Fat-Water Signal-Based Electrical Properties Tomography Using the Dixon Technique

This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon technique and provided a feasible approach for obtaining electrical properties (EPs) from current clinical routing modalities. Nine human live...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 8
Main Authors Ren, Yinhao, Yuan, Kecheng, Xu, Guofang, Ye, Chunyou, Liu, Feng, Qiu, Bensheng, Nan, Xiang, Han, Jijun
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon technique and provided a feasible approach for obtaining electrical properties (EPs) from current clinical routing modalities. Nine human liver-mimicking phantoms were built with varying fat-water (FW) content at 64 MHz. The EPs were measured using the open-ended coaxial probe method, and an FW signal was obtained through Dixon scanning. Subsequently, three sets of fit models were established: F-EPs, considering only fat information; W-EPs, considering only water information; and FW-EPs, considering both fat and water information. To assess the accuracy of these models, FW-EPT experiments were conducted on two healthy subjects, and the results were evaluated using literature values as a reference benchmark. Experiments showed that the FW-EPs fitted model offered the best accuracy. Compared with the literature values, the average relative errors for human liver conductivity and relative permittivity at 1.5T magnetic resonance imaging (MRI) were lower than 2.89% and 5.37%, respectively. The scanning time for clinical human magnetic resonance (MR) experiments was approximately 22 s. FW-EPT enabled faster, higher resolution, and more precise imaging of EPs in human liver tissue. The findings of this study offered new insights for clinical EPT.
AbstractList This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon technique and provided a feasible approach for obtaining electrical properties (EPs) from current clinical routing modalities. Nine human liver-mimicking phantoms were built with varying fat-water (FW) content at 64 MHz. The EPs were measured using the open-ended coaxial probe method, and an FW signal was obtained through Dixon scanning. Subsequently, three sets of fit models were established: F-EPs, considering only fat information; W-EPs, considering only water information; and FW-EPs, considering both fat and water information. To assess the accuracy of these models, FW-EPT experiments were conducted on two healthy subjects, and the results were evaluated using literature values as a reference benchmark. Experiments showed that the FW-EPs fitted model offered the best accuracy. Compared with the literature values, the average relative errors for human liver conductivity and relative permittivity at 1.5T magnetic resonance imaging (MRI) were lower than 2.89% and 5.37%, respectively. The scanning time for clinical human magnetic resonance (MR) experiments was approximately 22 s. FW-EPT enabled faster, higher resolution, and more precise imaging of EPs in human liver tissue. The findings of this study offered new insights for clinical EPT.
Author Xu, Guofang
Ye, Chunyou
Han, Jijun
Liu, Feng
Nan, Xiang
Qiu, Bensheng
Ren, Yinhao
Yuan, Kecheng
Author_xml – sequence: 1
  givenname: Yinhao
  orcidid: 0009-0001-7480-8454
  surname: Ren
  fullname: Ren, Yinhao
  organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China
– sequence: 2
  givenname: Kecheng
  orcidid: 0000-0001-6845-2781
  surname: Yuan
  fullname: Yuan, Kecheng
  organization: Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Guofang
  orcidid: 0009-0003-3584-4377
  surname: Xu
  fullname: Xu, Guofang
  organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China
– sequence: 4
  givenname: Chunyou
  orcidid: 0009-0001-5624-5678
  surname: Ye
  fullname: Ye, Chunyou
  organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0002-1074-2601
  surname: Liu
  fullname: Liu, Feng
  organization: School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, Australia
– sequence: 6
  givenname: Bensheng
  orcidid: 0000-0003-2987-7378
  surname: Qiu
  fullname: Qiu, Bensheng
  organization: Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, China
– sequence: 7
  givenname: Xiang
  orcidid: 0000-0002-3388-8048
  surname: Nan
  fullname: Nan, Xiang
  email: xnan@ahmu.edu.cn
  organization: Department of Anatomy, Anhui Medical University, Hefei, China
– sequence: 8
  givenname: Jijun
  orcidid: 0000-0002-6063-5089
  surname: Han
  fullname: Han, Jijun
  email: hanjijun@ahmu.edu.cn
  organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China
BookMark eNpNkE1PwkAQhjcGEwG9e_DQxHNx9rs9KoKSYNRY4nGztFMoKV3cLYn8e0vg4Gnm8D7vZJ4B6TWuQUJuKYwohfQhm72NGDAx4iKRAuQF6VMpdZwqxXqkD0CTOBVSXZFBCBsA0EroPvmc2jb-ti366KtaNbaOn2zAIprUmLe-ym0dfXi3Q99WGKLMbd3K2936EC1C1ayido3Rc_XrmijDfN1UP3u8JpelrQPenOeQLKaTbPwaz99fZuPHeZwzIdtYLuWSySJBWgIFyvIEBNUSOUUoyqVVKFEprqQWmjMoMJFUdhtSXTDLSz4k96fenXfd2dCajdv77oNgOGUi4RQ6fkjglMq9C8FjaXa-2lp_MBTMUZzpxJmjOHMW1yF3J6RCxH9xzdMUFP8D_FdqFw
CODEN IEIMAO
Cites_doi 10.1201/9781420049510.ch89
10.1118/1.4895987
10.1007/s10548-020-00813-1
10.1063/5.0184776
10.21236/ADA303903
10.1002/nbm.3729
10.1002/jmri.1880050213
10.1002/mrm.30009
10.1088/1361-6560/aaa732
10.1109/10.536904
10.1002/mrm.26193
10.1109/EMBC40787.2023.10340202
10.1179/016164106X91843
10.1016/j.neuroimage.2023.120308
10.1148/rg.25si055501
10.1002/mrm.22357
10.1109/TEI.1984.298769
10.1109/TMI.2009.2015757
10.1007/s11517-016-1497-6
10.1002/bem.22303
10.1109/TIM.2022.3150850
10.1148/rg.333125027
10.2528/PIERB12022906
10.1038/s41598-019-45382-x
10.1109/TMI.2015.2404944
10.1109/TMI.2015.2427236
10.1007/978-3-030-21293-3_20
10.7150/thno.22233
10.3389/fmed.2022.907066
10.1109/TIM.2020.3036767
10.1118/1.4942980
10.1109/22.79115
10.1109/TIM.2022.3147878
10.1002/jmri.27275
10.1148/radiol.2015150642
10.1109/RBME.2013.2297206
10.1007/s00330-015-3703-6
10.1109/TIM.2019.2899474
10.1002/mrm.25434
10.1007/s00330-017-4942-5
10.1109/TBME.2023.3347441
10.1088/0266-5611/31/10/105001
10.1109/TBME.2017.2725140
10.1002/nbm.4273
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3485405
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 8
ExternalDocumentID 10_1109_TIM_2024_3485405
10739906
Genre orig-research
GrantInformation_xml – fundername: Postgraduate Innovation Research and Practice Program of Anhui Medical University
  grantid: YJS20230041
  funderid: 10.13039/501100015973
– fundername: National Natural Science Foundation of China
  grantid: 62271007; 82102742
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-5b5b25d8e1f01012c804175e31e0dfba6e5e66365747320de8515732e17d2a3f3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:16:30 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
Wed Aug 27 03:06:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-5b5b25d8e1f01012c804175e31e0dfba6e5e66365747320de8515732e17d2a3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6063-5089
0000-0002-3388-8048
0009-0001-5624-5678
0000-0002-1074-2601
0000-0003-2987-7378
0009-0001-7480-8454
0009-0003-3584-4377
0000-0001-6845-2781
PQID 3124831066
PQPubID 85462
PageCount 8
ParticipantIDs ieee_primary_10739906
proquest_journals_3124831066
crossref_primary_10_1109_TIM_2024_3485405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1201/9781420049510.ch89
– ident: ref11
  doi: 10.1118/1.4895987
– ident: ref19
  doi: 10.1007/s10548-020-00813-1
– ident: ref31
  doi: 10.1063/5.0184776
– ident: ref1
  doi: 10.21236/ADA303903
– ident: ref26
  doi: 10.1002/nbm.3729
– ident: ref34
  doi: 10.1002/jmri.1880050213
– ident: ref15
  doi: 10.1002/mrm.30009
– ident: ref20
  doi: 10.1088/1361-6560/aaa732
– ident: ref10
  doi: 10.1109/10.536904
– ident: ref27
  doi: 10.1002/mrm.26193
– ident: ref39
  doi: 10.1109/EMBC40787.2023.10340202
– ident: ref8
  doi: 10.1179/016164106X91843
– ident: ref17
  doi: 10.1016/j.neuroimage.2023.120308
– ident: ref42
  doi: 10.1148/rg.25si055501
– ident: ref16
  doi: 10.1002/mrm.22357
– ident: ref9
  doi: 10.1109/TEI.1984.298769
– ident: ref13
  doi: 10.1109/TMI.2009.2015757
– ident: ref24
  doi: 10.1007/s11517-016-1497-6
– ident: ref37
  doi: 10.1002/bem.22303
– ident: ref41
  doi: 10.1109/TIM.2022.3150850
– ident: ref33
  doi: 10.1148/rg.333125027
– ident: ref38
  doi: 10.2528/PIERB12022906
– ident: ref14
  doi: 10.1038/s41598-019-45382-x
– ident: ref23
  doi: 10.1109/TMI.2015.2404944
– ident: ref22
  doi: 10.1109/TMI.2015.2427236
– ident: ref29
  doi: 10.1007/978-3-030-21293-3_20
– ident: ref30
  doi: 10.7150/thno.22233
– ident: ref44
  doi: 10.3389/fmed.2022.907066
– ident: ref5
  doi: 10.1109/TIM.2020.3036767
– ident: ref43
  doi: 10.1118/1.4942980
– ident: ref12
  doi: 10.1109/22.79115
– ident: ref40
  doi: 10.1109/TIM.2022.3147878
– ident: ref7
  doi: 10.1002/jmri.27275
– ident: ref32
  doi: 10.1148/radiol.2015150642
– ident: ref2
  doi: 10.1109/RBME.2013.2297206
– ident: ref35
  doi: 10.1007/s00330-015-3703-6
– ident: ref4
  doi: 10.1109/TIM.2019.2899474
– ident: ref21
  doi: 10.1002/mrm.25434
– ident: ref6
  doi: 10.1007/s00330-017-4942-5
– ident: ref36
  doi: 10.1109/TBME.2023.3347441
– ident: ref18
  doi: 10.1088/0266-5611/31/10/105001
– ident: ref25
  doi: 10.1109/TBME.2017.2725140
– ident: ref28
  doi: 10.1002/nbm.4273
SSID ssj0007647
Score 2.3933556
Snippet This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Conductivity
Dixon water-fat quantification
Electrical properties
electrical properties tomography (EPT)
Fats
Imaging
Liver
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical diagnostic imaging
Medical imaging
Permittivity
Permittivity measurement
Phantoms
Probes
relative permittivity
Tomography
Transmission line measurements
Title Fat-Water Signal-Based Electrical Properties Tomography Using the Dixon Technique
URI https://ieeexplore.ieee.org/document/10739906
https://www.proquest.com/docview/3124831066
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDFw-Z_UjS9ujHhgoOxQ53K0mTyhBb2ToQ_3pf0lamInjLoSkhL8n7va_fQ-gk1a4SAReE01ASylNFhBtJYgLyMnJkmGU2y3fEr8f0dsImdbG6rYXRWtvkM903QxvLV0W6MK4yuOEB6FNDsL0KlltVrPX17AacVgSZLtxggAVNTNKJzuKbO7AEPdr3aWgQyjcdZJuq_HqJrXoZbqFRs7Aqq-SlvyhlP_34wdn475Vvo80aaOLz6mTsoBWdt9HGEv1gG63Z9M90vosehqIkTwA7Z_hx-gzzyAVoN4UHtkmOkSO-N177maFfxXHxWhNdY5txgAFE4qvpe5HjuKGE7aDxcBBfXpO62QJJPcpKwiSTHlOhdjNDO-elhpgoYNp3taMyKbhmGtAJZ2B_-J6jNEA1BiPtBsoTfubvoVZe5HofYVdmMMeYPtSnqcOEkiwUhqrPAbAY8S46bbY_eas4NRJrizhRAqJKjKiSWlRd1DG7ufRdtZFd1GsEltS3bp74AFZM4zTOD_6YdojWzd8rH0oPtcrZQh8BqijlsT1Nn7XTxvY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQCAEHHgPEeObAhUNGH0naHnlsGrBNIIrgVjVNiibEhkYnIX49TtoiHkLilkOjRnYcf07szwCHmXZVGoiUChZKykSmaOpGkpoHeRk5Msxzm-U7EN07dvnAH6pidVsLo7W2yWe6ZYb2LV-Ns6m5KkMLD9CfGoLtOXT83C3LtT4P3kCwkiLTRRtGYFC_SjrRcXzRx1jQYy2fhQajfPNCtq3Kr7PYOpjOCgzqpZV5JU-taSFb2fsP1sZ_r30VliuoSU7KvbEGM3rUgKUvBIQNmLcJoNnrOtx00oLeI_CckNvhI86jp-jfFGnbNjlGk-Ta3NtPDAEricfPFdU1sTkHBGEkOR--jUckrklhN-Cu047PurRqt0Azj_GCcsmlx1Wo3dwQz3mZoSYKuPZd7ahcpkJzjfhEcIxAfM9RGsEax5F2A-Wlfu5vwuxoPNJbQFyZ4xwT_DCfZQ5PleRhasj6HISLkWjCUS3-5KVk1UhsNOJECaoqMapKKlU1YcNI88t3pSCbsFsrLKns7jXxEa6Y1mlCbP8x7QAWunG_l_QuBlc7sGj-VN6o7MJsMZnqPcQYhdy3O-sDR5rKPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fat-Water+Signal-Based+Electrical+Properties+Tomography+Using+the+Dixon+Technique&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Ren%2C+Yinhao&rft.au=Yuan%2C+Kecheng&rft.au=Xu%2C+Guofang&rft.au=Ye%2C+Chunyou&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2024.3485405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3485405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon