Fat-Water Signal-Based Electrical Properties Tomography Using the Dixon Technique
This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon technique and provided a feasible approach for obtaining electrical properties (EPs) from current clinical routing modalities. Nine human live...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon technique and provided a feasible approach for obtaining electrical properties (EPs) from current clinical routing modalities. Nine human liver-mimicking phantoms were built with varying fat-water (FW) content at 64 MHz. The EPs were measured using the open-ended coaxial probe method, and an FW signal was obtained through Dixon scanning. Subsequently, three sets of fit models were established: F-EPs, considering only fat information; W-EPs, considering only water information; and FW-EPs, considering both fat and water information. To assess the accuracy of these models, FW-EPT experiments were conducted on two healthy subjects, and the results were evaluated using literature values as a reference benchmark. Experiments showed that the FW-EPs fitted model offered the best accuracy. Compared with the literature values, the average relative errors for human liver conductivity and relative permittivity at 1.5T magnetic resonance imaging (MRI) were lower than 2.89% and 5.37%, respectively. The scanning time for clinical human magnetic resonance (MR) experiments was approximately 22 s. FW-EPT enabled faster, higher resolution, and more precise imaging of EPs in human liver tissue. The findings of this study offered new insights for clinical EPT. |
---|---|
AbstractList | This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon technique and provided a feasible approach for obtaining electrical properties (EPs) from current clinical routing modalities. Nine human liver-mimicking phantoms were built with varying fat-water (FW) content at 64 MHz. The EPs were measured using the open-ended coaxial probe method, and an FW signal was obtained through Dixon scanning. Subsequently, three sets of fit models were established: F-EPs, considering only fat information; W-EPs, considering only water information; and FW-EPs, considering both fat and water information. To assess the accuracy of these models, FW-EPT experiments were conducted on two healthy subjects, and the results were evaluated using literature values as a reference benchmark. Experiments showed that the FW-EPs fitted model offered the best accuracy. Compared with the literature values, the average relative errors for human liver conductivity and relative permittivity at 1.5T magnetic resonance imaging (MRI) were lower than 2.89% and 5.37%, respectively. The scanning time for clinical human magnetic resonance (MR) experiments was approximately 22 s. FW-EPT enabled faster, higher resolution, and more precise imaging of EPs in human liver tissue. The findings of this study offered new insights for clinical EPT. |
Author | Xu, Guofang Ye, Chunyou Han, Jijun Liu, Feng Nan, Xiang Qiu, Bensheng Ren, Yinhao Yuan, Kecheng |
Author_xml | – sequence: 1 givenname: Yinhao orcidid: 0009-0001-7480-8454 surname: Ren fullname: Ren, Yinhao organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China – sequence: 2 givenname: Kecheng orcidid: 0000-0001-6845-2781 surname: Yuan fullname: Yuan, Kecheng organization: Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Guofang orcidid: 0009-0003-3584-4377 surname: Xu fullname: Xu, Guofang organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China – sequence: 4 givenname: Chunyou orcidid: 0009-0001-5624-5678 surname: Ye fullname: Ye, Chunyou organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China – sequence: 5 givenname: Feng orcidid: 0000-0002-1074-2601 surname: Liu fullname: Liu, Feng organization: School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, Australia – sequence: 6 givenname: Bensheng orcidid: 0000-0003-2987-7378 surname: Qiu fullname: Qiu, Bensheng organization: Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, China – sequence: 7 givenname: Xiang orcidid: 0000-0002-3388-8048 surname: Nan fullname: Nan, Xiang email: xnan@ahmu.edu.cn organization: Department of Anatomy, Anhui Medical University, Hefei, China – sequence: 8 givenname: Jijun orcidid: 0000-0002-6063-5089 surname: Han fullname: Han, Jijun email: hanjijun@ahmu.edu.cn organization: School of Biomedical Engineering, Anhui Medical University, Hefei, China |
BookMark | eNpNkE1PwkAQhjcGEwG9e_DQxHNx9rs9KoKSYNRY4nGztFMoKV3cLYn8e0vg4Gnm8D7vZJ4B6TWuQUJuKYwohfQhm72NGDAx4iKRAuQF6VMpdZwqxXqkD0CTOBVSXZFBCBsA0EroPvmc2jb-ti366KtaNbaOn2zAIprUmLe-ym0dfXi3Q99WGKLMbd3K2936EC1C1ayido3Rc_XrmijDfN1UP3u8JpelrQPenOeQLKaTbPwaz99fZuPHeZwzIdtYLuWSySJBWgIFyvIEBNUSOUUoyqVVKFEprqQWmjMoMJFUdhtSXTDLSz4k96fenXfd2dCajdv77oNgOGUi4RQ6fkjglMq9C8FjaXa-2lp_MBTMUZzpxJmjOHMW1yF3J6RCxH9xzdMUFP8D_FdqFw |
CODEN | IEIMAO |
Cites_doi | 10.1201/9781420049510.ch89 10.1118/1.4895987 10.1007/s10548-020-00813-1 10.1063/5.0184776 10.21236/ADA303903 10.1002/nbm.3729 10.1002/jmri.1880050213 10.1002/mrm.30009 10.1088/1361-6560/aaa732 10.1109/10.536904 10.1002/mrm.26193 10.1109/EMBC40787.2023.10340202 10.1179/016164106X91843 10.1016/j.neuroimage.2023.120308 10.1148/rg.25si055501 10.1002/mrm.22357 10.1109/TEI.1984.298769 10.1109/TMI.2009.2015757 10.1007/s11517-016-1497-6 10.1002/bem.22303 10.1109/TIM.2022.3150850 10.1148/rg.333125027 10.2528/PIERB12022906 10.1038/s41598-019-45382-x 10.1109/TMI.2015.2404944 10.1109/TMI.2015.2427236 10.1007/978-3-030-21293-3_20 10.7150/thno.22233 10.3389/fmed.2022.907066 10.1109/TIM.2020.3036767 10.1118/1.4942980 10.1109/22.79115 10.1109/TIM.2022.3147878 10.1002/jmri.27275 10.1148/radiol.2015150642 10.1109/RBME.2013.2297206 10.1007/s00330-015-3703-6 10.1109/TIM.2019.2899474 10.1002/mrm.25434 10.1007/s00330-017-4942-5 10.1109/TBME.2023.3347441 10.1088/0266-5611/31/10/105001 10.1109/TBME.2017.2725140 10.1002/nbm.4273 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3485405 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 8 |
ExternalDocumentID | 10_1109_TIM_2024_3485405 10739906 |
Genre | orig-research |
GrantInformation_xml | – fundername: Postgraduate Innovation Research and Practice Program of Anhui Medical University grantid: YJS20230041 funderid: 10.13039/501100015973 – fundername: National Natural Science Foundation of China grantid: 62271007; 82102742 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c245t-5b5b25d8e1f01012c804175e31e0dfba6e5e66365747320de8515732e17d2a3f3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:16:30 EDT 2025 Tue Jul 01 03:07:49 EDT 2025 Wed Aug 27 03:06:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-5b5b25d8e1f01012c804175e31e0dfba6e5e66365747320de8515732e17d2a3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6063-5089 0000-0002-3388-8048 0009-0001-5624-5678 0000-0002-1074-2601 0000-0003-2987-7378 0009-0001-7480-8454 0009-0003-3584-4377 0000-0001-6845-2781 |
PQID | 3124831066 |
PQPubID | 85462 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10739906 proquest_journals_3124831066 crossref_primary_10_1109_TIM_2024_3485405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref3 doi: 10.1201/9781420049510.ch89 – ident: ref11 doi: 10.1118/1.4895987 – ident: ref19 doi: 10.1007/s10548-020-00813-1 – ident: ref31 doi: 10.1063/5.0184776 – ident: ref1 doi: 10.21236/ADA303903 – ident: ref26 doi: 10.1002/nbm.3729 – ident: ref34 doi: 10.1002/jmri.1880050213 – ident: ref15 doi: 10.1002/mrm.30009 – ident: ref20 doi: 10.1088/1361-6560/aaa732 – ident: ref10 doi: 10.1109/10.536904 – ident: ref27 doi: 10.1002/mrm.26193 – ident: ref39 doi: 10.1109/EMBC40787.2023.10340202 – ident: ref8 doi: 10.1179/016164106X91843 – ident: ref17 doi: 10.1016/j.neuroimage.2023.120308 – ident: ref42 doi: 10.1148/rg.25si055501 – ident: ref16 doi: 10.1002/mrm.22357 – ident: ref9 doi: 10.1109/TEI.1984.298769 – ident: ref13 doi: 10.1109/TMI.2009.2015757 – ident: ref24 doi: 10.1007/s11517-016-1497-6 – ident: ref37 doi: 10.1002/bem.22303 – ident: ref41 doi: 10.1109/TIM.2022.3150850 – ident: ref33 doi: 10.1148/rg.333125027 – ident: ref38 doi: 10.2528/PIERB12022906 – ident: ref14 doi: 10.1038/s41598-019-45382-x – ident: ref23 doi: 10.1109/TMI.2015.2404944 – ident: ref22 doi: 10.1109/TMI.2015.2427236 – ident: ref29 doi: 10.1007/978-3-030-21293-3_20 – ident: ref30 doi: 10.7150/thno.22233 – ident: ref44 doi: 10.3389/fmed.2022.907066 – ident: ref5 doi: 10.1109/TIM.2020.3036767 – ident: ref43 doi: 10.1118/1.4942980 – ident: ref12 doi: 10.1109/22.79115 – ident: ref40 doi: 10.1109/TIM.2022.3147878 – ident: ref7 doi: 10.1002/jmri.27275 – ident: ref32 doi: 10.1148/radiol.2015150642 – ident: ref2 doi: 10.1109/RBME.2013.2297206 – ident: ref35 doi: 10.1007/s00330-015-3703-6 – ident: ref4 doi: 10.1109/TIM.2019.2899474 – ident: ref21 doi: 10.1002/mrm.25434 – ident: ref6 doi: 10.1007/s00330-017-4942-5 – ident: ref36 doi: 10.1109/TBME.2023.3347441 – ident: ref18 doi: 10.1088/0266-5611/31/10/105001 – ident: ref25 doi: 10.1109/TBME.2017.2725140 – ident: ref28 doi: 10.1002/nbm.4273 |
SSID | ssj0007647 |
Score | 2.3933556 |
Snippet | This study aimed to improve the accuracy of electrical properties tomography (EPT) by proposing a fat-water quantification-based EPT (FW-EPT) using the Dixon... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Conductivity Dixon water-fat quantification Electrical properties electrical properties tomography (EPT) Fats Imaging Liver Magnetic resonance imaging magnetic resonance imaging (MRI) Medical diagnostic imaging Medical imaging Permittivity Permittivity measurement Phantoms Probes relative permittivity Tomography Transmission line measurements |
Title | Fat-Water Signal-Based Electrical Properties Tomography Using the Dixon Technique |
URI | https://ieeexplore.ieee.org/document/10739906 https://www.proquest.com/docview/3124831066 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDFw-Z_UjS9ujHhgoOxQ53K0mTyhBb2ToQ_3pf0lamInjLoSkhL8n7va_fQ-gk1a4SAReE01ASylNFhBtJYgLyMnJkmGU2y3fEr8f0dsImdbG6rYXRWtvkM903QxvLV0W6MK4yuOEB6FNDsL0KlltVrPX17AacVgSZLtxggAVNTNKJzuKbO7AEPdr3aWgQyjcdZJuq_HqJrXoZbqFRs7Aqq-SlvyhlP_34wdn475Vvo80aaOLz6mTsoBWdt9HGEv1gG63Z9M90vosehqIkTwA7Z_hx-gzzyAVoN4UHtkmOkSO-N177maFfxXHxWhNdY5txgAFE4qvpe5HjuKGE7aDxcBBfXpO62QJJPcpKwiSTHlOhdjNDO-elhpgoYNp3taMyKbhmGtAJZ2B_-J6jNEA1BiPtBsoTfubvoVZe5HofYVdmMMeYPtSnqcOEkiwUhqrPAbAY8S46bbY_eas4NRJrizhRAqJKjKiSWlRd1DG7ufRdtZFd1GsEltS3bp74AFZM4zTOD_6YdojWzd8rH0oPtcrZQh8BqijlsT1Nn7XTxvY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQCAEHHgPEeObAhUNGH0naHnlsGrBNIIrgVjVNiibEhkYnIX49TtoiHkLilkOjRnYcf07szwCHmXZVGoiUChZKykSmaOpGkpoHeRk5Msxzm-U7EN07dvnAH6pidVsLo7W2yWe6ZYb2LV-Ns6m5KkMLD9CfGoLtOXT83C3LtT4P3kCwkiLTRRtGYFC_SjrRcXzRx1jQYy2fhQajfPNCtq3Kr7PYOpjOCgzqpZV5JU-taSFb2fsP1sZ_r30VliuoSU7KvbEGM3rUgKUvBIQNmLcJoNnrOtx00oLeI_CckNvhI86jp-jfFGnbNjlGk-Ta3NtPDAEricfPFdU1sTkHBGEkOR--jUckrklhN-Cu047PurRqt0Azj_GCcsmlx1Wo3dwQz3mZoSYKuPZd7ahcpkJzjfhEcIxAfM9RGsEax5F2A-Wlfu5vwuxoPNJbQFyZ4xwT_DCfZQ5PleRhasj6HISLkWjCUS3-5KVk1UhsNOJECaoqMapKKlU1YcNI88t3pSCbsFsrLKns7jXxEa6Y1mlCbP8x7QAWunG_l_QuBlc7sGj-VN6o7MJsMZnqPcQYhdy3O-sDR5rKPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fat-Water+Signal-Based+Electrical+Properties+Tomography+Using+the+Dixon+Technique&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Ren%2C+Yinhao&rft.au=Yuan%2C+Kecheng&rft.au=Xu%2C+Guofang&rft.au=Ye%2C+Chunyou&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2024.3485405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3485405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |