Dynamic and Robust Sensor Selection Strategies for Wireless Positioning With TOA/RSS Measurement
Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this paper, we develop sensor selection strategies for 3D wireless positioning based on time of arrival (TOA) and received signal strength (RSS) measurements to handle two distinct scena...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 72; no. 11; pp. 1 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this paper, we develop sensor selection strategies for 3D wireless positioning based on time of arrival (TOA) and received signal strength (RSS) measurements to handle two distinct scenarios: (i) known approximated target location, for which we conduct dynamic sensor selection to minimize the positioning error; and (ii) unknown approximated target location, in which the worst-case positioning error is minimized via robust sensor selection. We derive expressions for the Cramér-Rao lower bound (CRLB) as a performance metric to quantify the positioning accuracy resulted from selected sensors. For dynamic sensor selection, two greedy selection strategies are proposed, each of which exploits properties revealed in the derived CRLB expressions. These selection strategies are shown to strike an efficient balance between computational complexity and performance suboptimality. For robust sensor selection, we show that the conventional convex relaxation approach leads to instability, and then develop three algorithms based on (i) iterative convex optimization (ICO), (ii) difference of convex functions programming (DCP), and (iii) discrete monotonic optimization (DMO). Each of these strategies exhibits a different tradeoff between computational complexity and optimality guarantee. Simulation results show that the proposed sensor selection strategies provide significant improvements in terms of accuracy and/or complexity compared to existing sensor selection methods. |
---|---|
AbstractList | Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this paper, we develop sensor selection strategies for 3D wireless positioning based on time of arrival (TOA) and received signal strength (RSS) measurements to handle two distinct scenarios: (i) known approximated target location, for which we conduct dynamic sensor selection to minimize the positioning error; and (ii) unknown approximated target location, in which the worst-case positioning error is minimized via robust sensor selection. We derive expressions for the Cramér-Rao lower bound (CRLB) as a performance metric to quantify the positioning accuracy resulted from selected sensors. For dynamic sensor selection, two greedy selection strategies are proposed, each of which exploits properties revealed in the derived CRLB expressions. These selection strategies are shown to strike an efficient balance between computational complexity and performance suboptimality. For robust sensor selection, we show that the conventional convex relaxation approach leads to instability, and then develop three algorithms based on (i) iterative convex optimization (ICO), (ii) difference of convex functions programming (DCP), and (iii) discrete monotonic optimization (DMO). Each of these strategies exhibits a different tradeoff between computational complexity and optimality guarantee. Simulation results show that the proposed sensor selection strategies provide significant improvements in terms of accuracy and/or complexity compared to existing sensor selection methods. Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this article, we develop sensor selection strategies for 3D wireless positioning based on time of arrival (TOA) and received signal strength (RSS) measurements to handle two distinct scenarios: (i) known approximated target location, for which we conduct dynamic sensor selection to minimize the positioning error; and (ii) unknown approximated target location, in which the worst-case positioning error is minimized via robust sensor selection. We derive expressions for the Cramér-Rao lower bound (CRLB) as a performance metric to quantify the positioning accuracy resulted from selected sensors. For dynamic sensor selection, two greedy selection strategies are proposed, each of which exploits properties revealed in the derived CRLB expressions. These selection strategies are shown to strike an efficient balance between computational complexity and performance suboptimality. For robust sensor selection, we show that the conventional convex relaxation approach leads to instability, and then develop three algorithms based on (i) iterative convex optimization (ICO), (ii) difference of convex functions programming (DCP), and (iii) discrete monotonic optimization (DMO). Each of these strategies exhibits a different tradeoff between computational complexity and optimality guarantee. Simulation results show that the proposed sensor selection strategies provide significant improvements in terms of accuracy and/or complexity compared to existing sensor selection methods. |
Author | Kim, Taejoon Oh, Myeung Suk Krogmeier, James V. Love, David J. Hosseinalipour, Seyyedali Brinton, Christopher G. |
Author_xml | – sequence: 1 givenname: Myeung Suk orcidid: 0000-0002-1996-3128 surname: Oh fullname: Oh, Myeung Suk organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Seyyedali orcidid: 0000-0003-4266-4000 surname: Hosseinalipour fullname: Hosseinalipour, Seyyedali organization: Department of Electrical Engineering, University at Buffalo-SUNY, Amherst, NY, USA – sequence: 3 givenname: Taejoon orcidid: 0000-0002-4017-9530 surname: Kim fullname: Kim, Taejoon organization: Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA – sequence: 4 givenname: David J. orcidid: 0000-0001-5922-4787 surname: Love fullname: Love, David J. organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 5 givenname: James V. orcidid: 0000-0001-7041-2113 surname: Krogmeier fullname: Krogmeier, James V. organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 6 givenname: Christopher G. orcidid: 0000-0003-2771-3521 surname: Brinton fullname: Brinton, Christopher G. organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA |
BookMark | eNpNkL1vwjAQxa2KSgXavUOHSJ0D_ohje0T0U6KiImk7psacaRA41E4G_vsawdDp6e69dyf9BqjnGgcI3RI8IgSrcflZjiimbMSoUJKxC9QniqlUMa56qI8xkaniGb9CgxA2ccwyRfro--Hg9K42iXarZNEsu9AmBbjQ-ChbMG3duKRovW5hXUNIbDS-ah-tEJL3JtTHQO3Wcdn-JOV8Ml4URfIGOnQeduDaa3Rp9TbAzVmH6OPpsZy-pLP58-t0MksNzXibciG4NBnVllultc1BYLOyS841E4QKi8FQTuRKMZ1JgiXFGc1zboQVRGBgQ3R_urv3zW8Hoa02TeddfFlRqTDBXOQipvApZXwTggdb7X290_5QEVwdOVaRY3XkWJ05xsrdqVIDwL84YZJFwn8QBHAZ |
CODEN | ITVTAB |
Cites_doi | 10.1109/TAES.1976.308294 10.1109/LCOMM.2004.835319 10.1109/milcom.2008.4753258 10.1214/aoms/1177729893 10.1109/TWC.2014.2356507 10.1109/TWC.2012.040412.110697 10.1109/JPROC.2003.814918 10.1007/978-1-4419-8853-9 10.1109/LCOMM.2018.2833544 10.1017/CBO9780511804441 10.1109/TSP.2008.2007095 10.1109/GLOBECOM42002.2020.9322149 10.1007/s11277-017-4734-x 10.1109/MSP.2005.1458275 10.3390/s16050707 10.1137/04060932X 10.1109/78.258082 10.1109/icassp.2002.5745148 10.1109/MWC.2011.5751291 10.1109/MSP.2005.1458284 10.1109/MWC.001.2000259 10.1109/TSP.2011.2170170 10.1109/JPROC.2008.2008840 10.1002/asl.128 10.1109/MSP.2005.1458289 10.1109/ChiCC.2014.6896643 10.1007/s11081-015-9294-x 10.1117/12.723514 10.1109/TEVC.2021.3085906 10.1109/TVT.2020.3011118 10.1109/IPIN.2019.8911771 10.1109/ieeestd.2020.9179124 10.1109/TVT.2019.2936110 10.1109/TIM.2022.3191705 10.1109/TSP.2011.2160630 10.1109/TSP.2003.814469 10.1002/ett.1530 10.1109/TIM.2012.2209918 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2023.3279833 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 16 |
ExternalDocumentID | 10_1109_TVT_2023_3279833 10138319 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: CNS2146171; CNS2212565; CNS2225577 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 3EH 5VS AAYOK AAYXX AETIX AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c245t-57758c42af5f9aaf6e70cdfb55a37127f0ec2518d93a481082042665c7f7170e3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Thu Oct 10 17:36:24 EDT 2024 Fri Aug 23 01:01:08 EDT 2024 Wed Jun 26 19:25:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-57758c42af5f9aaf6e70cdfb55a37127f0ec2518d93a481082042665c7f7170e3 |
ORCID | 0000-0003-4266-4000 0000-0002-4017-9530 0000-0003-2771-3521 0000-0002-1996-3128 0000-0001-5922-4787 0000-0001-7041-2113 |
PQID | 2890105767 |
PQPubID | 85454 |
PageCount | 16 |
ParticipantIDs | ieee_primary_10138319 crossref_primary_10_1109_TVT_2023_3279833 proquest_journals_2890105767 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Kay (ref13) 1997 ref24 ref23 ref26 ref25 ref20 Krause (ref30) 2008; 9 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Powers (ref31) 2016 ref40 |
References_xml | – ident: ref29 doi: 10.1109/TAES.1976.308294 – ident: ref15 doi: 10.1109/LCOMM.2004.835319 – ident: ref25 doi: 10.1109/milcom.2008.4753258 – volume: 9 start-page: 2761 issue: 93 year: 2008 ident: ref30 article-title: Robust submodular observation selection publication-title: J. Mach. Learn. Res. contributor: fullname: Krause – ident: ref34 doi: 10.1214/aoms/1177729893 – ident: ref40 doi: 10.1109/TWC.2014.2356507 – ident: ref26 doi: 10.1109/TWC.2012.040412.110697 – volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory year: 1997 ident: ref13 contributor: fullname: Kay – ident: ref1 doi: 10.1109/JPROC.2003.814918 – ident: ref36 doi: 10.1007/978-1-4419-8853-9 – ident: ref17 doi: 10.1109/LCOMM.2018.2833544 – ident: ref33 doi: 10.1017/CBO9780511804441 – ident: ref35 doi: 10.1109/TSP.2008.2007095 – ident: ref41 doi: 10.1109/GLOBECOM42002.2020.9322149 – ident: ref9 doi: 10.1007/s11277-017-4734-x – ident: ref3 doi: 10.1109/MSP.2005.1458275 – ident: ref8 doi: 10.3390/s16050707 – ident: ref39 doi: 10.1137/04060932X – ident: ref37 doi: 10.1109/78.258082 – ident: ref14 doi: 10.1109/icassp.2002.5745148 – ident: ref2 doi: 10.1109/MWC.2011.5751291 – ident: ref6 doi: 10.1109/MSP.2005.1458284 – ident: ref4 doi: 10.1109/MWC.001.2000259 – ident: ref21 doi: 10.1109/TSP.2011.2170170 – ident: ref5 doi: 10.1109/JPROC.2008.2008840 – ident: ref28 doi: 10.1002/asl.128 – ident: ref7 doi: 10.1109/MSP.2005.1458289 – ident: ref27 doi: 10.1109/ChiCC.2014.6896643 – ident: ref38 doi: 10.1007/s11081-015-9294-x – start-page: 2179 volume-title: Proc. IEEE 19th Int. Conf. Inf. Fusion year: 2016 ident: ref31 article-title: Constrained robust submodular sensor selection with applications to multistatic sonar arrays contributor: fullname: Powers – ident: ref12 doi: 10.1117/12.723514 – ident: ref20 doi: 10.1109/TEVC.2021.3085906 – ident: ref23 doi: 10.1109/TVT.2020.3011118 – ident: ref18 doi: 10.1109/IPIN.2019.8911771 – ident: ref11 doi: 10.1109/ieeestd.2020.9179124 – ident: ref22 doi: 10.1109/TVT.2019.2936110 – ident: ref19 doi: 10.1109/TIM.2022.3191705 – ident: ref32 doi: 10.1109/TSP.2011.2160630 – ident: ref10 doi: 10.1109/TSP.2003.814469 – ident: ref16 doi: 10.1002/ett.1530 – ident: ref24 doi: 10.1109/TIM.2012.2209918 |
SSID | ssj0014491 |
Score | 2.4710808 |
Snippet | Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this paper, we develop sensor selection... Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this article, we develop sensor selection... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Approximation Complexity Convex analysis Convexity Cramér-Rao lower bound Heuristic algorithms Iterative methods Lower bounds Optimization Position measurement received signal strength sensor selection Sensors Signal strength Three-dimensional displays time of arrival Vehicle dynamics Wireless communication Wireless positioning Wireless sensor networks |
Title | Dynamic and Robust Sensor Selection Strategies for Wireless Positioning With TOA/RSS Measurement |
URI | https://ieeexplore.ieee.org/document/10138319 https://www.proquest.com/docview/2890105767 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG90Jz34OeN0mh68eIABpVCOi7osJptmH2Y3LG2JiQuYDS7-9b4W0Kkx8QQhpWn62r7f63vv9xC6EgAZmJLKipQAA0VIabGAEAu0e0KdQIGW1YnCo3EwnPv3C7qok9VNLoxSygSfKVu_Gl--zEWpr8pgh7tgUGmSz23meFWy1qfLwPfr8ngu7GDABY1P0ol6s6eZrcuE28QLI0bINx1kiqr8OomNehnso3EzsCqq5NUui8QW7z84G_898gO0VwNN3K9WxiHaUtkR2t2gHzxGz7dVOXrMM4kneVKuCzwFszZfwWNpYrQy3NDXqjUGfIt1tOwSTkf8WEd7QU_wsXjBs4d-bzKd4tHXrWMbzQd3s5uhVVdcsITn08KiIZgPwvd4StOI8zRQoSNkmlDKSeh6YeooAYCIyYhwn7kaPmgNT0WYglnoKHKCWlmeqVOEGacBkYKJQBqvM08T35OcuZorMo28DrpuZBC_VcQasTFInCgGecVaXnEtrw5q6yndaFfNZgd1G6nF9dZbx9pzqosXB-HZH7-dox3de5VR2EWtYlWqC4AWRXJpltQH2f7J0Q |
link.rule.ids | 315,786,790,802,27955,27956,55107 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBZxGFAh5YGJImcZzHWAFVgbagNkXdgmM7QqJKUZsu_HrOTgIFhMSUKHISy2f7vvPdfYfQBQfIEEghjVByMFC4EEbgEWKAdk-o5UnQsipRuD_wumP3bkInZbK6zoWRUurgM2mqW-3LFzO-VEdlsMJtMKgUyec6KHrLL9K1Pp0GrlsWyLNhDQMyqLySVtiKniJTFQo3ieOHASHftJAuq_JrL9YKprODBlXXiriSV3OZJyZ__8Ha-O--76LtEmridjE39tCazPbR1goB4QF6vi4K0mOWCTycJctFjkdg2M7mcJnqKK0MVwS2coEB4WIVLzuF_RE_lvFe8CV4mL_g6KHdGo5GuP917lhH485NdNU1ypoLBndcmhvUBwOCuw5LaRoylnrSt7hIE0oZ8W3HTy3JARIFIiTMDWwFIJSOp9xPwTC0JDlEtWyWySOEA0Y9InjAPaH9zixNXEewwFZskWnoNNBlJYP4raDWiLVJYoUxyCtW8opLeTVQXQ3pSrtiNBuoWUktLhffIla-U1W-2POP_3jtHG10o34v7t0O7k_QpvpTkV_YRLV8vpSnADTy5ExPrw-pfs0l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+and+Robust+Sensor+Selection+Strategies+for+Wireless+Positioning+With+TOA%2FRSS+Measurement&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Oh%2C+Myeung+Suk&rft.au=Hosseinalipour%2C+Seyyedali&rft.au=Kim%2C+Taejoon&rft.au=Love%2C+David+J.&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0018-9545&rft.eissn=1939-9359&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTVT.2023.3279833&rft.externalDocID=10138319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |