Gradient-based neural networks for solving periodic Sylvester matrix equations

This paper considers neural network solutions of a category of matrix equation called periodic Sylvester matrix equation (PSME), which appear in the process of periodic system analysis and design. A linear gradient-based neural network (GNN) model aimed at solving the PSME is constructed, whose stat...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 359; no. 18; pp. 10849 - 10866
Main Authors Lv, Lingling, Chen, Jinbo, Zhang, Lei, Zhang, Fengrui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Online AccessGet full text

Cover

Loading…
Abstract This paper considers neural network solutions of a category of matrix equation called periodic Sylvester matrix equation (PSME), which appear in the process of periodic system analysis and design. A linear gradient-based neural network (GNN) model aimed at solving the PSME is constructed, whose state is able to converge to the unknown matrix of the equation. In order to obtain a better convergence effect, the linear GNN model is extended to a nonlinear form through the intervention of appropriate activation functions, and its convergence is proved through theoretical derivation. Furthermore, the different convergence effects presented by the model with various activation functions are also explored and analyzed, for instance, the global exponential convergence and the global finite time convergence can be realized. Finally, the numerical examples are used to confirm the validity of the proposed GNN model for solving the PSME considered in this paper as well as the superiority in terms of the convergence effect presented by the model with different activation functions.
AbstractList This paper considers neural network solutions of a category of matrix equation called periodic Sylvester matrix equation (PSME), which appear in the process of periodic system analysis and design. A linear gradient-based neural network (GNN) model aimed at solving the PSME is constructed, whose state is able to converge to the unknown matrix of the equation. In order to obtain a better convergence effect, the linear GNN model is extended to a nonlinear form through the intervention of appropriate activation functions, and its convergence is proved through theoretical derivation. Furthermore, the different convergence effects presented by the model with various activation functions are also explored and analyzed, for instance, the global exponential convergence and the global finite time convergence can be realized. Finally, the numerical examples are used to confirm the validity of the proposed GNN model for solving the PSME considered in this paper as well as the superiority in terms of the convergence effect presented by the model with different activation functions.
Author Chen, Jinbo
Lv, Lingling
Zhang, Lei
Zhang, Fengrui
Author_xml – sequence: 1
  givenname: Lingling
  surname: Lv
  fullname: Lv, Lingling
  email: lingling_lv@163.com
  organization: Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
– sequence: 2
  givenname: Jinbo
  surname: Chen
  fullname: Chen, Jinbo
  email: 358490693@qq.com
  organization: Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-8092-3459
  surname: Zhang
  fullname: Zhang, Lei
  email: zhanglei@henu.edu.cn
  organization: Henan Key Laboratory of Big Data Analysis and Processing, Henan University; Institute of Data and Knowledge Engineering, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
– sequence: 4
  givenname: Fengrui
  orcidid: 0000-0001-7656-1267
  surname: Zhang
  fullname: Zhang, Fengrui
  email: zhangfengrui@ncwu.edu.cn
  organization: Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
BookMark eNqNkM9OAjEQhxuDiYA-g_sCu07_7cLBAyGKJkQP6rkp3VlTWFpsC8rbu4jx4EVPk5nM98vMNyA95x0SckmhoEDLq2WxbIJ2q9a6ggFjBcgCGD8hfTqqxjkrx7xH-tCt5gCcnZFBjMuurShAnzzMgq4tupQvdMQ6c7gNuu1KevdhFbPGhyz6dmfda7bBYH1tTfa0b3cYE4ZsrVOwHxm-bXWy3sVzctroNuLFdx2Sl9ub5-ldPn-c3U8n89wwIVPOF0w0VEPFmIGRlBIWQgpasVJUmqPRAKU0NZRj1AIYHEasqRsteI1cIB-S6phrgo8xYKM2wa512CsK6qBFLdWPFnXQokCqTktHXv8ijU1fx6egbfsPfnLksXtvZzGoaDp_Bmsb0CRVe_tnxidKZYgy
CitedBy_id crossref_primary_10_1016_j_jfranklin_2022_10_022
crossref_primary_10_1155_2022_5054529
crossref_primary_10_1038_s41598_022_19794_1
crossref_primary_10_3390_axioms12111062
crossref_primary_10_1016_j_jfranklin_2023_06_045
crossref_primary_10_3389_fncom_2022_1029235
crossref_primary_10_1016_j_jfranklin_2024_107021
crossref_primary_10_1016_j_matcom_2025_02_009
crossref_primary_10_1155_2023_9212269
crossref_primary_10_1016_j_jfranklin_2022_12_005
crossref_primary_10_1016_j_jfranklin_2022_11_003
crossref_primary_10_1007_s40314_023_02312_y
crossref_primary_10_1016_j_jfranklin_2024_106674
crossref_primary_10_1038_s41598_023_49086_1
crossref_primary_10_1049_cth2_12316
crossref_primary_10_1080_00051144_2024_2362050
crossref_primary_10_1186_s13660_023_03048_3
crossref_primary_10_1049_cth2_12341
crossref_primary_10_1016_j_jfranklin_2023_02_019
crossref_primary_10_1007_s40995_024_01629_5
crossref_primary_10_1108_EC_03_2024_0177
crossref_primary_10_1016_j_ins_2022_11_157
crossref_primary_10_3934_math_20231489
crossref_primary_10_1016_j_jfranklin_2024_107295
crossref_primary_10_1016_j_eswa_2023_120731
crossref_primary_10_1038_s41598_022_13969_6
crossref_primary_10_1016_j_jfranklin_2025_107634
crossref_primary_10_1007_s11075_025_02031_x
crossref_primary_10_1016_j_jfranklin_2023_05_007
crossref_primary_10_3390_math10173090
crossref_primary_10_1109_ACCESS_2023_3261246
crossref_primary_10_1016_j_jfranklin_2023_05_026
Cites_doi 10.1016/j.sysconle.2008.12.004
10.1109/TAC.2005.852558
10.1016/j.jfranklin.2018.07.015
10.1016/j.jfranklin.2014.09.011
10.1109/TAC.2006.874989
10.1016/j.jfranklin.2018.07.045
10.1016/j.neucom.2016.02.021
10.1109/TAC.2014.2326273
10.1016/j.jfranklin.2017.01.004
10.1016/j.automatica.2018.07.021
10.3724/SP.J.1004.2010.00113
10.1002/mma.7030
10.1049/el:19920311
10.1109/TII.2017.2717020
10.1007/s11063-012-9241-1
10.1109/TNN.2002.1031938
10.1016/j.ipl.2013.09.002
10.3934/jimo.2017053
10.1016/j.ipl.2018.10.004
10.1049/cje.2017.06.007
10.1007/s12190-018-01220-3
10.1109/TCYB.2020.2996743
10.1109/TII.2021.3130237
10.1016/j.jfranklin.2017.09.029
10.2298/FIL1609503H
10.3724/SP.J.1004.2009.01136
10.1002/rnc.3076
10.1016/j.jfranklin.2019.12.031
10.1109/TAC.2009.2023779
10.1016/j.neucom.2020.08.061
10.1002/asjc.1528
10.1007/s00034-012-9421-2
10.1016/j.automatica.2010.10.011
10.1016/j.automatica.2017.06.012
10.1049/iet-cta.2013.1044
10.1016/j.jfranklin.2020.11.022
10.1016/j.automatica.2011.04.015
10.1002/acs.3029
ContentType Journal Article
Copyright 2022 The Franklin Institute
Copyright_xml – notice: 2022 The Franklin Institute
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2022.05.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
EndPage 10866
ExternalDocumentID 10_1016_j_jfranklin_2022_05_023
S0016003222003064
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AHPAA
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c245t-3b24f1a0722c085550b454172647a3eca0065cd069ea40203eca2fdfa43de34e3
IEDL.DBID .~1
ISSN 0016-0032
IngestDate Tue Jul 01 01:38:25 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
Fri Feb 23 02:39:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-3b24f1a0722c085550b454172647a3eca0065cd069ea40203eca2fdfa43de34e3
ORCID 0000-0002-8092-3459
0000-0001-7656-1267
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_jfranklin_2022_05_023
crossref_citationtrail_10_1016_j_jfranklin_2022_05_023
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2022_05_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lv, Duan, Zhou (bib0002) 2010; 36
Xiao, Li, Tan, Zhang, Liao, Chen, Jin, Li (bib0034) 2019; 142
Chen, Yi, Qiao (bib0030) 2013; 113
Duan, Zhou (bib0015) 2006; 51
Zhang, Chen, Tan (bib0024) 2009; 54
Ding, Liu, Ding (bib0028) 2008; 197
Sun, Wu, Liu (bib0031) 2021; 453
Ding, Zhang (bib0019) 2014; 8
Zhou, Li, Lin (bib0003) 2015; 25
Lv, Zhang, Zhang, Wang (bib0035) 2018; 14
Lv, Zhang, Zhang, Liu (bib0022) 2018; 355
Xiao, Liao, Li, Zhang, Ding, Jin (bib0023) 2018; 14
Liu, Feng, Yang (bib0029) 2012; 31
L. Lv, Z. Wu, J. Zhang, Z. Tan, L. Zhang and Z. Tian, “A VMD and LSTM based hybrid model of load forecasting for power grid security,” in IEEE Transactions on Industrial Informatics, doi
Li, Liu, Ding (bib0027) 2019; 33
Zhou, Duan, Lin (bib0005) 2011; 47
Ren, He, Luan, Liu, Karimi (bib0007) 2021; 51
Lv, Zhang, Zhang (bib0010) 2017; 354
Shuai, Chen, Bo (bib0032) 2013; 37
Lv, Tang, Zhang (bib0008) 2020; 357
Ding, Chen (bib0017) 2005; 50
Wu, Zhang, Zhang (bib0011) 2018; 87
Zhou (bib0013) 2018; 355
Zhang, Chen, Chen (bib0039) 2009; 35
Zhou, Wei, Duan (bib0001) 2011; 47
Hajarian, Chronopoulos (bib0014) 2021; 44
Lv, Zhang (bib0009) 2016; 353
Zhou, Duan, Li (bib0018) 2009; 58
J (bib0038) 1992; 28
Hajarian (bib0016) 2016; 30
Xiao, Lu (bib0025) 2017; 26
Hajarian (bib0037) 2018; 20
Zhang, Jiang, Wang (bib0026) 2002; 13
.
Sun, Wang (bib0036) 2019; 60
Duan, Lv, Zhou (bib0004) 2009
Lv, Zhang (bib0021) 2017; 354
Lv, Chen, Zhang, Wang, Zhang (bib0040) 2020; 358
Xiao, Liao (bib0033) 2016; 193
Wu, Sun, Zhang (bib0020) 2018; 97
Wu, Duan (bib0012) 2015; 60
Ren, He (bib0006) 2020; 365
Li (10.1016/j.jfranklin.2022.05.023_bib0027) 2019; 33
Hajarian (10.1016/j.jfranklin.2022.05.023_bib0014) 2021; 44
Duan (10.1016/j.jfranklin.2022.05.023_bib0004) 2009
Zhou (10.1016/j.jfranklin.2022.05.023_bib0005) 2011; 47
Zhou (10.1016/j.jfranklin.2022.05.023_bib0013) 2018; 355
10.1016/j.jfranklin.2022.05.023_bib0041
Xiao (10.1016/j.jfranklin.2022.05.023_bib0034) 2019; 142
Ren (10.1016/j.jfranklin.2022.05.023_bib0006) 2020; 365
Zhang (10.1016/j.jfranklin.2022.05.023_bib0024) 2009; 54
Zhou (10.1016/j.jfranklin.2022.05.023_bib0001) 2011; 47
Duan (10.1016/j.jfranklin.2022.05.023_bib0015) 2006; 51
Ding (10.1016/j.jfranklin.2022.05.023_bib0017) 2005; 50
Lv (10.1016/j.jfranklin.2022.05.023_bib0008) 2020; 357
Lv (10.1016/j.jfranklin.2022.05.023_bib0021) 2017; 354
Chen (10.1016/j.jfranklin.2022.05.023_bib0030) 2013; 113
Zhou (10.1016/j.jfranklin.2022.05.023_bib0003) 2015; 25
Ding (10.1016/j.jfranklin.2022.05.023_bib0028) 2008; 197
Xiao (10.1016/j.jfranklin.2022.05.023_bib0033) 2016; 193
Ding (10.1016/j.jfranklin.2022.05.023_bib0019) 2014; 8
Xiao (10.1016/j.jfranklin.2022.05.023_bib0025) 2017; 26
Wu (10.1016/j.jfranklin.2022.05.023_bib0012) 2015; 60
J (10.1016/j.jfranklin.2022.05.023_bib0038) 1992; 28
Liu (10.1016/j.jfranklin.2022.05.023_bib0029) 2012; 31
Lv (10.1016/j.jfranklin.2022.05.023_bib0035) 2018; 14
Wu (10.1016/j.jfranklin.2022.05.023_bib0020) 2018; 97
Shuai (10.1016/j.jfranklin.2022.05.023_bib0032) 2013; 37
Wu (10.1016/j.jfranklin.2022.05.023_bib0011) 2018; 87
Zhang (10.1016/j.jfranklin.2022.05.023_bib0026) 2002; 13
Lv (10.1016/j.jfranklin.2022.05.023_bib0002) 2010; 36
Zhou (10.1016/j.jfranklin.2022.05.023_bib0018) 2009; 58
Lv (10.1016/j.jfranklin.2022.05.023_bib0040) 2020; 358
Sun (10.1016/j.jfranklin.2022.05.023_bib0036) 2019; 60
Xiao (10.1016/j.jfranklin.2022.05.023_bib0023) 2018; 14
Lv (10.1016/j.jfranklin.2022.05.023_bib0009) 2016; 353
Sun (10.1016/j.jfranklin.2022.05.023_bib0031) 2021; 453
Lv (10.1016/j.jfranklin.2022.05.023_bib0010) 2017; 354
Hajarian (10.1016/j.jfranklin.2022.05.023_bib0037) 2018; 20
Hajarian (10.1016/j.jfranklin.2022.05.023_bib0016) 2016; 30
Lv (10.1016/j.jfranklin.2022.05.023_bib0022) 2018; 355
Zhang (10.1016/j.jfranklin.2022.05.023_bib0039) 2009; 35
Ren (10.1016/j.jfranklin.2022.05.023_bib0007) 2021; 51
References_xml – volume: 353
  start-page: 1005
  year: 2016
  end-page: 1018
  ident: bib0009
  article-title: On the periodic Sylvester equations and their applications in periodic Luenberger observers design
  publication-title: J. Franklin Inst.
– volume: 51
  start-page: 805
  year: 2006
  end-page: 809
  ident: bib0015
  article-title: Solution to the second-order Sylvester matrix equation MVF2+DVF+KV=BW
  publication-title: IEEE Trans. Automat. Control
– volume: 60
  start-page: 289
  year: 2015
  end-page: 294
  ident: bib0012
  article-title: New iterative algorithms for solving coupled Markovian jump Lyapunov equations
  publication-title: IEEE Trans. Automat. Control
– year: 2009
  ident: bib0004
  article-title: Robust pole assignment for discrete-time linear periodic systems via output feedback
  publication-title: Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009, combined withe the 28th Chinese Control Conference, December 16–18, 2009, Shanghai, China
– volume: 33
  start-page: 1189
  year: 2019
  end-page: 1211
  ident: bib0027
  article-title: The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle
  publication-title: Int. J. Adapt Control Signal Process.
– volume: 355
  start-page: 7246
  year: 2018
  end-page: 7280
  ident: bib0013
  article-title: Solutions to linear bimatrix equations with applications to pole assignment of complex-valued linear systems
  publication-title: J. Franklin Inst.
– reference: L. Lv, Z. Wu, J. Zhang, Z. Tan, L. Zhang and Z. Tian, “A VMD and LSTM based hybrid model of load forecasting for power grid security,” in IEEE Transactions on Industrial Informatics, doi:
– volume: 35
  start-page: 1136
  year: 2009
  end-page: 1139
  ident: bib0039
  article-title: Convergence properties analysis of gradient neural network for solving online linear equations
  publication-title: Acta Autom. Sin.
– volume: 87
  start-page: 395
  year: 2018
  end-page: 403
  ident: bib0011
  article-title: An iterative algorithm for discrete periodic Lyapunov matrix equations
  publication-title: Automatica
– volume: 20
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0037
  article-title: Matrix form of biconjugate residual algorithm to solve the discrete-time periodic Sylvester matrix equations
  publication-title: Asian J. Control
– volume: 365
  start-page: 124631
  year: 2020
  ident: bib0006
  article-title: Finite-time stabilization for positive Markovian jumping neural networks
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 413
  year: 2018
  end-page: 425
  ident: bib0035
  article-title: An iterative algorithm for periodic Sylvester matrix equations
  publication-title: J. Ind. Manage. Optim.
– volume: 354
  start-page: 2358
  year: 2017
  end-page: 2370
  ident: bib0021
  article-title: Finite iterative solutions to periodic Sylvester matrix equations
  publication-title: J. Franklin Inst.
– volume: 355
  start-page: 7691
  year: 2018
  end-page: 7705
  ident: bib0022
  article-title: Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations
  publication-title: J. Franklin Inst.
– volume: 113
  start-page: 876
  year: 2013
  end-page: 881
  ident: bib0030
  article-title: Improved neural solution for the Lyapunov matrix equation based on gradient search
  publication-title: Inf. Process. Lett.
– volume: 357
  start-page: 3601
  year: 2020
  end-page: 3621
  ident: bib0008
  article-title: Parametric solutions to generalized periodic Sylvester bimatrix equations
  publication-title: J. Franklin Inst.
– volume: 97
  start-page: 38
  year: 2018
  end-page: 47
  ident: bib0020
  article-title: An SOR implicit iterative algorithm for coupled Lyapunov equations
  publication-title: Automatica
– volume: 14
  start-page: 98
  year: 2018
  end-page: 105
  ident: bib0023
  article-title: Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator
  publication-title: IEEE Trans. Ind. Inf.
– volume: 30
  start-page: 2503
  year: 2016
  end-page: 2520
  ident: bib0016
  article-title: Extending the CGLS method for finding the least squares solutions of general discrete-time periodic matrix equations
  publication-title: Filomat
– volume: 354
  start-page: 8057
  year: 2017
  end-page: 8071
  ident: bib0010
  article-title: A parametric poles assignment algorithm for second-order linear periodic systems
  publication-title: J. Franklin Inst.
– volume: 26
  start-page: 1194
  year: 2017
  end-page: 1197
  ident: bib0025
  article-title: A fully complex-valued gradient neural network for rapidly computing complex-valued linear matrix equations
  publication-title: Chin. J. Electron.
– volume: 13
  start-page: 1053
  year: 2002
  end-page: 1063
  ident: bib0026
  article-title: A recurrent neural network for solving Sylvester equation with time-varying coefficients
  publication-title: IEEE Trans. Neural Netw.
– volume: 58
  start-page: 327
  year: 2009
  end-page: 333
  ident: bib0018
  article-title: Gradient based iterative algorithm for solving coupled matrix equations
  publication-title: Syst. Control Lett.
– volume: 37
  start-page: 189
  year: 2013
  end-page: 205
  ident: bib0032
  article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function
  publication-title: Neural Process. Lett.
– volume: 60
  start-page: 413
  year: 2019
  end-page: 434
  ident: bib0036
  article-title: The conjugate gradient methods for solving the generalized periodic Sylvester matrix equations
  publication-title: J. Appl. Math. Comput.
– volume: 44
  start-page: 4297
  year: 2021
  end-page: 4315
  ident: bib0014
  article-title: Least-squares partially bisymmetric solutions of coupled Sylvester matrix equations accompanied by a prescribed submatrix constraint
  publication-title: Math. Methods Appl. Sci.
– volume: 31
  start-page: 1985
  year: 2012
  end-page: 2000
  ident: bib0029
  article-title: Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle
  publication-title: Circuits Syst. Signal Process.
– volume: 54
  start-page: 1940
  year: 2009
  end-page: 1945
  ident: bib0024
  article-title: Performance analysis of gradient neural network exploited for online time-varying matrix inversion
  publication-title: IEEE Trans. Automat. Control
– volume: 358
  start-page: 2039
  year: 2020
  end-page: 2059
  ident: bib0040
  article-title: A numerical solution of a class of periodic coupled matrix equations
  publication-title: J. Franklin Inst.
– volume: 453
  start-page: 599
  year: 2021
  end-page: 609
  ident: bib0031
  article-title: Gradient-based neural networks for online solutions of coupled Lyapunov matrix equations
  publication-title: Neurocomputing
– volume: 142
  start-page: 35
  year: 2019
  end-page: 40
  ident: bib0034
  article-title: Nonlinear gradient neural network for solving system of linear equations
  publication-title: Inf. Process. Lett
– volume: 36
  start-page: 113
  year: 2010
  end-page: 120
  ident: bib0002
  article-title: Parametric pole assignment for discrete-time linear periodic systems via output feedback
  publication-title: Acta Autom. Sin.
– volume: 47
  start-page: 316
  year: 2011
  end-page: 325
  ident: bib0005
  article-title: A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation
  publication-title: Automatica
– reference: .
– volume: 25
  start-page: 103
  year: 2015
  end-page: 124
  ident: bib0003
  article-title: Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets
  publication-title: Int. J. Robust Nonlinear Control
– volume: 28
  start-page: 493
  year: 1992
  end-page: 495
  ident: bib0038
  article-title: Electronic realization of recurrent neural network for solving simultaneous linear equation
  publication-title: Electron. Lett
– volume: 50
  start-page: 1216
  year: 2005
  end-page: 1221
  ident: bib0017
  article-title: Gradient based iterative algorithms for solving a class of matrix equations
  publication-title: IEEE Trans. Automat. Control
– volume: 193
  start-page: 213
  year: 2016
  end-page: 218
  ident: bib0033
  article-title: A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation
  publication-title: Neurocomputing
– volume: 8
  start-page: 1588
  year: 2014
  end-page: 1595
  ident: bib0019
  article-title: Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems
  publication-title: IET Control Theory Appl.
– volume: 47
  start-page: 1813
  year: 2011
  end-page: 1820
  ident: bib0001
  article-title: Stability and stabilization of discrete-time periodic linear systems with actuator saturation
  publication-title: Automatica
– volume: 51
  start-page: 77
  year: 2021
  end-page: 87
  ident: bib0007
  article-title: Finite-time L2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T’S fuzzy model approach
  publication-title: IEEE Trans. Cybern.
– volume: 197
  start-page: 41
  year: 2008
  end-page: 50
  ident: bib0028
  article-title: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle
  publication-title: Appl. Math. Comput.
– volume: 58
  start-page: 327
  issue: 5
  year: 2009
  ident: 10.1016/j.jfranklin.2022.05.023_bib0018
  article-title: Gradient based iterative algorithm for solving coupled matrix equations
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2008.12.004
– volume: 365
  start-page: 124631
  year: 2020
  ident: 10.1016/j.jfranklin.2022.05.023_bib0006
  article-title: Finite-time stabilization for positive Markovian jumping neural networks
  publication-title: Appl. Math. Comput.
– volume: 197
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.jfranklin.2022.05.023_bib0028
  article-title: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 1216
  issue: 8
  year: 2005
  ident: 10.1016/j.jfranklin.2022.05.023_bib0017
  article-title: Gradient based iterative algorithms for solving a class of matrix equations
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2005.852558
– volume: 355
  start-page: 7246
  issue: 15
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0013
  article-title: Solutions to linear bimatrix equations with applications to pole assignment of complex-valued linear systems
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2018.07.015
– volume: 353
  start-page: 1005
  issue: 5
  year: 2016
  ident: 10.1016/j.jfranklin.2022.05.023_bib0009
  article-title: On the periodic Sylvester equations and their applications in periodic Luenberger observers design
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2014.09.011
– volume: 51
  start-page: 805
  issue: 5
  year: 2006
  ident: 10.1016/j.jfranklin.2022.05.023_bib0015
  article-title: Solution to the second-order Sylvester matrix equation MVF2+DVF+KV=BW
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2006.874989
– volume: 355
  start-page: 7691
  issue: 15
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0022
  article-title: Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2018.07.045
– volume: 193
  start-page: 213
  issue: Jun.12
  year: 2016
  ident: 10.1016/j.jfranklin.2022.05.023_bib0033
  article-title: A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.021
– volume: 60
  start-page: 289
  issue: 1
  year: 2015
  ident: 10.1016/j.jfranklin.2022.05.023_bib0012
  article-title: New iterative algorithms for solving coupled Markovian jump Lyapunov equations
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2326273
– year: 2009
  ident: 10.1016/j.jfranklin.2022.05.023_bib0004
  article-title: Robust pole assignment for discrete-time linear periodic systems via output feedback
– volume: 354
  start-page: 2358
  issue: 5
  year: 2017
  ident: 10.1016/j.jfranklin.2022.05.023_bib0021
  article-title: Finite iterative solutions to periodic Sylvester matrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.01.004
– volume: 97
  start-page: 38
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0020
  article-title: An SOR implicit iterative algorithm for coupled Lyapunov equations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.07.021
– volume: 36
  start-page: 113
  issue: 1
  year: 2010
  ident: 10.1016/j.jfranklin.2022.05.023_bib0002
  article-title: Parametric pole assignment for discrete-time linear periodic systems via output feedback
  publication-title: Acta Autom. Sin.
  doi: 10.3724/SP.J.1004.2010.00113
– volume: 44
  start-page: 4297
  issue: 6
  year: 2021
  ident: 10.1016/j.jfranklin.2022.05.023_bib0014
  article-title: Least-squares partially bisymmetric solutions of coupled Sylvester matrix equations accompanied by a prescribed submatrix constraint
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7030
– volume: 28
  start-page: 493
  issue: 5
  year: 1992
  ident: 10.1016/j.jfranklin.2022.05.023_bib0038
  article-title: Electronic realization of recurrent neural network for solving simultaneous linear equation
  publication-title: Electron. Lett
  doi: 10.1049/el:19920311
– volume: 14
  start-page: 98
  issue: 5
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0023
  article-title: Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2717020
– volume: 37
  start-page: 189
  issue: 2
  year: 2013
  ident: 10.1016/j.jfranklin.2022.05.023_bib0032
  article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-012-9241-1
– volume: 13
  start-page: 1053
  issue: 5
  year: 2002
  ident: 10.1016/j.jfranklin.2022.05.023_bib0026
  article-title: A recurrent neural network for solving Sylvester equation with time-varying coefficients
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.1031938
– volume: 113
  start-page: 876
  issue: 22–24
  year: 2013
  ident: 10.1016/j.jfranklin.2022.05.023_bib0030
  article-title: Improved neural solution for the Lyapunov matrix equation based on gradient search
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2013.09.002
– volume: 14
  start-page: 413
  issue: 1
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0035
  article-title: An iterative algorithm for periodic Sylvester matrix equations
  publication-title: J. Ind. Manage. Optim.
  doi: 10.3934/jimo.2017053
– volume: 142
  start-page: 35
  issue: FEB
  year: 2019
  ident: 10.1016/j.jfranklin.2022.05.023_bib0034
  article-title: Nonlinear gradient neural network for solving system of linear equations
  publication-title: Inf. Process. Lett
  doi: 10.1016/j.ipl.2018.10.004
– volume: 26
  start-page: 1194
  issue: 6
  year: 2017
  ident: 10.1016/j.jfranklin.2022.05.023_bib0025
  article-title: A fully complex-valued gradient neural network for rapidly computing complex-valued linear matrix equations
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2017.06.007
– volume: 60
  start-page: 413
  issue: 1–2
  year: 2019
  ident: 10.1016/j.jfranklin.2022.05.023_bib0036
  article-title: The conjugate gradient methods for solving the generalized periodic Sylvester matrix equations
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-018-01220-3
– volume: 51
  start-page: 77
  issue: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2022.05.023_bib0007
  article-title: Finite-time L2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T’S fuzzy model approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2996743
– ident: 10.1016/j.jfranklin.2022.05.023_bib0041
  doi: 10.1109/TII.2021.3130237
– volume: 354
  start-page: 8057
  issue: 18
  year: 2017
  ident: 10.1016/j.jfranklin.2022.05.023_bib0010
  article-title: A parametric poles assignment algorithm for second-order linear periodic systems
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.09.029
– volume: 30
  start-page: 2503
  issue: 9
  year: 2016
  ident: 10.1016/j.jfranklin.2022.05.023_bib0016
  article-title: Extending the CGLS method for finding the least squares solutions of general discrete-time periodic matrix equations
  publication-title: Filomat
  doi: 10.2298/FIL1609503H
– volume: 35
  start-page: 1136
  issue: 8
  year: 2009
  ident: 10.1016/j.jfranklin.2022.05.023_bib0039
  article-title: Convergence properties analysis of gradient neural network for solving online linear equations
  publication-title: Acta Autom. Sin.
  doi: 10.3724/SP.J.1004.2009.01136
– volume: 25
  start-page: 103
  issue: 1
  year: 2015
  ident: 10.1016/j.jfranklin.2022.05.023_bib0003
  article-title: Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3076
– volume: 357
  start-page: 3601
  issue: 6
  year: 2020
  ident: 10.1016/j.jfranklin.2022.05.023_bib0008
  article-title: Parametric solutions to generalized periodic Sylvester bimatrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.12.031
– volume: 54
  start-page: 1940
  issue: 8
  year: 2009
  ident: 10.1016/j.jfranklin.2022.05.023_bib0024
  article-title: Performance analysis of gradient neural network exploited for online time-varying matrix inversion
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2009.2023779
– volume: 453
  start-page: 599
  year: 2021
  ident: 10.1016/j.jfranklin.2022.05.023_bib0031
  article-title: Gradient-based neural networks for online solutions of coupled Lyapunov matrix equations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.061
– volume: 20
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0037
  article-title: Matrix form of biconjugate residual algorithm to solve the discrete-time periodic Sylvester matrix equations
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1528
– volume: 31
  start-page: 1985
  issue: 6
  year: 2012
  ident: 10.1016/j.jfranklin.2022.05.023_bib0029
  article-title: Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-012-9421-2
– volume: 47
  start-page: 316
  issue: 2
  year: 2011
  ident: 10.1016/j.jfranklin.2022.05.023_bib0005
  article-title: A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.011
– volume: 87
  start-page: 395
  year: 2018
  ident: 10.1016/j.jfranklin.2022.05.023_bib0011
  article-title: An iterative algorithm for discrete periodic Lyapunov matrix equations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.06.012
– volume: 8
  start-page: 1588
  year: 2014
  ident: 10.1016/j.jfranklin.2022.05.023_bib0019
  article-title: Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2013.1044
– volume: 358
  start-page: 2039
  issue: 3
  year: 2020
  ident: 10.1016/j.jfranklin.2022.05.023_bib0040
  article-title: A numerical solution of a class of periodic coupled matrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.11.022
– volume: 47
  start-page: 1813
  issue: 8
  year: 2011
  ident: 10.1016/j.jfranklin.2022.05.023_bib0001
  article-title: Stability and stabilization of discrete-time periodic linear systems with actuator saturation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.04.015
– volume: 33
  start-page: 1189
  issue: 7
  year: 2019
  ident: 10.1016/j.jfranklin.2022.05.023_bib0027
  article-title: The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle
  publication-title: Int. J. Adapt Control Signal Process.
  doi: 10.1002/acs.3029
SSID ssj0017100
Score 2.475168
Snippet This paper considers neural network solutions of a category of matrix equation called periodic Sylvester matrix equation (PSME), which appear in the process of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 10849
Title Gradient-based neural networks for solving periodic Sylvester matrix equations
URI https://dx.doi.org/10.1016/j.jfranklin.2022.05.023
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jU12N5vGWynWqtiLFnpbks0utNS0tlH04m93Jo_SgtCDxywZCMNk5pvdb78h5DoKrQi18RyAytwRAKidyHDtWFfCz2QgZ-YjWZ4Hsj8UjyN_VCPd6i4M0irL3F_k9Dxblyut0put-XiMd3w9qNZ4UpADX9QEFSLAKL_5WdE8PFSvKbIxdM7w9gbHa2LLyejQKDKWS3gy_neFWqs6vQOyX8JF2im-6JDUTHpE9tZEBI_J4H6R07YyBytSQlGhEkzSgt-9pIBKKQQYbhxQlDWeJWNNX76nn7lGAn1Djf4vat4Lze_lCRn27l67faeckuBoJvzM4TET1ovcgDGNpDPfjYUvAJdIEUTc6AhRhk5cGZoIm0VcYjaxkeCJ4cLwU1JPZ6k5I5S1beBrz5Oh1aItk3ZiJIsBBCacQafIG0RWnlG6lBDHSRZTVXHFJmrlUoUuVa6vwKUN4q4M54WKxnaT28r1aiMgFOT6bcbn_zG-ILv4VHBWLkk9W3yYK0AeWdzMQ6tJdjoPT_3BLyDj2dE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RnxuQev1XZ3W6g3Q0RU4CIk3DZlHwkEC0I1evG3O9MHgcSEg9dtJ9lMZme-ab_9hpDrKLQiVMZzACpzRwCgdiLDlWPdAA6TgZyZjmRpd4JmTzz3_X6J1Iu7MEirzHN_ltPTbJ2v3ObevJ0Oh3jH14NqjX8KUuArNsimgOOLYwxufhY8Dw_la7J0DK0zvL5C8hrZfDQ6dIqMpRqejP9dopbKTmOP7OZ4kd5nW9onJRMfkJ0lFcFD0nmcpbytxMGSpClKVIJJnBG85xRgKYUIwy8HFHWNJ3qo6Ov3-DMVSaBvKNL_Rc17Jvo9PyK9xkO33nTyMQmOYsJPHD5gwnqRW2VMIevMdwfCFwBMAlGNuFERwgyl3SA0EXaLuMSstpHg2nBh-DEpx5PYnBDKarbqK88LQqtELdA1bQI2ABSoOYNWkVdIUHhGqlxDHEdZjGVBFhvJhUslulS6vgSXVoi7MJxmMhrrTe4K18uViJCQ7NcZn_7H-IpsNbvtlmw9dV7OyDY-yQgs56SczD7MBcCQZHCZhtkvO2_bXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-based+neural+networks+for+solving+periodic+Sylvester+matrix+equations&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Lv%2C+Lingling&rft.au=Chen%2C+Jinbo&rft.au=Zhang%2C+Lei&rft.au=Zhang%2C+Fengrui&rft.date=2022-12-01&rft.issn=0016-0032&rft.volume=359&rft.issue=18&rft.spage=10849&rft.epage=10866&rft_id=info:doi/10.1016%2Fj.jfranklin.2022.05.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfranklin_2022_05_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon