819 year: 2020 ident: 10.1016/j.trc.2022.103921_b348 article-title: Estimation of travel time based on ensemble method with multi-modality perspective urban big data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971008 – year: 2020 ident: 10.1016/j.trc.2022.103921_b168 – start-page: 815 year: 2022 ident: 10.1016/j.trc.2022.103921_b7 article-title: Deep learning-based prediction models for freeway traffic flow under non-recurrent events – volume: vol. 34 start-page: 13855 year: 2020 ident: 10.1016/j.trc.2022.103921_b151 article-title: Travel time prediction on un-monitored roads: A spatial factorization machine based approach (student abstract) – volume: 5 start-page: 23 issue: 1 year: 2022 ident: 10.1016/j.trc.2022.103921_b119 article-title: Big data for traffic estimation and prediction: A survey of data and tools publication-title: Appl. Syst. Innov. doi: 10.3390/asi5010023 – year: 2020 ident: 10.1016/j.trc.2022.103921_b84 – year: 2022 ident: 10.1016/j.trc.2022.103921_b345 article-title: A comprehensive study of speed prediction in transportation system: From vehicle to traffic publication-title: Iscience – year: 2019 ident: 10.1016/j.trc.2022.103921_b324 article-title: Trafficgan: Network-scale deep traffic prediction with generative adversarial nets publication-title: IEEE Trans. Intell. Transp. Syst. |
SSID | ssj0001957 |
Score | 2.6646044 |
SecondaryResourceType | review_article |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 103921 |
Title | Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcgAOCAqIlg_tAS4gW_Z67Y25VRGoQioXWhFxsda76yZVcSrjSC0Hfkt_C7-M2S97U6hEuVjJajOyMi-T2fGbNwi9mqq6zGipIkJrEdGsllFZwFvGCeN5OuWFmd5w8KnYP6If5_l8MrkMWEvrvo7Fj7_2lfyPV2EN_Kq7ZG_g2cEoLMBr8C9cwcNw_Tcfd1wrQOhGf7m0M7_X5uyv9zppiGWguWnZb75XBWKdrgzOyOu9xFEBrGCz7hm2s4vOdHa-bo3qapjGDpLoFj5OMWgRQ0La9W9nJsB6I70v3gd0xc8LfnFsS68HvLvg3wa_K2UnPc6MWPhAFzKcgy-8PR_Xvi64KfPOl3ylazW24mFK_L684aoZhATMEFeWLDQdI5lvRGiaBzFWP7y2XdV_hH9biTiJ-06rUxISj3s3pbav_AUOxETPeTupwESlTVTWxC10m8BBRM_IiH-OJKK0tFqy_q79c3PDILxyF0HmE6Qwhw_QfXf2wHsWSA_RRLXb6I5vTf--je4F6pSP0LGDFx7hhQ288AgvHMLrHbbgwqsGW3D9uvTAwgAs7IGFN4D1GB19eH8424_cXI5IEJr3UZGldZpKUTABEb2BjLXOBeTBuSSMKkYbZVQXM9LkEn7yjCuZyKSpWUpYTSBBf4K22lWrniKccUgYMwpmREpFVvJGGbmnaTblUjG5gxL_nVXCidbr2Smn1bWe2kFvho-cWcWW6zfv3mTzM3R3hOxztNV3a_UCUtK-fmlQ8Ru9Co6s |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+prediction+using+artificial+intelligence%3A+Review+of+recent%C2%A0advances+and+emerging+opportunities&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Shaygan%2C+Maryam&rft.au=Meese%2C+Collin&rft.au=Li%2C+Wanxin&rft.au=Zhao%2C+Xiaoliang+%28George%29&rft.date=2022-12-01&rft.issn=0968-090X&rft.volume=145&rft.spage=103921&rft_id=info:doi/10.1016%2Fj.trc.2022.103921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2022_103921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |