Turbulent boundary layer heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary
The turbulent boundary layer (TBL) heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary are investigated. Five different shapes of nanoparticles are taken into account. Prandtl mixing length theory is adopted to divide the TBL into two parts, laminar su...
Saved in:
Published in | Zeitschrift für Naturforschung. A, A journal of physical sciences Vol. 77; no. 4; pp. 369 - 377 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
26.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0932-0784 1865-7109 |
DOI | 10.1515/zna-2021-0268 |
Cover
Loading…
Abstract | The turbulent boundary layer (TBL) heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary are investigated. Five different shapes of nanoparticles are taken into account. Prandtl mixing length theory is adopted to divide the TBL into two parts, laminar sub-layer and turbulent region. The numerical solutions are obtained by bvp4c and accuracy is verified with previous results. It is found that the transfer of momentum and heat in the TBL is more obvious in laminar sub-layer than in turbulent region. The rise of velocity ratio parameter increases the velocity and temperature while decreases the local friction coefficient. The heat transfer increases significantly with the increase of velocity ratio parameter, Biot number, and nanoparticles volume fraction. For nanoparticles of different shapes, the heat transfer characteristics are Nu
(sphere) < Nu
(hexahedron) < Nu
(tetrahedron) < Nu
(column) < Nu
(lamina). |
---|---|
AbstractList | The turbulent boundary layer (TBL) heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary are investigated. Five different shapes of nanoparticles are taken into account. Prandtl mixing length theory is adopted to divide the TBL into two parts, laminar sub-layer and turbulent region. The numerical solutions are obtained by bvp4c and accuracy is verified with previous results. It is found that the transfer of momentum and heat in the TBL is more obvious in laminar sub-layer than in turbulent region. The rise of velocity ratio parameter increases the velocity and temperature while decreases the local friction coefficient. The heat transfer increases significantly with the increase of velocity ratio parameter, Biot number, and nanoparticles volume fraction. For nanoparticles of different shapes, the heat transfer characteristics are Nu
(sphere) < Nu
(hexahedron) < Nu
(tetrahedron) < Nu
(column) < Nu
(lamina). The turbulent boundary layer (TBL) heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary are investigated. Five different shapes of nanoparticles are taken into account. Prandtl mixing length theory is adopted to divide the TBL into two parts, laminar sub-layer and turbulent region. The numerical solutions are obtained by bvp4c and accuracy is verified with previous results. It is found that the transfer of momentum and heat in the TBL is more obvious in laminar sub-layer than in turbulent region. The rise of velocity ratio parameter increases the velocity and temperature while decreases the local friction coefficient. The heat transfer increases significantly with the increase of velocity ratio parameter, Biot number, and nanoparticles volume fraction. For nanoparticles of different shapes, the heat transfer characteristics are Nu x (sphere) < Nu x (hexahedron) < Nu x (tetrahedron) < Nu x (column) < Nu x (lamina). |
Author | Zhang, Jiaojiao Zheng, Liancun Liu, Shengna |
Author_xml | – sequence: 1 givenname: Jiaojiao orcidid: 0000-0001-9440-6228 surname: Zhang fullname: Zhang, Jiaojiao organization: School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Shengna surname: Liu fullname: Liu, Shengna organization: School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Liancun surname: Zheng fullname: Zheng, Liancun email: liancunzheng@ustb.edu.cn organization: School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China |
BookMark | eNptUMtOwzAQtFCRaAtH7v6BgB9xHuKEKl5SpV7KOXKcdUmV2pUdtwoHxD_wh3wJjoo4cdpZaXZmdmZoYqwBhK4puaGCitt3IxNGGE0Iy4ozNKVFJpKcknKCpqTkLCF5kV6gmfdbQngm8nSKPtbB1aED0-PaBtNIN-BODuDwG8ge904ar-NmNV6E1ffn11H2cTXSWN2FtvHYGiyxsqZvTbDBdwPe2UNrNnjfRSr2od6Cikp2JB0ibA_w53WJzrXsPFz9zjl6fXxYL56T5erpZXG_TBRLRZ9QphpNREZkwQSBOmMUVK6VoqXUNQfBIOUMRE1IDqUuidCcZyUHxmlWKM7nKDnpKme9d6CrvWt3MUBFSTWWV8XyqrG8aiwv8u9O_KPs4r8NbFwYIqi2NjgTk_5_l-fpaPsDFOd8Ng |
Cites_doi | 10.1016/j.ijnonlinmec.2015.08.006 10.1016/j.jnnfm.2013.05.003 10.1115/1.1571080 10.1016/j.ijheatmasstransfer.2009.02.006 10.1557/PROC-457-3 10.1016/j.powtec.2015.01.039 10.1002/aic.690070211 10.1016/j.cja.2013.10.008 10.1016/j.molliq.2016.04.108 10.1016/j.amc.2016.11.024 10.1016/j.ijheatmasstransfer.2017.06.082 10.1007/s40430-019-1966-6 10.1063/1.1700493 10.1016/j.ijmecsci.2017.08.043 10.18488/journal.24/2015.4.1/24.1.27.41 10.1007/s13204-015-0430-x 10.1016/j.ijthermalsci.2008.03.009 10.1186/1687-2770-2014-163 10.1016/j.apm.2014.05.023 10.1016/j.ijheatmasstransfer.2011.10.047 10.1017/S0022112075001474 10.1016/S0252-9602(17)30727-0 10.1002/ceat.200900634 10.1063/5.0011292 10.1016/0020-7225(92)90115-W 10.1016/j.powtec.2016.06.029 10.1016/j.molliq.2017.01.009 10.1007/s10494-013-9479-3 10.1017/jfm.2021.577 10.1016/j.amc.2010.06.026 10.1016/j.applthermaleng.2018.11.035 10.2478/ijame-2013-0025 10.1016/j.cnsns.2008.05.003 10.2298/TSCI191014144A 10.1016/j.ijheatfluidflow.2013.03.002 10.1007/s11771-008-0143-3 10.1016/j.ijthermalsci.2016.02.006 10.1142/S0217979220501301 10.17515/resm2020.174na0114 10.1017/jmech.2018.40 10.1016/j.ijmultiphaseflow.2016.03.009 10.1088/1402-4896/abe82d 10.1615/JPorMedia.2020028850 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1515/zna-2021-0268 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1865-7109 |
EndPage | 377 |
ExternalDocumentID | 10_1515_zna_2021_0268 10_1515_zna_2021_0268774369 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11772046 |
GroupedDBID | -~X 3KA 4.4 AAAEU AADQG AAFPC AAGVJ AAILP AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASQH AAXCG AAXMT ABAQN ABDBF ABFKT ABJNI ABLJU ABMBZ ABPLS ABWLS ABYKJ ACDEB ACEFL ACGFS ACNCT ACPMA ACUHS ACUND ACZBO ADEQT ADGQD ADGYE ADOZN AECWL AEDGQ AEGVQ AEICA AEQDQ AERZL AFBAA AFBDD AFBQV AFCXV AFYRI AGBEV AHVWV AHXUK AIWOI ALMA_UNASSIGNED_HOLDINGS ALUKF ASYPN BAKPI BBCWN BCIFA CFGNV DARCH EBS FRP IY9 QD8 SJN SLJYH TN5 UK5 WTRAM AAYXX CITATION |
ID | FETCH-LOGICAL-c245t-12cdf0560a8250eb621ec7fcc19afb3e52e432e5b007e9f905f33693e23168c33 |
ISSN | 0932-0784 |
IngestDate | Tue Jul 01 02:54:39 EDT 2025 Thu Jul 10 10:36:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c245t-12cdf0560a8250eb621ec7fcc19afb3e52e432e5b007e9f905f33693e23168c33 |
ORCID | 0000-0001-9440-6228 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1515_zna_2021_0268 walterdegruyter_journals_10_1515_zna_2021_0268774369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-26 |
PublicationDateYYYYMMDD | 2022-04-26 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Zeitschrift für Naturforschung. A, A journal of physical sciences |
PublicationYear | 2022 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2023040103485441082_j_zna-2021-0268_ref_019 2023040103485441082_j_zna-2021-0268_ref_030 2023040103485441082_j_zna-2021-0268_ref_010 2023040103485441082_j_zna-2021-0268_ref_032 2023040103485441082_j_zna-2021-0268_ref_031 2023040103485441082_j_zna-2021-0268_ref_016 2023040103485441082_j_zna-2021-0268_ref_038 2023040103485441082_j_zna-2021-0268_ref_015 2023040103485441082_j_zna-2021-0268_ref_037 2023040103485441082_j_zna-2021-0268_ref_018 2023040103485441082_j_zna-2021-0268_ref_017 2023040103485441082_j_zna-2021-0268_ref_039 2023040103485441082_j_zna-2021-0268_ref_012 2023040103485441082_j_zna-2021-0268_ref_034 2023040103485441082_j_zna-2021-0268_ref_011 2023040103485441082_j_zna-2021-0268_ref_033 2023040103485441082_j_zna-2021-0268_ref_014 2023040103485441082_j_zna-2021-0268_ref_036 2023040103485441082_j_zna-2021-0268_ref_013 2023040103485441082_j_zna-2021-0268_ref_035 2023040103485441082_j_zna-2021-0268_ref_009 2023040103485441082_j_zna-2021-0268_ref_008 2023040103485441082_j_zna-2021-0268_ref_041 2023040103485441082_j_zna-2021-0268_ref_040 2023040103485441082_j_zna-2021-0268_ref_021 2023040103485441082_j_zna-2021-0268_ref_043 2023040103485441082_j_zna-2021-0268_ref_020 2023040103485441082_j_zna-2021-0268_ref_042 2023040103485441082_j_zna-2021-0268_ref_005 2023040103485441082_j_zna-2021-0268_ref_027 2023040103485441082_j_zna-2021-0268_ref_004 2023040103485441082_j_zna-2021-0268_ref_026 2023040103485441082_j_zna-2021-0268_ref_048 2023040103485441082_j_zna-2021-0268_ref_007 2023040103485441082_j_zna-2021-0268_ref_029 2023040103485441082_j_zna-2021-0268_ref_006 2023040103485441082_j_zna-2021-0268_ref_028 2023040103485441082_j_zna-2021-0268_ref_001 2023040103485441082_j_zna-2021-0268_ref_023 2023040103485441082_j_zna-2021-0268_ref_045 2023040103485441082_j_zna-2021-0268_ref_022 2023040103485441082_j_zna-2021-0268_ref_044 2023040103485441082_j_zna-2021-0268_ref_003 2023040103485441082_j_zna-2021-0268_ref_025 2023040103485441082_j_zna-2021-0268_ref_047 2023040103485441082_j_zna-2021-0268_ref_002 2023040103485441082_j_zna-2021-0268_ref_024 2023040103485441082_j_zna-2021-0268_ref_046 |
References_xml | – ident: 2023040103485441082_j_zna-2021-0268_ref_015 doi: 10.1016/j.ijnonlinmec.2015.08.006 – ident: 2023040103485441082_j_zna-2021-0268_ref_011 doi: 10.1016/j.jnnfm.2013.05.003 – ident: 2023040103485441082_j_zna-2021-0268_ref_020 doi: 10.1115/1.1571080 – ident: 2023040103485441082_j_zna-2021-0268_ref_022 doi: 10.1016/j.ijheatmasstransfer.2009.02.006 – ident: 2023040103485441082_j_zna-2021-0268_ref_019 doi: 10.1557/PROC-457-3 – ident: 2023040103485441082_j_zna-2021-0268_ref_044 doi: 10.1016/j.powtec.2015.01.039 – ident: 2023040103485441082_j_zna-2021-0268_ref_003 – ident: 2023040103485441082_j_zna-2021-0268_ref_031 doi: 10.1002/aic.690070211 – ident: 2023040103485441082_j_zna-2021-0268_ref_001 – ident: 2023040103485441082_j_zna-2021-0268_ref_042 doi: 10.1016/j.cja.2013.10.008 – ident: 2023040103485441082_j_zna-2021-0268_ref_045 doi: 10.1016/j.molliq.2016.04.108 – ident: 2023040103485441082_j_zna-2021-0268_ref_007 doi: 10.1016/j.amc.2016.11.024 – ident: 2023040103485441082_j_zna-2021-0268_ref_035 doi: 10.1016/j.ijheatmasstransfer.2017.06.082 – ident: 2023040103485441082_j_zna-2021-0268_ref_023 doi: 10.1007/s40430-019-1966-6 – ident: 2023040103485441082_j_zna-2021-0268_ref_046 doi: 10.1063/1.1700493 – ident: 2023040103485441082_j_zna-2021-0268_ref_012 doi: 10.1016/j.ijmecsci.2017.08.043 – ident: 2023040103485441082_j_zna-2021-0268_ref_037 doi: 10.18488/journal.24/2015.4.1/24.1.27.41 – ident: 2023040103485441082_j_zna-2021-0268_ref_047 doi: 10.1007/s13204-015-0430-x – ident: 2023040103485441082_j_zna-2021-0268_ref_021 doi: 10.1016/j.ijthermalsci.2008.03.009 – ident: 2023040103485441082_j_zna-2021-0268_ref_040 doi: 10.1186/1687-2770-2014-163 – ident: 2023040103485441082_j_zna-2021-0268_ref_026 doi: 10.1016/j.apm.2014.05.023 – ident: 2023040103485441082_j_zna-2021-0268_ref_036 doi: 10.1016/j.ijheatmasstransfer.2011.10.047 – ident: 2023040103485441082_j_zna-2021-0268_ref_048 doi: 10.1017/S0022112075001474 – ident: 2023040103485441082_j_zna-2021-0268_ref_032 doi: 10.1016/S0252-9602(17)30727-0 – ident: 2023040103485441082_j_zna-2021-0268_ref_009 doi: 10.1002/ceat.200900634 – ident: 2023040103485441082_j_zna-2021-0268_ref_017 doi: 10.1063/5.0011292 – ident: 2023040103485441082_j_zna-2021-0268_ref_033 doi: 10.1016/0020-7225(92)90115-W – ident: 2023040103485441082_j_zna-2021-0268_ref_027 doi: 10.1016/j.powtec.2016.06.029 – ident: 2023040103485441082_j_zna-2021-0268_ref_004 – ident: 2023040103485441082_j_zna-2021-0268_ref_016 doi: 10.1016/j.molliq.2017.01.009 – ident: 2023040103485441082_j_zna-2021-0268_ref_006 doi: 10.1007/s10494-013-9479-3 – ident: 2023040103485441082_j_zna-2021-0268_ref_002 – ident: 2023040103485441082_j_zna-2021-0268_ref_005 doi: 10.1017/jfm.2021.577 – ident: 2023040103485441082_j_zna-2021-0268_ref_041 doi: 10.1016/j.amc.2010.06.026 – ident: 2023040103485441082_j_zna-2021-0268_ref_013 doi: 10.1016/j.applthermaleng.2018.11.035 – ident: 2023040103485441082_j_zna-2021-0268_ref_034 doi: 10.2478/ijame-2013-0025 – ident: 2023040103485441082_j_zna-2021-0268_ref_039 doi: 10.1016/j.cnsns.2008.05.003 – ident: 2023040103485441082_j_zna-2021-0268_ref_030 doi: 10.2298/TSCI191014144A – ident: 2023040103485441082_j_zna-2021-0268_ref_010 doi: 10.1016/j.ijheatfluidflow.2013.03.002 – ident: 2023040103485441082_j_zna-2021-0268_ref_014 doi: 10.1007/s11771-008-0143-3 – ident: 2023040103485441082_j_zna-2021-0268_ref_025 doi: 10.1016/j.ijthermalsci.2016.02.006 – ident: 2023040103485441082_j_zna-2021-0268_ref_018 – ident: 2023040103485441082_j_zna-2021-0268_ref_028 doi: 10.1142/S0217979220501301 – ident: 2023040103485441082_j_zna-2021-0268_ref_038 doi: 10.17515/resm2020.174na0114 – ident: 2023040103485441082_j_zna-2021-0268_ref_024 doi: 10.1017/jmech.2018.40 – ident: 2023040103485441082_j_zna-2021-0268_ref_008 doi: 10.1016/j.ijmultiphaseflow.2016.03.009 – ident: 2023040103485441082_j_zna-2021-0268_ref_029 doi: 10.1088/1402-4896/abe82d – ident: 2023040103485441082_j_zna-2021-0268_ref_043 doi: 10.1615/JPorMedia.2020028850 |
SSID | ssj0036574 |
Score | 2.2673042 |
Snippet | The turbulent boundary layer (TBL) heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary are investigated. Five... |
SourceID | crossref walterdegruyter |
SourceType | Index Database Publisher |
StartPage | 369 |
SubjectTerms | continuously moving plate convective boundary condition nanofluids turbulent boundary layer |
Title | Turbulent boundary layer heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary |
URI | https://www.degruyter.com/doi/10.1515/zna-2021-0268 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReJjZAjJv8gBAoSmmcOEkfu2owTVxeNjTxEjmOM4KKU7Wxpu4B8R_4gUj8Eo4vSbPRB9hDoyq1ndTni88ln89B6HkRRyIJxolPA0bBQSmIn5cs8nNSJEUagC9H9d7h9x_io9Po-IyeDQa_eqwl1eRDfrlxX8lNpArnQK56l-x_SLYbFE7Ad5AvHEHCcPw3GSuYE602vNxUR1qsvBkDG1qbf42u_gA2qTCvAabqY0trCC-YTowomazLmaoK876AGc56JVWtlrOV983GGeYzaOotVa6DNdpKNRx1s0J2V-xbt59F1YC3vKjKxiv1K_iD6ULToZWm0MMPsLAMvYldjnopK-YtVpw67sz8Lpp9XLH6K3w6-lClTNj2i5Dnkq2bC9v8nY7UKNmPaIAzPIp8u23e0lLg8VioVctOdtHKUJNkbTW5obBrdRpTQyXtL-auJkzVj1SYlTm0FWGckg9tu7_0BzWpNi4lA5yRwAcHNV0rypYccE1_dqxG7U_BABl0z3T3THcH8xoufQttE_BjQHNsT94eHH5qjYUwpjZRePv_XBpYGOb1lbu4YjbtXBgqRSHO7Tz1LKKTu2jHuTJ4YnG5iwZC7qHbhlLMl3to16mNJX7pcpu_uoe-d5DFLYCwgSzWkMUtZHFdYoDs7x8_DVjxGqy4lpjhPlixBSs2YMUOrLip8Rqs3bXuo9M3hyfTI9-VAPE5iWjjB4QXJdjoI5aCrS7ymASCJyXnwZiVeSgoEVFIBAXlkYhxOR7RMoTpDgXRBdl4GD5AW7KW4iHCRSJIQeJxyrmIknTEgnhU5ikTPOKguOg-etHOcDa3mV6yjRLdR9G1-c_cI7Pc3MFC4NHNuj1Gd9bPyBO01SyUeAp2cJM_c1j6Aw26umY |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BVgguLS1UFCj4gBAc0k0c20mObdWyQFsuW8Qt8l-gIk2qTaxqe0C8A2_Ik3ScZFdQOMExUpxMZuyZb5zxNwAvjGA2ibIk4JHkmKAYGqhCskBRk5g0wlyO-7PDxydicsrefeKLasJmKKs09vPMzdueIXVsau38RtmSawAj8PiqkmhfipkwFen4S3te3oaVlOH8HMHK7pu9g48LdxwL3lMxI1AJMB6ygWjzj6f8FphWL7uf1UtJfok5h2ugFtL2pSZfd1yrdvTVDSLH__qc-7A6IFKy20-hdbhlqw2401WG6mYD1ofV35BXA0X16wfwberQGj5gEdX1ZZrNSSkRvRPv20nboWG8qguy7z78_P7jEiHtjFSyqovSnZmG1BWRxNfJn1Wudk05J-fd3ga5KPFW0jjlN4hIW5OuLr7zyst3PYTTw4Pp_iQYOjkEmjLeBhHVpkCoFUpMSEOrBI2sTgqto0wWKracWhZTy9EHJDYrspAXcSyy2FLfV0vH8SaMqrqyj4CYxFJDRZZqbVmShjISYaFSaTXT6H_4FrxcmDG_6Ak7cp_ooJpzVHPu1Zx7NW8Bu2HkfFi-zd8HIFBGmR7_27DncHcyPT7Kj96evH8C96g_RBGygIqnMGpnzm4jtGnVs2HyXgOU7Pl6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BViAuhRYqytMHhOCQbuLYTnIspUt5FQ4t6i3yE1UsyWoTq9oeEP-Bf8gvYZxkV6VwgmOkOJnM2DPfOONvAJ4YwWyWFFnEE8kxQTE0Uk6ySFGTmTzBXI6Hs8PvD8XBMXtzwk8unOIPZZXGfp77RdszpI5NrX3YKFtxDWAEHp9XEu1LMROmIh_PjLsKaznD9GYEa7uvXux_WnrjVPCeiRlxSoThkA08m3885Le4tH7W_ateCXIh5ExuglwK21eafNnxrdrR55d4HP_na27B-oBHyW4_gTbgiq024VpXF6qbTdgY1n5Dng0E1c9vw7cjj7YI4YqorivTfEGmErE7CZ6dtB0WxqvakT3_4ef3H2cIaOekklXtpv7UNKSuiCShSv608rVvpgvytdvZILMp3koar8L2EGlr0lXFdz559a47cDzZP9o7iIY-DpGmjLdRQrVxCLRiielobJWgidWZ0zoppFOp5dSylFqOHiCzhSti7tJUFKmloauWTtMtGFV1Ze8CMZmlhooi19qyLI9lImKncmk10-h9-DY8XVqxnPV0HWVIc1DLJWq5DFoug5a3gV2ycTks3ubvAxAmo0z3_m3YY7j-8eWkfPf68O19uEHDCYqYRVQ8gFE79_Yh4ppWPRqm7i-4b_gh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulent+boundary+layer+heat+transfer+of+CuO%E2%80%93water+nanofluids+on+a+continuously+moving+plate+subject+to+convective+boundary&rft.jtitle=Zeitschrift+f%C3%BCr+Naturforschung.+A%2C+A+journal+of+physical+sciences&rft.au=Zhang%2C+Jiaojiao&rft.au=Liu%2C+Shengna&rft.au=Zheng%2C+Liancun&rft.date=2022-04-26&rft.pub=De+Gruyter&rft.issn=0932-0784&rft.eissn=1865-7109&rft.volume=77&rft.issue=4&rft.spage=369&rft.epage=377&rft_id=info:doi/10.1515%2Fzna-2021-0268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_zna_2021_0268774369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-0784&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-0784&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-0784&client=summon |