Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 145; p. 103921
Main Authors Shaygan, Maryam, Meese, Collin, Li, Wanxin, Zhao, Xiaoliang (George), Nejad, Mark
Format Journal Article
LanguageEnglish
Published 01.12.2022
Online AccessGet full text

Cover

Loading…
ArticleNumber 103921
Author Li, Wanxin
Meese, Collin
Shaygan, Maryam
Nejad, Mark
Zhao, Xiaoliang (George)
Author_xml – sequence: 1
  givenname: Maryam
  surname: Shaygan
  fullname: Shaygan, Maryam
– sequence: 2
  givenname: Collin
  surname: Meese
  fullname: Meese, Collin
– sequence: 3
  givenname: Wanxin
  surname: Li
  fullname: Li, Wanxin
– sequence: 4
  givenname: Xiaoliang (George)
  orcidid: 0000-0001-9193-2070
  surname: Zhao
  fullname: Zhao, Xiaoliang (George)
– sequence: 5
  givenname: Mark
  orcidid: 0000-0003-2231-5735
  surname: Nejad
  fullname: Nejad, Mark
BookMark eNp9kE1OwzAUhL0oEm3hAOx8gRTbiWPCDlX8SZWQUJHYRY79HL0qdSLbLeI2nIWTkaisWLAajUbfLL4FmfneAyFXnK044-X1bpWCWQkmxNjzSvAZmbOqvMlYxd7PySLGHWOMV1LNSbsN2jk0dAhg0STsPT1E9C3VIeE4oO4o-gRdhy14A7f0FY4IH7R3NIABn76_tD3qcYpUe0thD6GdDvph6EM6eEwI8YKcOd1FuPzNJXl7uN-un7LNy-Pz-m6TGVHIlJU5bzi3plRGcuZyKRtplFDSClWAKhwwVeUqF05aLZTSYJllrlFcqEbwIl8Sfvo1oY8xgKuHgHsdPmvO6slOvatHO_Vkpz7ZGRn1hzGY9KQiBY3dP-QPs-5yPg
CitedBy_id crossref_primary_10_1016_j_trc_2025_105080
crossref_primary_10_1109_ACCESS_2024_3395430
crossref_primary_10_1109_TVT_2024_3457917
crossref_primary_10_1016_j_eswa_2024_124466
crossref_primary_10_3390_app14010412
crossref_primary_10_1088_1748_9326_ad984d
crossref_primary_10_1109_TITS_2023_3271436
crossref_primary_10_3390_network5010001
crossref_primary_10_3390_smartcities7010010
crossref_primary_10_3390_smartcities8010025
crossref_primary_10_3390_electronics13112094
crossref_primary_10_1016_j_rsma_2025_104106
crossref_primary_10_1007_s11116_024_10504_6
crossref_primary_10_1109_TITS_2024_3447282
crossref_primary_10_1093_jcde_qwaf011
crossref_primary_10_1109_TITS_2024_3520511
crossref_primary_10_1002_sd_3131
crossref_primary_10_1016_j_neunet_2024_107074
crossref_primary_10_1016_j_inffus_2023_102146
crossref_primary_10_1080_10447318_2024_2415751
crossref_primary_10_61186_jgst_14_2_1
crossref_primary_10_1016_j_neunet_2023_12_016
crossref_primary_10_1109_ACCESS_2023_3270395
crossref_primary_10_1142_S1469026824500111
crossref_primary_10_1111_mice_13214
crossref_primary_10_1016_j_engappai_2024_109154
crossref_primary_10_1109_JIOT_2024_3496795
crossref_primary_10_3390_su16062468
crossref_primary_10_3390_su17010068
crossref_primary_10_1007_s42488_025_00141_8
crossref_primary_10_1061_JTEPBS_TEENG_8376
crossref_primary_10_1016_j_ins_2024_121142
crossref_primary_10_3390_math12040555
crossref_primary_10_3390_su16010190
crossref_primary_10_1016_j_knosys_2024_112578
crossref_primary_10_1109_ACCESS_2024_3434691
crossref_primary_10_1109_ACCESS_2024_3521242
crossref_primary_10_3390_s25041225
crossref_primary_10_1002_ett_4789
crossref_primary_10_1177_03611981241248160
crossref_primary_10_1016_j_knosys_2024_112178
crossref_primary_10_1109_ACCESS_2024_3509572
crossref_primary_10_1016_j_inffus_2024_102695
crossref_primary_10_1109_TITS_2024_3397077
crossref_primary_10_1007_s41060_024_00604_y
crossref_primary_10_1109_TITS_2024_3362129
crossref_primary_10_32604_cmc_2024_049260
crossref_primary_10_3390_su16177763
crossref_primary_10_56294_dm2024378
crossref_primary_10_3389_fenvs_2024_1461656
crossref_primary_10_3390_smartcities7060133
crossref_primary_10_1080_23249935_2024_2419499
crossref_primary_10_3390_app14062285
crossref_primary_10_21015_vtse_v12i3_1866
crossref_primary_10_1109_OJVT_2024_3457499
crossref_primary_10_1109_TAI_2024_3459857
crossref_primary_10_1061_JTEPBS_TEENG_8207
crossref_primary_10_1109_TSUSC_2024_3395350
crossref_primary_10_1016_j_treng_2024_100272
crossref_primary_10_3390_math12213338
crossref_primary_10_1007_s40747_023_01299_7
crossref_primary_10_1109_ACCESS_2024_3466527
crossref_primary_10_3389_fphar_2024_1181183
crossref_primary_10_46632_jbab_3_3_9
crossref_primary_10_1109_TSC_2023_3318990
crossref_primary_10_38159_jelt_202451015
crossref_primary_10_7717_peerj_cs_1913
crossref_primary_10_1016_j_knosys_2024_112709
crossref_primary_10_1007_s10479_024_05990_x
crossref_primary_10_1007_s00146_023_01673_6
crossref_primary_10_1016_j_eswa_2023_123009
crossref_primary_10_1049_itr2_12390
crossref_primary_10_1016_j_landusepol_2025_107507
crossref_primary_10_1016_j_neucom_2024_128175
crossref_primary_10_1109_TITS_2024_3391053
crossref_primary_10_1371_journal_pone_0288427
crossref_primary_10_1016_j_eswa_2024_125001
crossref_primary_10_1016_j_eswa_2025_127200
Cites_doi 10.1016/j.eswa.2022.117511
10.1016/j.aej.2020.09.003
10.1016/j.pmcj.2018.07.004
10.1007/s11116-010-9291-z
10.1145/3292500.3330887
10.1016/j.neucom.2013.09.055
10.1016/j.ins.2022.05.127
10.1145/3474717.3483923
10.3390/su14106351
10.1145/3219819.3219895
10.1016/j.scriptamat.2020.05.038
10.1007/s11707-016-0634-8
10.1080/15389588.2020.1723794
10.1016/j.neucom.2017.02.039
10.1162/neco.1997.9.8.1735
10.1145/3474838
10.1504/IJBDI.2016.073903
10.1109/MITS.2020.3014074
10.1016/j.is.2019.101444
10.1016/j.trc.2007.05.002
10.1016/S0968-090X(03)00004-4
10.1145/3430195
10.1145/3292500.3330877
10.1109/ACCESS.2019.2917228
10.1155/2020/8863724
10.1145/3318464.3389771
10.1016/j.trc.2015.02.017
10.1109/CVPR.2016.90
10.1155/2021/8878011
10.1145/3314413
10.1016/j.trc.2018.12.004
10.1007/s12204-010-9712-3
10.1007/s10707-020-00429-4
10.1103/PhysRevE.100.032410
10.1007/s12544-015-0170-8
10.1061/(ASCE)TE.1943-5436.0000672
10.1109/ACCESS.2018.2888561
10.1016/j.eswa.2021.114573
10.1016/j.trc.2021.103008
10.1109/MITS.2018.2806634
10.1145/3436239
10.1016/j.trpro.2020.08.130
10.1145/3394486.3403118
10.1016/j.trc.2020.102611
10.1016/j.proeng.2017.04.417
10.1145/3219819.3220033
10.1016/j.trc.2015.11.002
10.1109/TBDATA.2016.2623320
10.1109/IOTM.0001.2000031
10.1080/0144164042000195072
10.1109/TKDE.2017.2776927
10.1016/j.procs.2019.04.117
10.1109/ACCESS.2018.2846550
10.1016/j.neucom.2018.08.067
10.1109/TII.2019.2942190
10.1145/3394486.3403122
10.1145/3373419.3373429
10.1155/2019/4858546
10.1016/j.ejor.2005.02.036
10.1016/j.ifacol.2018.07.049
10.1109/ACCESS.2021.3050836
10.3390/ijgi6070187
10.1016/j.trc.2010.10.002
10.1007/s10489-020-01718-z
10.1049/iet-its.2018.0064
10.14778/3213880.3213885
10.1109/OJCS.2020.2992630
10.3390/electronics9091474
10.24963/ijcai.2019/274
10.1109/TETC.2017.2756908
10.1016/j.trc.2020.102620
10.1145/2743025
10.1109/TITS.2018.2879497
10.1061/(ASCE)CP.1943-5487.0000825
10.1109/5.58337
10.1002/wics.1383
10.1016/j.trc.2020.02.013
10.1016/j.trc.2020.102938
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.3390/s21103314
10.1007/978-3-030-13705-2_5
10.1016/j.compenvurbsys.2009.07.009
10.1016/j.trc.2019.02.002
10.1145/3269206.3271757
10.14778/3425879.3425885
10.1016/j.future.2020.12.003
10.3390/ijgi7010025
10.24963/ijcai.2019/262
10.1016/j.trc.2018.05.008
10.1016/j.knosys.2020.106294
10.1145/3274895.3274896
10.1109/ACCESS.2021.3049556
10.1109/ACCESS.2021.3103456
10.1155/2020/9628957
10.1016/j.comnet.2020.107530
10.1109/TITS.2018.2871269
10.3390/s21041121
10.1016/j.trc.2020.102639
10.1109/ACCESS.2019.2941280
10.1016/j.eswa.2022.117921
10.1016/j.trc.2020.102763
10.1145/3366423.3380186
10.1016/j.trc.2018.03.001
10.1109/TITS.2022.3148358
10.1109/TKDE.2017.2718525
10.1109/TNN.2008.2005605
10.1109/TNNLS.2018.2790388
10.1007/s13369-019-04247-1
10.1016/j.trb.2013.03.008
10.1016/j.measurement.2020.107534
10.1109/TITS.2018.2801808
10.1016/j.trip.2020.100112
10.1109/ACCESS.2021.3071174
10.1109/JIOT.2020.2974494
10.1609/aaai.v31i1.10735
10.1109/TITS.2013.2247040
10.14778/2536360.2536375
10.3390/s19183836
10.1109/JIOT.2020.2991401
10.1016/j.trc.2020.102951
10.1145/3448016.3457247
10.1016/j.trc.2007.07.002
10.1109/TNNLS.2019.2957109
10.1016/j.physa.2022.126988
10.1016/j.treng.2020.100025
10.1016/j.trc.2014.01.005
10.1145/3209978.3210006
10.3115/v1/D14-1179
10.1109/TITS.2019.2939290
10.1109/TITS.2018.2873092
10.1109/LSP.2020.3048849
10.1073/pnas.1903070116
10.1007/s41965-019-00023-0
10.24963/ijcai.2020/326
10.1155/2019/4145353
10.1109/TITS.2018.2877785
10.1016/j.aej.2020.09.038
10.1145/3292500.3330884
10.1109/JPROC.2020.2976475
10.1016/0041-1647(76)90059-9
10.1145/3340531.3411940
10.1109/72.165591
10.1016/j.trc.2013.11.011
10.1109/TVT.2019.2952605
10.1109/TITS.2015.2513411
10.24963/ijcai.2018/505
10.3390/ijgi7060218
10.1016/j.ins.2020.01.043
10.1145/2525314.2525456
10.1111/tgis.12644
10.1016/j.trc.2019.12.022
10.1016/j.datak.2017.12.001
10.14778/3450980.3450987
10.1016/j.trc.2021.103185
10.1016/j.trc.2019.05.039
10.1109/TITS.2017.2706143
10.1145/2396761.2398477
10.1080/713930748
10.1016/j.trc.2020.102858
10.1016/j.aap.2020.105610
10.1007/s41019-020-00151-z
10.1145/2623330.2623656
10.3390/s17071501
10.3390/s22093348
10.1109/TIT.2018.2854560
10.1016/j.trc.2020.01.010
10.1007/s10994-019-05815-0
10.1109/TKDE.2021.3077056
10.1016/j.ins.2014.09.037
10.1109/ACCESS.2020.3011186
10.1109/HotICN50779.2020.9350858
10.3141/2024-14
10.1371/journal.pone.0119044
10.1109/TKDE.2020.3001195
10.1145/3357384.3357832
10.1080/15472450.2018.1502667
10.1109/TITS.2018.2873137
10.1016/j.inffus.2020.01.002
10.1177/03611981211011169
10.1016/j.sbspro.2013.08.076
10.1016/j.adhoc.2020.102224
10.1080/00207721.2020.1760957
10.1145/3231541.3231544
10.1186/s13638-021-01958-8
10.1007/s11036-019-01458-6
10.3141/2175-04
10.1109/ACCESS.2020.2975310
10.24963/ijcai.2019/402
10.1080/01441647.2018.1442887
10.1007/s11704-011-1192-6
10.1145/3226116.3226130
10.1016/j.knosys.2020.106733
10.1016/j.ejor.2003.08.005
10.1016/j.matcom.2019.12.013
10.1016/j.eswa.2018.12.031
10.1145/3219819.3219900
10.1080/15472450.2018.1542304
10.3390/rs13122329
10.1109/TITS.2019.2915525
10.1016/j.trc.2020.102671
10.1109/TITS.2013.2262376
10.1016/j.trc.2020.102851
10.1016/j.comnet.2018.07.007
10.1016/j.engappai.2019.08.018
10.1016/j.trc.2014.02.005
10.1016/j.eswa.2009.06.008
10.1109/ACCESS.2020.2974575
10.1016/j.compenvurbsys.2021.101619
10.1109/TITS.2019.2935152
10.3390/app11052306
10.1016/j.trc.2021.103466
10.1016/j.bdr.2020.100179
10.1016/j.aei.2020.101092
10.1109/ACCESS.2020.2971008
10.3390/asi5010023
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2022.103921
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_trc_2022_103921
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
AOUOD
APLSM
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
ID FETCH-LOGICAL-c245t-631b11dc67c510f355b5c7275d274e74fe0793732f5da277aed0d0fb7127b2143
ISSN 0968-090X
IngestDate Tue Jul 01 01:45:16 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c245t-631b11dc67c510f355b5c7275d274e74fe0793732f5da277aed0d0fb7127b2143
ORCID 0000-0001-9193-2070
0000-0003-2231-5735
ParticipantIDs crossref_primary_10_1016_j_trc_2022_103921
crossref_citationtrail_10_1016_j_trc_2022_103921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-00
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2022
References 10.1016/j.trc.2022.103921_b307
Nguyen (10.1016/j.trc.2022.103921_b201) 2018; 12
Bengio (10.1016/j.trc.2022.103921_b22) 2015; 28
Gehring (10.1016/j.trc.2022.103921_b82) 2017
Wang (10.1016/j.trc.2022.103921_b273) 2016
Li (10.1016/j.trc.2022.103921_b157) 2021; 147
10.1016/j.trc.2022.103921_b301
Kumar (10.1016/j.trc.2022.103921_b133) 2017; 187
Guan (10.1016/j.trc.2022.103921_b89) 2018; 6
Elleuch (10.1016/j.trc.2022.103921_b71) 2020; 51
Di (10.1016/j.trc.2022.103921_b61) 2021; 125
Lee (10.1016/j.trc.2022.103921_b141) 2021; 9
Soltanolkotabi (10.1016/j.trc.2022.103921_b240) 2018; 65
Duggimpudi (10.1016/j.trc.2022.103921_b69) 2019; 122
Li (10.1016/j.trc.2022.103921_b144) 2021; 9
Min (10.1016/j.trc.2022.103921_b197) 2010
10.1016/j.trc.2022.103921_b314
Cai (10.1016/j.trc.2022.103921_b31) 2020; 24
Guo (10.1016/j.trc.2022.103921_b92) 2021
Li (10.1016/j.trc.2022.103921_b148) 2020
Lin (10.1016/j.trc.2022.103921_b165) 2019; 2019
Wang (10.1016/j.trc.2022.103921_b282) 2021; 28
10.1016/j.trc.2022.103921_b312
Chao (10.1016/j.trc.2022.103921_b37) 2020
Wu (10.1016/j.trc.2022.103921_b297) 2014; 140
Jin (10.1016/j.trc.2022.103921_b121) 2022
Lu (10.1016/j.trc.2022.103921_b179) 2019; 16
Ziat (10.1016/j.trc.2022.103921_b347) 2017
Bielli (10.1016/j.trc.2022.103921_b25) 2006; 175
Cai (10.1016/j.trc.2022.103921_b32) 2020; 50
Wang (10.1016/j.trc.2022.103921_b265) 2020
Wagner-Muns (10.1016/j.trc.2022.103921_b263) 2017; 19
Wang (10.1016/j.trc.2022.103921_b266) 2017
Abid (10.1016/j.trc.2022.103921_b2) 2021
Ma (10.1016/j.trc.2022.103921_b183) 2020; 111
Davis (10.1016/j.trc.2022.103921_b57) 2016
Wang (10.1016/j.trc.2022.103921_b284) 2018; vol. 32
Salinas (10.1016/j.trc.2022.103921_b222) 2019; 32
Faghih (10.1016/j.trc.2022.103921_b74) 2019; 33
Huang (10.1016/j.trc.2022.103921_b111) 2019
Zhong (10.1016/j.trc.2022.103921_b342) 2020; 115
Zhong (10.1016/j.trc.2022.103921_b343) 2020; 13
James (10.1016/j.trc.2022.103921_b114) 2021; 212
Kullberg (10.1016/j.trc.2022.103921_b132) 2021
Tran (10.1016/j.trc.2022.103921_b256) 2022; 14
Carlini (10.1016/j.trc.2022.103921_b34) 2016; 8
Shahbazi (10.1016/j.trc.2022.103921_b227) 2021; 21
Högberg (10.1016/j.trc.2022.103921_b104) 1976; 10
Shen (10.1016/j.trc.2022.103921_b230) 2020; 1682
Lu (10.1016/j.trc.2022.103921_b181) 2022; 593
Yu (10.1016/j.trc.2022.103921_b310) 2020; 114
Yao (10.1016/j.trc.2022.103921_b305) 2021; 124
Zhang (10.1016/j.trc.2022.103921_b328) 2020
Hochreiter (10.1016/j.trc.2022.103921_b103) 1997; 9
Cai (10.1016/j.trc.2022.103921_b33) 2016; 62
Dai (10.1016/j.trc.2022.103921_b54) 2020; 3
Ding (10.1016/j.trc.2022.103921_b63) 2015
Guo (10.1016/j.trc.2022.103921_b95) 2020; 115
Wu (10.1016/j.trc.2022.103921_b296) 2018; 90
Panait (10.1016/j.trc.2022.103921_b210) 2020
Downs (10.1016/j.trc.2022.103921_b66) 2004; 1
Zhou (10.1016/j.trc.2022.103921_b345) 2022
Hassan (10.1016/j.trc.2022.103921_b98) 2019; 151
Springenberg (10.1016/j.trc.2022.103921_b243) 2014
Cui (10.1016/j.trc.2022.103921_b52) 2020; 117
Zhou (10.1016/j.trc.2022.103921_b344) 2008; 16
Cheng (10.1016/j.trc.2022.103921_b46) 2018; 7
FHWA (10.1016/j.trc.2022.103921_b75) 2019
Essien (10.1016/j.trc.2022.103921_b73) 2020
Zhang (10.1016/j.trc.2022.103921_b322) 2010; 15
Kong (10.1016/j.trc.2022.103921_b129) 2020; 8
Stathopoulos (10.1016/j.trc.2022.103921_b244) 2003; 11
Palm (10.1016/j.trc.2022.103921_b205) 2012; 5
Yin (10.1016/j.trc.2022.103921_b309) 2021
Vlahogianni (10.1016/j.trc.2022.103921_b261) 2004; 24
10.1016/j.trc.2022.103921_b109
Roy (10.1016/j.trc.2022.103921_b220) 2021
Zhao (10.1016/j.trc.2022.103921_b335) 2019; 21
10.1016/j.trc.2022.103921_b226
Gong (10.1016/j.trc.2022.103921_b85) 2020; vol. 34
Jenelius (10.1016/j.trc.2022.103921_b116) 2013; 53
Barros (10.1016/j.trc.2022.103921_b18) 2015
Bermingham (10.1016/j.trc.2022.103921_b23) 2017; 31
Sutskever (10.1016/j.trc.2022.103921_b246) 2014; 27
10.1016/j.trc.2022.103921_b102
Peng (10.1016/j.trc.2022.103921_b213) 2020; 521
Li (10.1016/j.trc.2022.103921_b155) 2012; 6
Guo (10.1016/j.trc.2022.103921_b93) 2019; vol. 33
Qu (10.1016/j.trc.2022.103921_b216) 2019; 121
Werbos (10.1016/j.trc.2022.103921_b290) 1990; 78
Ye (10.1016/j.trc.2022.103921_b308) 2020
Zhang (10.1016/j.trc.2022.103921_b327) 2021
Xu (10.1016/j.trc.2022.103921_b299) 2018; 12
Ghosh (10.1016/j.trc.2022.103921_b83) 2017
Hassija (10.1016/j.trc.2022.103921_b99) 2020
Zhang (10.1016/j.trc.2022.103921_b316) 1992; 3
Kessler (10.1016/j.trc.2022.103921_b127) 2018; 51
Do (10.1016/j.trc.2022.103921_b65) 2019; 9
Zhang (10.1016/j.trc.2022.103921_b321) 2018; 92
John (10.1016/j.trc.2022.103921_b123) 2021
Lippi (10.1016/j.trc.2022.103921_b167) 2013; 14
Shin (10.1016/j.trc.2022.103921_b238) 2020
Zhao (10.1016/j.trc.2022.103921_b332) 2018
Gobezie (10.1016/j.trc.2022.103921_b84) 2020
Liao (10.1016/j.trc.2022.103921_b163) 2018
Bao (10.1016/j.trc.2022.103921_b17) 2021; 60
Dai (10.1016/j.trc.2022.103921_b55) 2019; 7
Ke (10.1016/j.trc.2022.103921_b126) 2021; 122
Li (10.1016/j.trc.2022.103921_b153) 2020
Pan (10.1016/j.trc.2022.103921_b209) 2020
Pham (10.1016/j.trc.2022.103921_b214) 2018
Defferrard (10.1016/j.trc.2022.103921_b59) 2016; 29
10.1016/j.trc.2022.103921_b112
10.1016/j.trc.2022.103921_b233
Sun (10.1016/j.trc.2022.103921_b245) 2021; 9
Chen (10.1016/j.trc.2022.103921_b38) 2020; vol. 34
Liu (10.1016/j.trc.2022.103921_b175) 2020; 206
Zafar (10.1016/j.trc.2022.103921_b315) 2022; 22
Tian (10.1016/j.trc.2022.103921_b254) 2020; 186
Kwon (10.1016/j.trc.2022.103921_b136) 2021
Zhang (10.1016/j.trc.2022.103921_b331) 2021
Angarita-Zapata (10.1016/j.trc.2022.103921_b10) 2019; 7
Chen (10.1016/j.trc.2022.103921_b39) 2019; vol. 33
Zhao (10.1016/j.trc.2022.103921_b334) 2022; 204
Yang (10.1016/j.trc.2022.103921_b304) 2020; 2020
Zhang (10.1016/j.trc.2022.103921_b326) 2014; 43
10.1016/j.trc.2022.103921_b208
Wang (10.1016/j.trc.2022.103921_b268) 2019; 100
Tedjopurnomo (10.1016/j.trc.2022.103921_b252) 2020
Cui (10.1016/j.trc.2022.103921_b50) 2021; 25
10.1016/j.trc.2022.103921_b207
Yuan (10.1016/j.trc.2022.103921_b313) 2021; 6
Al-Hussaeni (10.1016/j.trc.2022.103921_b6) 2018; 143
Moreira-Matias (10.1016/j.trc.2022.103921_b199) 2013; 14
10.1016/j.trc.2022.103921_b202
10.1016/j.trc.2022.103921_b323
Chen (10.1016/j.trc.2022.103921_b41) 2020; 11
Homayoun (10.1016/j.trc.2022.103921_b105) 2017; 8
Liou (10.1016/j.trc.2022.103921_b166) 2014; 139
Ermagun (10.1016/j.trc.2022.103921_b72) 2018; 38
Quddus (10.1016/j.trc.2022.103921_b217) 2007; 15
Elamrani Abou Elassad (10.1016/j.trc.2022.103921_b70) 2020; 21
Gao (10.1016/j.trc.2022.103921_b78) 2018; 18
Zhang (10.1016/j.trc.2022.103921_b324) 2019
Wang (10.1016/j.trc.2022.103921_b274) 2020; 119
Chen (10.1016/j.trc.2022.103921_b43) 2020
Liu (10.1016/j.trc.2022.103921_b177) 2021; 13
Lee (10.1016/j.trc.2022.103921_b142) 2022; 134
Wang (10.1016/j.trc.2022.103921_b270) 2014; 43
Li (10.1016/j.trc.2022.103921_b154) 2019
Li (10.1016/j.trc.2022.103921_b143) 2018; 20
Tang (10.1016/j.trc.2022.103921_b251) 2018; 20
Zhang (10.1016/j.trc.2022.103921_b329) 2021; 2021
Bai (10.1016/j.trc.2022.103921_b15) 2020; 33
Liu (10.1016/j.trc.2022.103921_b169) 2020
Zhao (10.1016/j.trc.2022.103921_b333) 2020
Zhao (10.1016/j.trc.2022.103921_b336) 2019; 69
Yu (10.1016/j.trc.2022.103921_b311) 2017; 17
10.1016/j.trc.2022.103921_b337
Tian (10.1016/j.trc.2022.103921_b255) 2018; 318
Atif (10.1016/j.trc.2022.103921_b12) 2020; 31
10.1016/j.trc.2022.103921_b211
Thompson (10.1016/j.trc.2022.103921_b253) 2020
Zheng (10.1016/j.trc.2022.103921_b340) 2020; vol. 34
Kowalek (10.1016/j.trc.2022.103921_b130) 2019; 100
10.1016/j.trc.2022.103921_b330
Li (10.1016/j.trc.2022.103921_b150) 2010; 37
Chen (10.1016/j.trc.2022.103921_b42) 2018; 20
Wang (10.1016/j.trc.2022.103921_b281) 2019; 10
Li (10.1016/j.trc.2022.103921_b156) 2018; 10
Kazemi (10.1016/j.trc.2022.103921_b125) 2021; 9
Wang (10.1016/j.trc.2022.103921_b264) 2018
Belkin (10.1016/j.trc.2022.103921_b20) 2019; 116
Shi (10.1016/j.trc.2022.103921_b232) 2015; 28
Advani (10.1016/j.trc.2022.103921_b3) 2020; 48
Li (10.1016/j.trc.2022.103921_b160) 2017
Lea (10.1016/j.trc.2022.103921_b140) 2016
Jiang (10.1016/j.trc.2022.103921_b119) 2022; 5
Vanajakshi (10.1016/j.trc.2022.103921_b260) 2004
Wu (10.1016/j.trc.2022.103921_b295) 2019
Wu (10.1016/j.trc.2022.103921_b293) 2020; 2020
Shih (10.1016/j.trc.2022.103921_b236) 2019; 108
Litman (10.1016/j.trc.2022.103921_b168) 2020
Meese (10.1016/j.trc.2022.103921_b194) 2022
Huang (10.1016/j.trc.2022.103921_b110) 2021; 23
Peng (10.1016/j.trc.2022.103921_b212) 2020; 144
10.1016/j.trc.2022.103921_b147
Min (10.1016/j.trc.2022.103921_b198) 2011; 19
Tang (10.1016/j.trc.2022.103921_b249) 2017; 241
Deng (10.1016/j.trc.2022.103921_b60) 2020; 108
Song (10.1016/j.trc.2022.103921_b242) 2020; vol. 34
10.1016/j.trc.2022.103921_b271
Zhou (10.1016/j.trc.2022.103921_b346) 2020; 7
10.1016/j.trc.2022.103921_b272
Kuang (10.1016/j.trc.2022.103921_b131) 2020; 25
Shen (10.1016/j.trc.2022.103921_b231) 2015; 294
Tu (10.1016/j.trc.2022.103921_b258) 2019; 3
Guo (10.1016/j.trc.2022.103921_b91) 2021; vol. 35
Hajirahimi (10.1016/j.trc.2022.103921_b96) 2019; 86
Zhang (10.1016/j.trc.2022.103921_b318) 2018; 11
Fu (10.1016/j.trc.2022.103921_b77) 2016
Bogaerts (10.1016/j.trc.2022.103921_b26) 2020; 112
Gori (10.1016/j.trc.2022.103921_b87) 2005
Lana (10.1016/j.trc.2022.103921_b138) 2018; 10
Ma (10.1016/j.trc.2022.103921_b185) 2015; 10
Riahi-Madvar (10.1016/j.trc.2022.103921_b219) 2021; 216
Jiang (10.1016/j.trc.2022.103921_b118) 2021
10.1016/j.trc.2022.103921_b277
Li (10.1016/j.trc.2022.103921_b149) 2021; 128
10.1016/j.trc.2022.103921_b158
10.1016/j.trc.2022.103921_b159
10.1016/j.trc.2022.103921_b152
Cheng (10.1016/j.trc.2022.103921_b45) 2017; 6
10.1016/j.trc.2022.103921_b275
Wang (10.1016/j.trc.2022.103921_b288) 2020
10.1016/j.trc.2022.103921_b280
10.1016/j.trc.2022.103921_b161
Vlahogianni (10.1016/j.trc.2022.103921_b262) 2014; 43
10.1016/j.trc.2022.103921_b162
10.1016/j.trc.2022.103921_b283
Schrank (10.1016/j.trc.2022.103921_b225) 2019
Chan (10.1016/j.trc.2022.103921_b36) 2021; 171
Li (10.1016/j.trc.2022.103921_b145) 2021; 14
Li (10.1016/j.trc.2022.103921_b146) 2020; 8
Wang (10.1016/j.trc.2022.103921_b286) 2019; 99
Liu (10.1016/j.trc.2022.103921_b171) 2020; 7
Mallick (10.1016/j.trc.2022.103921_b191) 2021
Bhowmick (10.1016/j.trc.2022.103921_b24) 2018
Scarselli (10.1016/j
References_xml – start-page: 47
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b140
  article-title: Temporal convolutional networks: A unified approach to action segmentation
– volume: 204
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b334
  article-title: Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117511
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b90
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 1
  start-page: 19
  issue: 25
  year: 2004
  ident: 10.1016/j.trc.2022.103921_b66
  article-title: Why traffic congestion is here to stay.... and will get worse
  publication-title: Access Mag.
– volume: 60
  start-page: 413
  issue: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b17
  article-title: An improved deep belief network for traffic prediction considering weather factors
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.09.003
– volume: 50
  start-page: 148
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b200
  article-title: Survey on traffic prediction in smart cities
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2018.07.004
– volume: 37
  start-page: 751
  issue: 5
  year: 2010
  ident: 10.1016/j.trc.2022.103921_b150
  article-title: An activity-based approach for scheduling multimodal transit services
  publication-title: Transportation
  doi: 10.1007/s11116-010-9291-z
– ident: 10.1016/j.trc.2022.103921_b307
  doi: 10.1145/3292500.3330887
– volume: 139
  start-page: 84
  year: 2014
  ident: 10.1016/j.trc.2022.103921_b166
  article-title: Autoencoder for words
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– volume: 607
  start-page: 869
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b276
  article-title: Attention based spatiotemporal graph attention networks for traffic flow forecasting
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.05.127
– start-page: 499
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b273
  article-title: Traffic speed prediction and congestion source exploration: A deep learning method
– ident: 10.1016/j.trc.2022.103921_b275
  doi: 10.1145/3474717.3483923
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b132
  article-title: Learning motion patterns in AIS data and detecting anomalous vessel behavior
– volume: vol. 32
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b306
  article-title: Deep multi-view spatial-temporal network for taxi demand prediction
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b221
  article-title: Multivariate uncertainty in deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 6307
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b83
  article-title: Denoising autoencoders for fast real-time traffic estimation on urban road networks
– volume: 14
  start-page: 6351
  issue: 10
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b256
  article-title: Short-term traffic speed forecasting model for a parallel multi-lane arterial road using GPS-monitored data based on deep learning approach
  publication-title: Sustainability
  doi: 10.3390/su14106351
– ident: 10.1016/j.trc.2022.103921_b162
  doi: 10.1145/3219819.3219895
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b267
  article-title: Deep learning for spatio-temporal data mining: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 291
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b170
  article-title: DeepRTP: A deep spatio-temporal residual network for regional traffic prediction
– start-page: 317
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b194
  article-title: BFRT: Blockchained federated learning for real-time traffic flow prediction
– volume: vol. 32
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b284
  article-title: When will you arriveEstimating travel time based on deep neural networks
– volume: 186
  start-page: 185
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b254
  article-title: Identifying flow defects in amorphous alloys using machine learning outlier detection methods
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.05.038
– volume: 12
  start-page: 253
  issue: 2
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b299
  article-title: Trip-oriented travel time prediction (TOTTP) with historical vehicle trajectories
  publication-title: Front. Earth Sci.
  doi: 10.1007/s11707-016-0634-8
– volume: 21
  start-page: 201
  issue: 3
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b70
  article-title: Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2020.1723794
– volume: 241
  start-page: 171
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b249
  article-title: A local density-based approach for outlier detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.039
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.trc.2022.103921_b103
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b169
  article-title: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 13
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b81
  article-title: Generative adversarial networks for spatio-temporal data: A survey
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3474838
– volume: 3
  start-page: 28
  issue: 1
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b203
  article-title: Computer network traffic prediction: A comparison between traditional and deep learning neural networks
  publication-title: Int. J. Big Data Intell.
  doi: 10.1504/IJBDI.2016.073903
– volume: 13
  start-page: 53
  issue: 2
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b343
  article-title: Autonomous and semiautonomous intersection management: A survey
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2020.3014074
– volume: 98
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b189
  article-title: Speed prediction in large and dynamic traffic sensor networks
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2019.101444
– volume: 15
  start-page: 312
  issue: 5
  year: 2007
  ident: 10.1016/j.trc.2022.103921_b217
  article-title: Current map-matching algorithms for transport applications: State-of-the art and future research directions
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2007.05.002
– start-page: 705
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b347
  article-title: Spatio-temporal neural networks for space-time series forecasting and relations discovery
– volume: 11
  start-page: 121
  issue: 2
  year: 2003
  ident: 10.1016/j.trc.2022.103921_b244
  article-title: A multivariate state space approach for urban traffic flow modeling and prediction
  publication-title: Transp. Res. C
  doi: 10.1016/S0968-090X(03)00004-4
– volume: 12
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b19
  article-title: Machine learning for identifying group trajectory outliers
  publication-title: ACM Trans. Manag. Inf. Syst. (TMIS)
  doi: 10.1145/3430195
– ident: 10.1016/j.trc.2022.103921_b283
  doi: 10.1145/3292500.3330877
– volume: 7
  start-page: 68185
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b10
  article-title: A taxonomy of traffic forecasting regression problems from a supervised learning perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917228
– volume: 2020
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b293
  article-title: A combined deep learning method with attention-based LSTM model for short-term traffic speed forecasting
  publication-title: J. Adv. Transp.
  doi: 10.1155/2020/8863724
– ident: 10.1016/j.trc.2022.103921_b314
  doi: 10.1145/3318464.3389771
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b259
  article-title: Data quality evaluation, outlier detection and missing data imputation methods for IoT in smart cities
– start-page: 729
  year: 2005
  ident: 10.1016/j.trc.2022.103921_b87
  article-title: A new model for learning in graph domains
– volume: 55
  start-page: 328
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b218
  article-title: Shortest path and vehicle trajectory aided map-matching for low frequency GPS data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.02.017
– volume: vol. 34
  start-page: 3529
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b38
  article-title: Multi-range attentive bicomponent graph convolutional network for traffic forecasting
– ident: 10.1016/j.trc.2022.103921_b102
  doi: 10.1109/CVPR.2016.90
– volume: 2021
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b5
  article-title: A review of traffic congestion prediction using artificial intelligence
  publication-title: J. Adv. Transp.
  doi: 10.1155/2021/8878011
– volume: 3
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b258
  article-title: From fingerprint to footprint: cold-start location recommendation by learning user interest from app data
  publication-title: Proc. ACM Interact., Mob., Wearable Ubiquitous Technol.
  doi: 10.1145/3314413
– volume: 99
  start-page: 144
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b286
  article-title: Enhancing transportation systems via deep learning: A survey
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.12.004
– volume: 15
  start-page: 188
  issue: 2
  year: 2010
  ident: 10.1016/j.trc.2022.103921_b322
  article-title: Comparison of several traffic forecasting methods based on travel time index data on weekends
  publication-title: J. Shanghai Jiaotong Univ. (Science)
  doi: 10.1007/s12204-010-9712-3
– volume: 2022
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b117
  article-title: Spatiotemporal DeepWalk gated recurrent neural network: A deep learning framework for traffic learning and forecasting
  publication-title: J. Adv. Transp.
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b308
  article-title: How to build a graph-based deep learning architecture in traffic domain: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 25
  start-page: 179
  issue: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b50
  article-title: Hidden Markov map matching based on trajectory segmentation with heading homogeneity
  publication-title: GeoInformatica
  doi: 10.1007/s10707-020-00429-4
– volume: 100
  issue: 3
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b130
  article-title: Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.032410
– volume: 7
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b135
  article-title: Short-term traffic flow prediction using seasonal ARIMA model with limited input data
  publication-title: Eur. Transp. Res. Rev.
  doi: 10.1007/s12544-015-0170-8
– volume: 140
  issue: 7
  year: 2014
  ident: 10.1016/j.trc.2022.103921_b297
  article-title: Improved k-nn for short-term traffic forecasting using temporal and spatial information
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000672
– ident: 10.1016/j.trc.2022.103921_b13
– volume: 7
  start-page: 4795
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b100
  article-title: STANN: A spatio–temporal attentive neural network for traffic prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888561
– volume: 171
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b36
  article-title: A neural network approach for traffic prediction and routing with missing data imputation for intelligent transportation system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114573
– volume: 125
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b61
  article-title: A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2021.103008
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b136
  article-title: Multilayered LSTM with parameter transfer for vehicle speed data imputation
– volume: 10
  start-page: 93
  issue: 2
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b138
  article-title: Road traffic forecasting: Recent advances and new challenges
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2018.2806634
– ident: 10.1016/j.trc.2022.103921_b202
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b341
  article-title: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b43
  article-title: Short-term traffic flow prediction based on improved wavelet neural network
  publication-title: Neural Comput. Appl.
– volume: 8
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b34
  article-title: The drivers and benefits of edge computing
  publication-title: Schneider Electric–Data Center Sci. Center
– volume: 13
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b177
  article-title: EXPERIENCE: Algorithms and case study for explaining repairs with uniform profiles over IoT data
  publication-title: J. Data Inf. Qual. (JDIQ)
  doi: 10.1145/3436239
– volume: 48
  start-page: 1022
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b3
  article-title: Performance evaluation of urban arterial network using Wi-Fi sensors under heterogeneous traffic conditions
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2020.08.130
– ident: 10.1016/j.trc.2022.103921_b294
  doi: 10.1145/3394486.3403118
– volume: 33
  start-page: 17804
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b15
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.trc.2022.103921_b29
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b223
  article-title: Repairing outlier behaviour in event logs using contextual behaviour
  publication-title: Enterp. Model. Inf. Syst. Archit. (EMISAJ)
– volume: 115
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b342
  article-title: Influence of CAV clustering strategies on mixed traffic flow characteristics: An analysis of vehicle trajectory data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102611
– volume: 187
  start-page: 582
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b133
  article-title: Traffic flow prediction using Kalman filtering technique
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.04.417
– ident: 10.1016/j.trc.2022.103921_b147
  doi: 10.1145/3219819.3220033
– start-page: 10367
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b191
  article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting
– volume: 62
  start-page: 21
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b33
  article-title: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.11.002
– ident: 10.1016/j.trc.2022.103921_b323
– volume: 11
  start-page: 1473
  issue: 10
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b115
  article-title: Integration of big data to predict transportation for smart cities
  publication-title: Int. J. Archit. Environ. Engineering
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b228
– volume: 27
  year: 2014
  ident: 10.1016/j.trc.2022.103921_b246
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  start-page: 126
  issue: 2
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b64
  article-title: Detecting and analyzing urban regions with high impact of weather change on transport
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2623320
– volume: 3
  start-page: 66
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b54
  article-title: Spatio-temporal deep learning framework for traffic speed forecasting in IoT
  publication-title: IEEE Internet Things Mag.
  doi: 10.1109/IOTM.0001.2000031
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b331
  article-title: MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 24
  start-page: 533
  issue: 5
  year: 2004
  ident: 10.1016/j.trc.2022.103921_b261
  article-title: Short-term traffic forecasting: Overview of objectives and methods
  publication-title: Transp. Rev.
  doi: 10.1080/0144164042000195072
– start-page: 1
  year: 2009
  ident: 10.1016/j.trc.2022.103921_b196
  article-title: Short-term traffic flow forecasting of urban network based on dynamic STARIMA model
– volume: 30
  start-page: 613
  issue: 4
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b303
  article-title: A novel representation and compression for queries on trajectories in road networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2776927
– volume: 151
  start-page: 852
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b98
  article-title: Spatio-temporal anomaly detection in intelligent transportation systems
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.04.117
– start-page: 194
  year: 2004
  ident: 10.1016/j.trc.2022.103921_b260
  article-title: A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed
– volume: 6
  start-page: 32005
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b89
  article-title: A unified framework for predicting kpis of on-demand transport services
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2846550
– volume: 318
  start-page: 297
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b255
  article-title: LSTM-based traffic flow prediction with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b300
  article-title: MTLM: A multi-task learning model for travel time estimation
  publication-title: GeoInformatica
– volume: 18
  start-page: 218
  issue: 3
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b78
  article-title: Online compression algorithm of AIS trajectory data based on improved sliding window
  publication-title: J. Traffic Transp. Eng.
– year: 2018
  ident: 10.1016/j.trc.2022.103921_b113
  article-title: Inferring latent traffic demand offered to an overloaded link with modeling qos-degradation effect
  publication-title: IEICE Trans. Commun.
– volume: 16
  start-page: 4177
  issue: 6
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b179
  article-title: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2942190
– ident: 10.1016/j.trc.2022.103921_b161
  doi: 10.1145/3394486.3403122
– start-page: 701
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b21
  article-title: Scalable zero knowledge with no trusted setup
– ident: 10.1016/j.trc.2022.103921_b233
  doi: 10.1145/3373419.3373429
– volume: 2019
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b165
  article-title: A spatial-temporal hybrid model for short-term traffic prediction
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/4858546
– volume: 175
  start-page: 1705
  issue: 3
  year: 2006
  ident: 10.1016/j.trc.2022.103921_b25
  article-title: Object modeling and path computation for multimodal travel systems
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.02.036
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b76
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b122
  article-title: HetGAT: A heterogeneous graph attention network for freeway traffic speed prediction
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: vol. 34
  start-page: 914
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b242
  article-title: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting
– volume: 51
  start-page: 299
  issue: 9
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b127
  article-title: Comparing speed data from stationary detectors against floating-car data
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.07.049
– volume: 9
  start-page: 11264
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b144
  article-title: A hybrid deep learning framework for long-term traffic flow prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050836
– volume: 6
  start-page: 187
  issue: 7
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b45
  article-title: A two-step method for missing spatio-temporal data reconstruction
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi6070187
– volume: 19
  start-page: 606
  issue: 4
  year: 2011
  ident: 10.1016/j.trc.2022.103921_b198
  article-title: Real-time road traffic prediction with spatio-temporal correlations
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2010.10.002
– volume: 50
  start-page: 3452
  issue: 10
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b32
  article-title: UWFP-outlier: An efficient frequent-pattern-based outlier detection method for uncertain weighted data streams
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01718-z
– volume: 12
  start-page: 998
  issue: 9
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b201
  article-title: Deep learning methods in transportation domain: A review
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2018.0064
– volume: 11
  start-page: 934
  issue: 9
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b318
  article-title: Trajectory simplification: An experimental study and quality analysis
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3213880.3213885
– volume: 1
  start-page: 45
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b67
  article-title: Federated learning for vehicular internet of things: Recent advances and open issues
  publication-title: IEEE Open J. Comput. Soc.
  doi: 10.1109/OJCS.2020.2992630
– volume: 28
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b232
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 1474
  issue: 9
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b180
  article-title: St-trafficnet: A spatial-temporal deep learning network for traffic forecasting
  publication-title: Electronics
  doi: 10.3390/electronics9091474
– ident: 10.1016/j.trc.2022.103921_b14
  doi: 10.24963/ijcai.2019/274
– volume: 8
  start-page: 341
  issue: 2
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b105
  article-title: Know abnormal, find evil: Fequent pattern mining for ransomware threat hunting and intelligence
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2017.2756908
– volume: 5
  year: 2012
  ident: 10.1016/j.trc.2022.103921_b205
  article-title: Prediction as a candidate for learning deep hierarchical models of data
  publication-title: Techn. Univ. Denmark
– volume: 115
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b51
  article-title: Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102620
– volume: 6
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b339
  article-title: Trajectory data mining: An overview
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/2743025
– start-page: 1293
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b241
  article-title: Traffic speed prediction under weekday using convolutional neural networks concepts
– volume: 20
  start-page: 3613
  issue: 10
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b251
  article-title: Forecasting short-term passenger flow: An empirical study on shenzhen metro
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2879497
– volume: 33
  issue: 3
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b74
  article-title: Predicting short-term uber demand in new york city using spatiotemporal modeling
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000825
– volume: 11
  start-page: 1450
  issue: 2
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b234
  article-title: A comprehensive review on hybrid network traffic prediction model
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 28
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b22
  article-title: Scheduled sampling for sequence prediction with recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1682
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b230
  article-title: Short-term traffic flow prediction based on harmony search algorithm optimized wavelet neural network
– start-page: 999
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b328
  article-title: Spatial-temporal graph attention model on traffic forecasting
– volume: 78
  start-page: 1550
  issue: 10
  year: 1990
  ident: 10.1016/j.trc.2022.103921_b290
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 8
  start-page: 162
  issue: 5
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b56
  article-title: On nearest-neighbor Gaussian process models for massive spatial data
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.1383
– volume: 114
  start-page: 189
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b310
  article-title: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.02.013
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b2
  article-title: Improved approaches for density-based outlier detection in wireless sensor networks
  publication-title: Computing
– volume: 124
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b305
  article-title: From Twitter to traffic predictor: Next-day morning traffic prediction using social media data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102938
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  ident: 10.1016/j.trc.2022.103921_b291
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 21
  start-page: 3314
  issue: 10
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b227
  article-title: A framework of vehicular security and demand service prediction based on data analysis integrated with blockchain approach
  publication-title: Sensors
  doi: 10.3390/s21103314
– start-page: 223
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b57
  article-title: A multi-level clustering approach for forecasting taxi travel demand
– start-page: 115
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b8
  article-title: Hybrid statistical and machine learning methods for road traffic prediction: A review and tutorial
  publication-title: Smart Infrastruct. Appl.
  doi: 10.1007/978-3-030-13705-2_5
– start-page: 33
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b154
  article-title: A blockchain-based architecture for traffic signal control systems
– volume: 33
  start-page: 448
  issue: 6
  year: 2009
  ident: 10.1016/j.trc.2022.103921_b178
  article-title: On path anomaly detection in a large transportation network
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2009.07.009
– volume: 100
  start-page: 372
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b268
  article-title: Traffic speed prediction for urban transportation network: A path based deep learning approach
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.02.002
– ident: 10.1016/j.trc.2022.103921_b86
  doi: 10.1145/3269206.3271757
– volume: 14
  start-page: 141
  issue: 2
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b257
  article-title: Real-time distance-based outlier detection in data streams
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3425879.3425885
– volume: 117
  start-page: 328
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b215
  article-title: Privacy-preserving blockchain-based federated learning for traffic flow prediction
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.12.003
– volume: 7
  start-page: 25
  issue: 1
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b279
  article-title: Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi GPS data
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi7010025
– start-page: 37
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b24
  article-title: Trajectory outlier detection for traffic events: A survey
– start-page: 1
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b264
  article-title: A network traffic flow prediction with deep learning approach for large-scale metropolitan area network
– ident: 10.1016/j.trc.2022.103921_b272
  doi: 10.24963/ijcai.2019/262
– volume: 92
  start-page: 392
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b321
  article-title: User-centric interdependent urban systems: Using time-of-day electricity usage data to predict morning roadway congestion
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.05.008
– volume: vol. 33
  start-page: 922
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b93
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
– volume: 206
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b175
  article-title: Predicting taxi demands via an attention-based convolutional recurrent neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106294
– volume: vol. 34
  start-page: 1234
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b340
  article-title: Gman: A graph multi-attention network for traffic prediction
– ident: 10.1016/j.trc.2022.103921_b35
  doi: 10.1145/3274895.3274896
– volume: 9
  start-page: 8581
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b245
  article-title: Modeling global spatial–temporal graph attention network for traffic prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049556
– volume: 9
  start-page: 112966
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b125
  article-title: IGANI: Iterative generative adversarial networks for imputation with application to traffic data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3103456
– volume: 2020
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b304
  article-title: Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models
  publication-title: J. Adv. Transp.
  doi: 10.1155/2020/9628957
– volume: 181
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b27
  article-title: Machine learning-based traffic prediction models for intelligent transportation systems
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107530
– volume: 20
  start-page: 3049
  issue: 8
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b42
  article-title: Detecting traffic information from social media texts with deep learning approaches
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2871269
– volume: 21
  start-page: 1121
  issue: 4
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b139
  article-title: From data to actions in intelligent transportation systems: A prescription of functional requirements for model actionability
  publication-title: Sensors
  doi: 10.3390/s21041121
– volume: 115
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b95
  article-title: A residual spatio-temporal architecture for travel demand forecasting
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102639
– volume: 7
  start-page: 143025
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b55
  article-title: Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941280
– year: 2022
  ident: 10.1016/j.trc.2022.103921_b120
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117921
– volume: 119
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b274
  article-title: Forecast network-wide traffic states for multiple steps ahead: A deep learning approach considering dynamic non-local spatial correlation and non-stationary temporal dependency
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102763
– ident: 10.1016/j.trc.2022.103921_b112
– ident: 10.1016/j.trc.2022.103921_b277
  doi: 10.1145/3366423.3380186
– volume: 90
  start-page: 166
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b296
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.03.001
– year: 2022
  ident: 10.1016/j.trc.2022.103921_b121
  article-title: A GAN-based short-term link traffic prediction approach for urban road networks under a parallel learning framework
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3148358
– volume: 30
  start-page: 1310
  issue: 7
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b164
  article-title: Road traffic speed prediction: A probabilistic model fusing multi-source data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2718525
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b192
  article-title: Deep learning for road traffic forecasting: Does it make a difference?
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b235
  article-title: A spatial-temporal attention approach for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 243
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b266
  article-title: DeepSD: Supply-demand prediction for online car-hailing services using deep neural networks
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.trc.2022.103921_b224
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 29
  start-page: 2063
  issue: 6
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b190
  article-title: Applications of deep learning and reinforcement learning to biological data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2790388
– volume: 45
  start-page: 2587
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b239
  article-title: Genetic-inspired map matching algorithm for real-time GPS trajectories
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-04247-1
– volume: 53
  start-page: 64
  year: 2013
  ident: 10.1016/j.trc.2022.103921_b116
  article-title: Travel time estimation for urban road networks using low frequency probe vehicle data
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2013.03.008
– volume: 156
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b97
  article-title: Traffic congestion monitoring using an improved kNN strategy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107534
– volume: 20
  start-page: 75
  issue: 1
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b278
  article-title: Missing data estimation for traffic volume by searching an optimum closed cut in urban networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2801808
– volume: 20
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b195
  article-title: Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges
  publication-title: Veh. Commun.
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b253
– volume: 5
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b58
  article-title: A framework for end-to-end deep learning-based anomaly detection in transportation networks
  publication-title: Transp. Res. Interdiscipl. Perspect.
  doi: 10.1016/j.trip.2020.100112
– volume: 9
  start-page: 54739
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b141
  article-title: Short-term traffic prediction with deep neural networks: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071174
– volume: 7
  start-page: 6414
  issue: 7
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b346
  article-title: Reinforced spatiotemporal attentive graph neural networks for traffic forecasting
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2974494
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b238
  article-title: Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: 10.1016/j.trc.2022.103921_b330
  doi: 10.1609/aaai.v31i1.10735
– volume: 14
  start-page: 871
  issue: 2
  year: 2013
  ident: 10.1016/j.trc.2022.103921_b167
  article-title: Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2247040
– volume: 31
  start-page: 1128
  issue: 6
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b23
  article-title: A framework of spatio-temporal trajectory simplification methods
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 6
  start-page: 769
  issue: 9
  year: 2013
  ident: 10.1016/j.trc.2022.103921_b302
  article-title: Travel cost inference from sparse, spatio temporally correlated time series using Markov models
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536360.2536375
– volume: 19
  start-page: 3836
  issue: 18
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b174
  article-title: Traffic speed prediction: An attention-based method
  publication-title: Sensors
  doi: 10.3390/s19183836
– volume: 7
  start-page: 7751
  issue: 8
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b171
  article-title: Privacy-preserving traffic flow prediction: A federated learning approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2991401
– volume: 124
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b250
  article-title: Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102951
– year: 2019
  ident: 10.1016/j.trc.2022.103921_b295
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
– start-page: 303
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b134
  article-title: A review of deep learning models for traffic flow prediction in autonomous vehicles
– ident: 10.1016/j.trc.2022.103921_b280
  doi: 10.1145/3448016.3457247
– volume: 16
  start-page: 167
  issue: 2
  year: 2008
  ident: 10.1016/j.trc.2022.103921_b344
  article-title: Dynamic micro-assignment modeling approach for integrated multimodal urban corridor management
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2007.07.002
– volume: 31
  start-page: 4405
  issue: 11
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b172
  article-title: When Gaussian process meets big data: A review of scalable GPs
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2957109
– volume: 593
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b181
  article-title: Traffic speed forecasting for urban roads: A deep ensemble neural network model
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.126988
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b108
  article-title: Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images
  publication-title: Int. J. Transp. Sci. Technol.
– volume: vol. 35
  start-page: 151
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b91
  article-title: Hierarchical graph convolution network for traffic forecasting
– year: 2022
  ident: 10.1016/j.trc.2022.103921_b187
  article-title: A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b124
  article-title: Reinforcement learning-designed LSTM for trajectory and traffic flow prediction
– volume: 2
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b247
  article-title: A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources
  publication-title: Transp. Eng.
  doi: 10.1016/j.treng.2020.100025
– start-page: 1535
  year: 2010
  ident: 10.1016/j.trc.2022.103921_b197
  article-title: Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model
– volume: 43
  start-page: 3
  year: 2014
  ident: 10.1016/j.trc.2022.103921_b262
  article-title: Short-term traffic forecasting: Where we are and where we’re going
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.01.005
– volume: 1549
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b292
  article-title: Graph wavelet long short-term memory neural network: A novel spatial-temporal network for traffic prediction
  publication-title: J. Phys.: Conf. Ser.
– ident: 10.1016/j.trc.2022.103921_b137
  doi: 10.1145/3209978.3210006
– ident: 10.1016/j.trc.2022.103921_b47
  doi: 10.3115/v1/D14-1179
– volume: 21
  start-page: 1332
  issue: 3
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b88
  article-title: An improved Bayesian combination model for short-term traffic prediction with deep learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2939290
– start-page: 132
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b18
  article-title: Short-term real-time traffic prediction methods: A survey
– volume: 20
  start-page: 2820
  issue: 8
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b143
  article-title: A general framework for unmet demand prediction in on-demand transport services
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2873092
– volume: 28
  start-page: 239
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b282
  article-title: GraphTTE: Travel time estimation based on attention-spatiotemporal graphs
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.3048849
– volume: 116
  start-page: 15849
  issue: 32
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b20
  article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1903070116
– volume: 1
  start-page: 279
  issue: 4
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b9
  article-title: Hyperparameter optimization in learning systems
  publication-title: J. Membrane Comput.
  doi: 10.1007/s41965-019-00023-0
– ident: 10.1016/j.trc.2022.103921_b109
  doi: 10.24963/ijcai.2020/326
– volume: vol. 34
  start-page: 4020
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b85
  article-title: Potential passenger flow prediction: A novel study for urban transportation development
– volume: 2019
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b182
  article-title: Spatiotemporal traffic flow prediction with KNN and LSTM
  publication-title: J. Adv. Transp.
  doi: 10.1155/2019/4145353
– volume: 20
  start-page: 3201
  issue: 9
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b237
  article-title: Vehicle speed prediction using a Markov chain with speed constraints
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2877785
– volume: 60
  start-page: 597
  issue: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b106
  article-title: The effect of the dataset on evaluating urban traffic prediction
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.09.038
– ident: 10.1016/j.trc.2022.103921_b207
  doi: 10.1145/3292500.3330884
– volume: vol. 35
  start-page: 9233
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b204
  article-title: FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting
– volume: 108
  start-page: 485
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b60
  article-title: Model compression and hardware acceleration for neural networks: A comprehensive survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.2976475
– volume: 10
  start-page: 263
  issue: 4
  year: 1976
  ident: 10.1016/j.trc.2022.103921_b104
  article-title: Estimation of parameters in models for traffic prediction: A non-linear regression approach
  publication-title: Transp. Res.
  doi: 10.1016/0041-1647(76)90059-9
– ident: 10.1016/j.trc.2022.103921_b211
  doi: 10.1145/3340531.3411940
– volume: 3
  start-page: 889
  issue: 6
  year: 1992
  ident: 10.1016/j.trc.2022.103921_b316
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.165591
– volume: 43
  start-page: 65
  year: 2014
  ident: 10.1016/j.trc.2022.103921_b326
  article-title: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2013.11.011
– volume: 69
  start-page: 101
  issue: 1
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b336
  article-title: EnLSTM-WPEO: Short-term traffic flow prediction by ensemble LSTM, NNCT weight integration, and population extremal optimization
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2952605
– volume: 17
  start-page: 2123
  issue: 8
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b248
  article-title: Short-term traffic prediction based on dynamic tensor completion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2513411
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b101
  article-title: STNN: A spatio-temporal neural network for traffic predictions
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: 10.1016/j.trc.2022.103921_b312
  doi: 10.24963/ijcai.2018/505
– volume: 7
  start-page: 218
  issue: 6
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b46
  article-title: A spatiotemporal multi-view-based learning method for short-term traffic forecasting
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi7060218
– volume: 521
  start-page: 277
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b213
  article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.01.043
– volume: 32
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b222
  article-title: High-dimensional multivariate forecasting with low-rank Gaussian copula processes
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.trc.2022.103921_b159
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b327
  article-title: FASTGNN: A topological information protected federated learning approach for traffic speed forecasting
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b288
  article-title: An effective dynamic spatiotemporal framework with external features information for traffic prediction
  publication-title: Appl. Intell.
– ident: 10.1016/j.trc.2022.103921_b289
  doi: 10.1145/2525314.2525456
– start-page: 42
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b16
  article-title: DeepHyper: Asynchronous hyperparameter search for deep neural networks
– volume: 212
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b114
  article-title: Citywide traffic speed prediction: A geometric deep learning approach
  publication-title: Knowl.-Based Syst.
– volume: 24
  start-page: 736
  issue: 3
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b31
  article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting
  publication-title: Trans. in GIS
  doi: 10.1111/tgis.12644
– volume: 111
  start-page: 352
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b183
  article-title: Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.12.022
– volume: 122
  start-page: 1
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b69
  article-title: Spatio-temporal outlier detection algorithms based on computing behavioral outlierness factor
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2017.12.001
– volume: 14
  start-page: 1175
  issue: 7
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b145
  article-title: TRACE: Real-time compression of streaming trajectories in road networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3450980.3450987
– volume: 128
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b149
  article-title: Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2021.103185
– volume: 105
  start-page: 297
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b319
  article-title: Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.05.039
– volume: 19
  start-page: 878
  issue: 3
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b263
  article-title: A functional data analysis approach to traffic volume forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2706143
– start-page: 78
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b338
  article-title: Layerwise recurrent autoencoder for real-world traffic flow forecasting
– ident: 10.1016/j.trc.2022.103921_b79
  doi: 10.1145/2396761.2398477
– volume: 2021
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b329
  article-title: Trajectory data compression algorithm based on motion state changing
  publication-title: Math. Probl. Eng.
– year: 2014
  ident: 10.1016/j.trc.2022.103921_b243
– ident: 10.1016/j.trc.2022.103921_b301
– volume: 7
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.trc.2022.103921_b1
  article-title: Short-term traffic flow prediction using neuro-genetic algorithms
  publication-title: ITS J.-Intell. Transp. Syst. J.
  doi: 10.1080/713930748
– start-page: 1
  year: 2000
  ident: 10.1016/j.trc.2022.103921_b62
  article-title: Ensemble methods in machine learning
– volume: 122
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b126
  article-title: Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102858
– volume: 147
  issue: 3
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b157
  article-title: New model of travel-time prediction considering weather conditions: Case study of urban expressway
  publication-title: J. Transp. Eng., Part A: Syst.
– volume: 144
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b212
  article-title: Examining imbalanced classification algorithms in predicting real-time traffic crash risk
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2020.105610
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b123
– volume: 6
  start-page: 63
  issue: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b313
  article-title: A survey of traffic prediction: From spatio-temporal data to intelligent transportation
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-020-00151-z
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b41
  article-title: Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
  publication-title: Nature Commun.
– start-page: 18
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b153
  article-title: Blockchain-enabled identity verification for safe ridesharing leveraging zero-knowledge proof
– ident: 10.1016/j.trc.2022.103921_b287
  doi: 10.1145/2623330.2623656
– year: 2016
  ident: 10.1016/j.trc.2022.103921_b128
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: J. Int. Conf. Learn. Representations (ICLR 2017)
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b309
  article-title: Deep learning on traffic prediction: Methods, analysis and future directions
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 17
  start-page: 1501
  issue: 7
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b311
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
  doi: 10.3390/s17071501
– volume: 22
  start-page: 3348
  issue: 9
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b315
  article-title: Applying hybrid Lstm-Gru model based on heterogeneous data sources for traffic speed prediction in urban areas
  publication-title: Sensors
  doi: 10.3390/s22093348
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b73
  article-title: A deep-learning model for urban traffic flow prediction with traffic events mined from twitter
  publication-title: World Wide Web
– volume: 65
  start-page: 742
  issue: 2
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b240
  article-title: Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2018.2854560
– volume: 112
  start-page: 62
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b26
  article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.01.010
– volume: 108
  start-page: 1421
  issue: 8
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b236
  article-title: Temporal pattern attention for multivariate time series forecasting
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05815-0
– ident: 10.1016/j.trc.2022.103921_b49
– year: 2018
  ident: 10.1016/j.trc.2022.103921_b11
  article-title: Marvellous: A STARK-friendly family of cryptographic primitives
  publication-title: Cryptol. EPrint Archive
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b118
  article-title: DeepCrowd: A deep model for large-scale citywide crowd density and flow prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3077056
– volume: vol. 34
  start-page: 1177
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b317
  article-title: Spatio-temporal graph structure learning for traffic forecasting
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b148
  article-title: Short-term traffic prediction with deep neural networks and adaptive transfer learning
– volume: 294
  start-page: 242
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b231
  article-title: Outlier detection from vehicle trajectories to discover roaming events
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.09.037
– volume: 8
  start-page: 134363
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b129
  article-title: STGAT: Spatial-temporal graph attention networks for traffic flow forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011186
– ident: 10.1016/j.trc.2022.103921_b152
  doi: 10.1109/HotICN50779.2020.9350858
– year: 2019
  ident: 10.1016/j.trc.2022.103921_b75
– volume: 2024
  start-page: 116
  issue: 1
  year: 2007
  ident: 10.1016/j.trc.2022.103921_b229
  article-title: Adaptive seasonal time series models for forecasting short-term traffic flow
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2024-14
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b185
  article-title: Large-scale transportation network congestion evolution prediction using deep learning theory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119044
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b252
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3001195
– ident: 10.1016/j.trc.2022.103921_b208
  doi: 10.1145/3357384.3357832
– start-page: 121
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b37
  article-title: A survey on map-matching algorithms
– volume: 23
  start-page: 103
  issue: 2
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b4
  article-title: Quantitative analysis of probe data characteristics: Coverage, speed bias and congestion detection precision
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2018.1502667
– start-page: 324
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b77
  article-title: Using LSTM and GRU neural network methods for traffic flow prediction
– volume: 7
  start-page: 7751
  issue: 8
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b176
  article-title: Privacy-preserving traffic flow prediction: A federated learning approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2991401
– volume: vol. 33
  start-page: 485
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b39
  article-title: Gated residual recurrent graph neural networks for traffic prediction
– start-page: 277
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b30
  article-title: Predicting hard disk failures in data centers using temporal convolutional neural networks
– volume: 20
  start-page: 3212
  issue: 9
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b68
  article-title: A unified spatio-temporal model for short-term traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2873137
– start-page: 1243
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b82
  article-title: Convolutional sequence to sequence learning
– volume: 59
  start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b298
  article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.002
– start-page: 595
  year: 2012
  ident: 10.1016/j.trc.2022.103921_b206
  article-title: Utilizing real-world transportation data for accurate traffic prediction
– start-page: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b92
  article-title: A location-based and hierarchical framework for fast consensus in blockchain networks
– year: 2021
  ident: 10.1016/j.trc.2022.103921_b80
  article-title: Synchronized entry-traffic flow prediction for regional expressway system based on multidimensional tensor
  publication-title: Transp. Res. Rec.
  doi: 10.1177/03611981211011169
– start-page: 41
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b220
  article-title: Compression of time evolutionary image data through predictive deep neural networks
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b209
  article-title: Spatio-temporal meta learning for urban traffic prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 96
  start-page: 653
  year: 2013
  ident: 10.1016/j.trc.2022.103921_b320
  article-title: An improved k-nearest neighbor model for short-term traffic flow prediction
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2013.08.076
– volume: 106
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b28
  article-title: A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2020.102224
– volume: 51
  start-page: 1373
  issue: 8
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b71
  article-title: Neural congestion prediction system for trip modelling in heterogeneous spatio-temporal patterns
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2020.1760957
– volume: 10
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b156
  article-title: A brief overview of machine learning methods for short-term traffic forecasting and future directions
  publication-title: Sigspatial Special
  doi: 10.1145/3231541.3231544
– volume: 2021
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b269
  article-title: A survey: Applications of blockchain in the internet of vehicles
  publication-title: EURASIP J. Wireless Commun. Networking
  doi: 10.1186/s13638-021-01958-8
– volume: 25
  start-page: 1405
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b131
  article-title: Traffic volume prediction based on multi-sources GPS trajectory data by temporal convolutional network
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-019-01458-6
– volume: 2175
  start-page: 28
  issue: 1
  year: 2010
  ident: 10.1016/j.trc.2022.103921_b94
  article-title: Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2175-04
– volume: 8
  start-page: 37632
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b146
  article-title: Energy-efficient computation offloading in vehicular edge cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975310
– ident: 10.1016/j.trc.2022.103921_b193
– ident: 10.1016/j.trc.2022.103921_b158
  doi: 10.24963/ijcai.2019/402
– volume: 38
  start-page: 786
  issue: 6
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b72
  article-title: Spatiotemporal traffic forecasting: Review and proposed directions
  publication-title: Transp. Rev.
  doi: 10.1080/01441647.2018.1442887
– volume: 6
  start-page: 111
  issue: 1
  year: 2012
  ident: 10.1016/j.trc.2022.103921_b155
  article-title: Prediction of urban human mobility using large-scale taxi traces and its applications
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-011-1192-6
– ident: 10.1016/j.trc.2022.103921_b337
  doi: 10.1145/3226116.3226130
– volume: 216
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b219
  article-title: A new density-based subspace selection method using mutual information for high dimensional outlier detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106733
– ident: 10.1016/j.trc.2022.103921_b226
– volume: 155
  start-page: 558
  issue: 3
  year: 2004
  ident: 10.1016/j.trc.2022.103921_b48
  article-title: Different methods of traffic forecast based on real data
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2003.08.005
– start-page: 678
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b111
  article-title: Diffusion convolutional recurrent neural network with rank influence learning for traffic forecasting
– year: 2019
  ident: 10.1016/j.trc.2022.103921_b225
– volume: 171
  start-page: 264
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b285
  article-title: An interpretable model for short term traffic flow prediction
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2019.12.013
– volume: 31
  issue: 5
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b12
  article-title: Internet of things data analytics for parking availability prediction and guidance
  publication-title: Trans. Emerg. Telecommun. Technol.
– year: 2018
  ident: 10.1016/j.trc.2022.103921_b332
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b65
  article-title: Survey of neural network-based models for short-term traffic state prediction
  publication-title: Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov.
– volume: 121
  start-page: 304
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b216
  article-title: Daily long-term traffic flow forecasting based on a deep neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.031
– ident: 10.1016/j.trc.2022.103921_b271
  doi: 10.1145/3219819.3219900
– volume: 24
  start-page: 109
  issue: 2
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b40
  article-title: Long-term travel time prediction using gradient boosting
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2018.1542304
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b99
  article-title: Traffic jam probability estimation based on blockchain and deep neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 130
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b210
  article-title: On using zk-SNARKs and zk-STARKs in blockchain-based identity management
– volume: 13
  start-page: 2329
  issue: 12
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b188
  article-title: Extracting road traffic volume in the city before and during COVID-19 through video remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs13122329
– volume: 20
  start-page: 3875
  issue: 10
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b173
  article-title: Contextualized spatial–temporal network for taxi origin-destination demand prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2915525
– volume: 117
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b52
  article-title: Graph Markov network for traffic forecasting with missing data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102671
– volume: 14
  start-page: 1393
  issue: 3
  year: 2013
  ident: 10.1016/j.trc.2022.103921_b199
  article-title: Predicting taxi–passenger demand using streaming data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2262376
– start-page: 739
  year: 2015
  ident: 10.1016/j.trc.2022.103921_b63
  article-title: Dissecting regional weather-traffic sensitivity throughout a city
– volume: 122
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b325
  article-title: DNEAT: A novel dynamic node-edge attention network for origin-destination demand prediction
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102851
– volume: 143
  start-page: 126
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b6
  article-title: SafePath: Differentially-private publishing of passenger trajectories in transportation systems
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.07.007
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b265
  article-title: The scalability analysis of machine learning based models in road traffic flow prediction
– start-page: 4095
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b214
  article-title: Efficient neural architecture search via parameters sharing
– volume: 86
  start-page: 83
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b96
  article-title: Hybrid structures in time series modeling and forecasting: A review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.018
– volume: 43
  start-page: 79
  year: 2014
  ident: 10.1016/j.trc.2022.103921_b270
  article-title: New Bayesian combination method for short-term traffic flow forecasting
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.02.005
– volume: 37
  start-page: 1169
  issue: 2
  year: 2010
  ident: 10.1016/j.trc.2022.103921_b44
  article-title: A comparison of outlier detection algorithms for ITS data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.008
– start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b333
  article-title: Unifying uber and taxi data via deep models for taxi passenger demand prediction
  publication-title: Pers. Ubiquitous Comput.
– volume: 8
  start-page: 34629
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b186
  article-title: Multi-lane short-term traffic forecasting with convolutional LSTM network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974575
– volume: 29
  year: 2016
  ident: 10.1016/j.trc.2022.103921_b59
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 87
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b107
  article-title: Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2021.101619
– volume: 21
  start-page: 3848
  issue: 9
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b335
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2935152
– start-page: 2804
  year: 2017
  ident: 10.1016/j.trc.2022.103921_b160
  article-title: Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ann
– start-page: 428
  year: 2018
  ident: 10.1016/j.trc.2022.103921_b163
  article-title: Large-scale short-term urban taxi demand forecasting using deep learning
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.trc.2022.103921_b281
  article-title: A simple baseline for travel time estimation using large-scale trip data
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 11
  start-page: 2306
  issue: 5
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b53
  article-title: A survey of methods and technologies for congestion estimation based on multisource data fusion
  publication-title: Appl. Sci.
  doi: 10.3390/app11052306
– volume: 134
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b142
  article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2021.103466
– volume: 23
  year: 2021
  ident: 10.1016/j.trc.2022.103921_b110
  article-title: A data-driven method for hybrid data assimilation with multilayer perceptron
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2020.100179
– volume: 44
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b184
  article-title: Transfer learning for long-interval consecutive missing values imputation without external features in air pollution time series
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101092
– volume: 8
  start-page: 24819
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b348
  article-title: Estimation of travel time based on ensemble method with multi-modality perspective urban big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971008
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b168
– start-page: 815
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b7
  article-title: Deep learning-based prediction models for freeway traffic flow under non-recurrent events
– volume: vol. 34
  start-page: 13855
  year: 2020
  ident: 10.1016/j.trc.2022.103921_b151
  article-title: Travel time prediction on un-monitored roads: A spatial factorization machine based approach (student abstract)
– volume: 5
  start-page: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.trc.2022.103921_b119
  article-title: Big data for traffic estimation and prediction: A survey of data and tools
  publication-title: Appl. Syst. Innov.
  doi: 10.3390/asi5010023
– year: 2020
  ident: 10.1016/j.trc.2022.103921_b84
– year: 2022
  ident: 10.1016/j.trc.2022.103921_b345
  article-title: A comprehensive study of speed prediction in transportation system: From vehicle to traffic
  publication-title: Iscience
– year: 2019
  ident: 10.1016/j.trc.2022.103921_b324
  article-title: Trafficgan: Network-scale deep traffic prediction with generative adversarial nets
  publication-title: IEEE Trans. Intell. Transp. Syst.
SSID ssj0001957
Score 2.6646044
SecondaryResourceType review_article
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 103921
Title Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcgAOCAqIlg_tAS4gW_Z67Y25VRGoQioXWhFxsda76yZVcSrjSC0Hfkt_C7-M2S97U6hEuVjJajOyMi-T2fGbNwi9mqq6zGipIkJrEdGsllFZwFvGCeN5OuWFmd5w8KnYP6If5_l8MrkMWEvrvo7Fj7_2lfyPV2EN_Kq7ZG_g2cEoLMBr8C9cwcNw_Tcfd1wrQOhGf7m0M7_X5uyv9zppiGWguWnZb75XBWKdrgzOyOu9xFEBrGCz7hm2s4vOdHa-bo3qapjGDpLoFj5OMWgRQ0La9W9nJsB6I70v3gd0xc8LfnFsS68HvLvg3wa_K2UnPc6MWPhAFzKcgy-8PR_Xvi64KfPOl3ylazW24mFK_L684aoZhATMEFeWLDQdI5lvRGiaBzFWP7y2XdV_hH9biTiJ-06rUxISj3s3pbav_AUOxETPeTupwESlTVTWxC10m8BBRM_IiH-OJKK0tFqy_q79c3PDILxyF0HmE6Qwhw_QfXf2wHsWSA_RRLXb6I5vTf--je4F6pSP0LGDFx7hhQ288AgvHMLrHbbgwqsGW3D9uvTAwgAs7IGFN4D1GB19eH8424_cXI5IEJr3UZGldZpKUTABEb2BjLXOBeTBuSSMKkYbZVQXM9LkEn7yjCuZyKSpWUpYTSBBf4K22lWrniKccUgYMwpmREpFVvJGGbmnaTblUjG5gxL_nVXCidbr2Smn1bWe2kFvho-cWcWW6zfv3mTzM3R3hOxztNV3a_UCUtK-fmlQ8Ru9Co6s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+prediction+using+artificial+intelligence%3A+Review+of+recent%C2%A0advances+and+emerging+opportunities&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Shaygan%2C+Maryam&rft.au=Meese%2C+Collin&rft.au=Li%2C+Wanxin&rft.au=Zhao%2C+Xiaoliang+%28George%29&rft.date=2022-12-01&rft.issn=0968-090X&rft.volume=145&rft.spage=103921&rft_id=info:doi/10.1016%2Fj.trc.2022.103921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2022_103921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon