Hierarchical Gaussian processes for characterizing gait variability in multiple sclerosis

Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in in...

Full description

Saved in:
Bibliographic Details
Published inData-Centric Engineering (Online) Vol. 6
Main Authors Stihi, Alexandru, Mazzà, Claudia, Cross, Elizabeth, Rogers, Timothy James
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2632-6736
2632-6736
DOI10.1017/dce.2025.10009

Cover

Loading…
Abstract Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in individuals with multiple sclerosis (MS), where gait patterns exhibit significant heterogeneity. This study introduces a novel perspective on modeling kinematic gait patterns, recognizing the inherent hierarchical structure of the data, which is gathered from contralateral limbs, individuals, and groups of individuals comprising a population, using wearable sensors. Rather than summarizing features, this approach models the entire gait cycle functionally, including its variation. A Hierarchical Variational Sparse Heteroscedastic Gaussian Process was used to model the shank angular velocity across 28 MS and 28 healthy individuals. The utility of this methodology was underscored by its granular analysis capabilities. This facilitated a range of quantifiable comparisons, spanning from group-level assessments to patient-specific analyses, addressing the complexity of pathological gait patterns and offering a robust methodology for kinematic pattern characterization for large datasets. The group-level analysis highlighted notable differences during the swing phase and towards the end of the stance phase, aligning with previously established literature findings. Moreover, the study identified the heteroscedastic gait pattern variability as a distinguishing feature of MS gait. Additionally, a novel approach for lower limb gait asymmetry quantification has been proposed. The use of probabilistic hierarchical modeling facilitated a better understanding of the impaired gait pattern, while also expressing potential for extrapolation to other pathological conditions affecting gait.
AbstractList Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in individuals with multiple sclerosis (MS), where gait patterns exhibit significant heterogeneity. This study introduces a novel perspective on modeling kinematic gait patterns, recognizing the inherent hierarchical structure of the data, which is gathered from contralateral limbs, individuals, and groups of individuals comprising a population, using wearable sensors. Rather than summarizing features, this approach models the entire gait cycle functionally, including its variation. A Hierarchical Variational Sparse Heteroscedastic Gaussian Process was used to model the shank angular velocity across 28 MS and 28 healthy individuals. The utility of this methodology was underscored by its granular analysis capabilities. This facilitated a range of quantifiable comparisons, spanning from group-level assessments to patient-specific analyses, addressing the complexity of pathological gait patterns and offering a robust methodology for kinematic pattern characterization for large datasets. The group-level analysis highlighted notable differences during the swing phase and towards the end of the stance phase, aligning with previously established literature findings. Moreover, the study identified the heteroscedastic gait pattern variability as a distinguishing feature of MS gait. Additionally, a novel approach for lower limb gait asymmetry quantification has been proposed. The use of probabilistic hierarchical modeling facilitated a better understanding of the impaired gait pattern, while also expressing potential for extrapolation to other pathological conditions affecting gait.
ArticleNumber e36
Author Stihi, Alexandru
Mazzà, Claudia
Cross, Elizabeth
Rogers, Timothy James
Author_xml – sequence: 1
  givenname: Alexandru
  orcidid: 0000-0002-6073-671X
  surname: Stihi
  fullname: Stihi, Alexandru
– sequence: 2
  givenname: Claudia
  orcidid: 0000-0002-5215-1746
  surname: Mazzà
  fullname: Mazzà, Claudia
– sequence: 3
  givenname: Elizabeth
  orcidid: 0000-0001-5204-1910
  surname: Cross
  fullname: Cross, Elizabeth
– sequence: 4
  givenname: Timothy James
  orcidid: 0000-0002-3433-3247
  surname: Rogers
  fullname: Rogers, Timothy James
BookMark eNpNUU1LwzAYDjLBOXf1HPDcmY82aY4ydBsMvOjBU3ibJltG186kFeavN9tEPL0fPDwfPLdo1HatReiekhklVD7Wxs4YYUW6CFFXaMwEZ5mQXIz-7TdoGuMuIZhUvGDFGH0svQ0QzNYbaPAChhg9tPgQOmNjtBG7LmCzhQCmt8F_-3aDN-B7_AXBQ-Ub3x-xb_F-aHp_aCyOprGhiz7eoWsHTbTT3zlB7y_Pb_Nltn5drOZP68ywvFCZ5QYEKEoqmnNTKytKV9laGgZSEJB1mQvjREFsRYR11DBTEWpULYgsiQA-QasLb93BTh-C30M46g68Pj-6sNEQep9saVfVQipKC0FdDlJWlPJcqqQrSJGzMnE9XLhS_s_Bxl7vuiG0yb7mjEtGSJ7QEzS7oEwKGoN1f6qU6FMbOrWhT23ocxv8B9H2fvA
Cites_doi 10.1016/j.patcog.2017.09.005
10.1109/TNNLS.2022.3152255
10.1016/j.jbiomech.2009.03.009
10.3390/sym13040705
10.1115/1.1392310
10.1016/j.gaitpost.2018.08.025
10.1109/TNNLS.2020.2979188
10.1371/journal.pcbi.1011556
10.1109/TBME.2021.3061998
10.1109/TNSRE.2019.2914095
10.1186/s12984-020-00668-4
10.1109/OJEMB.2022.3221306
10.1016/j.clinbiomech.2017.04.001
10.1177/1352458505070609
10.1016/j.jbiomech.2013.09.032
10.1007/s00221-006-0676-3
10.1016/B978-0-444-52001-2.00011-X
10.1016/j.gaitpost.2005.12.002
10.1093/gerona/glp033
10.1016/j.medengphy.2010.03.007
10.1038/s41746-021-00513-5
10.3390/sym13040598
10.1016/j.gaitpost.2016.09.026
10.3390/app122412932
10.1007/s10439-012-0685-2
10.1186/1471-2105-14-252
10.1023/B:STCO.0000035301.49549.88
10.1016/S0268-0033(98)00089-8
10.1371/journal.pone.0171764
10.1109/HUMANOIDS.2014.7041428
10.1016/j.humov.2016.03.010
10.1007/s00415-020-09928-8
10.1016/j.msard.2020.102053
10.1109/ICARA.2015.7081147
10.1212/WNL.33.11.1444
10.1152/jappl.1995.78.1.349
10.1016/j.medengphy.2015.02.003
10.3390/s18010145
10.1007/s00415-019-09500-z
10.1136/jnnp.2006.106914
10.1109/SSP.2016.7551815
10.1016/j.gaitpost.2017.08.023
10.3109/09638288.2012.738760
10.1093/gerona/gls255
10.1016/j.gaitpost.2016.07.073
10.3389/fnbot.2020.00058
10.1016/j.apmr.2012.02.019
10.1038/s41598-018-22676-0
10.1109/TPAMI.2007.1167
10.1371/journal.pone.0171346
10.1023/A:1022627411411
10.1109/TASE.2018.2841358
10.1016/j.gaitpost.2010.03.008
10.1109/JBHI.2021.3092875
10.1016/j.jbiomech.2017.01.005
10.1038/s41598-019-38748-8
10.1007/s00158-010-0496-8
10.1016/j.renene.2019.09.145
10.3390/s22113980
ContentType Journal Article
Copyright The Author(s), 2025. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2025. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
DOA
DOI 10.1017/dce.2025.10009
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2632-6736
ExternalDocumentID oai_doaj_org_article_fbd67911561f4a77b11347943c605428
10_1017_dce_2025_10009
GroupedDBID 09C
09E
0R~
AANRG
AASVR
AAYXX
ABGDZ
ABJCF
ABVZP
ABXHF
ACAJB
ACDLN
ACZWT
ADDNB
ADKIL
ADOVH
ADVJH
AEBAK
AFKRA
AFZFC
AGABE
AGBYD
AGJUD
AHRGI
AKMAY
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BLZWO
CCPQU
CCQAD
CITATION
CJCSC
DOHLZ
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
IKXGN
IPYYG
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
RCA
ROL
WFFJZ
ID FETCH-LOGICAL-c2459-e3ca6a910b143cd9e68fbed7c2a760a7d846cf650eb06ef1c2cb01c9d607806a3
IEDL.DBID DOA
ISSN 2632-6736
IngestDate Wed Aug 27 01:32:32 EDT 2025
Fri Aug 08 05:10:54 EDT 2025
Wed Aug 13 23:49:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2459-e3ca6a910b143cd9e68fbed7c2a760a7d846cf650eb06ef1c2cb01c9d607806a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6073-671X
0000-0001-5204-1910
0000-0002-3433-3247
0000-0002-5215-1746
OpenAccessLink https://doaj.org/article/fbd67911561f4a77b11347943c605428
PQID 3237200494
PQPubID 4930816
ParticipantIDs doaj_primary_oai_doaj_org_article_fbd67911561f4a77b11347943c605428
proquest_journals_3237200494
crossref_primary_10_1017_dce_2025_10009
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Data-Centric Engineering (Online)
PublicationYear 2025
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Hensman (S2632673625100099_r30) 2018; 18
S2632673625100099_r62
S2632673625100099_r61
S2632673625100099_r60
S2632673625100099_r22
S2632673625100099_r66
S2632673625100099_r65
S2632673625100099_r21
S2632673625100099_r64
S2632673625100099_r20
S2632673625100099_r63
de G. Matthews (S2632673625100099_r17) 2017; 18
S2632673625100099_r26
S2632673625100099_r25
S2632673625100099_r69
S2632673625100099_r24
S2632673625100099_r68
S2632673625100099_r23
S2632673625100099_r29
S2632673625100099_r28
Bui (S2632673625100099_r8) 2017; 18
S2632673625100099_r73
S2632673625100099_r72
S2632673625100099_r71
S2632673625100099_r33
S2632673625100099_r76
S2632673625100099_r32
S2632673625100099_r31
S2632673625100099_r75
S2632673625100099_r74
S2632673625100099_r37
S2632673625100099_r36
S2632673625100099_r35
S2632673625100099_r34
S2632673625100099_r39
Rasmussen (S2632673625100099_r55) 2001
Neumann (S2632673625100099_r47) 2016
Teixeira (S2632673625100099_r48) 2013; 35
S2632673625100099_r44
S2632673625100099_r43
S2632673625100099_r42
S2632673625100099_r41
S2632673625100099_r46
S2632673625100099_r45
S2632673625100099_r9
Arcolin (S2632673625100099_r5) 2019; 18
S2632673625100099_r49
S2632673625100099_r6
Bishop (S2632673625100099_r7) 2006
S2632673625100099_r4
Villani (S2632673625100099_r70) 2009
S2632673625100099_r3
S2632673625100099_r2
Quiñonero-Candela (S2632673625100099_r54) 2005; 6
S2632673625100099_r1
Lázaro-Gredilla (S2632673625100099_r38) 2011
Gretton (S2632673625100099_r27) 2012; 13
S2632673625100099_r51
S2632673625100099_r50
Rasmussen (S2632673625100099_r56) 2006
S2632673625100099_r11
S2632673625100099_r10
S2632673625100099_r53
S2632673625100099_r52
S2632673625100099_r59
S2632673625100099_r15
S2632673625100099_r14
S2632673625100099_r58
S2632673625100099_r13
S2632673625100099_r57
S2632673625100099_r12
S2632673625100099_r19
S2632673625100099_r18
S2632673625100099_r16
Lloyd (S2632673625100099_r40) 2015; 28
Titsias (S2632673625100099_r67) 2009; 5
References_xml – ident: S2632673625100099_r22
  doi: 10.1016/j.patcog.2017.09.005
– ident: S2632673625100099_r9
  doi: 10.1109/TNNLS.2022.3152255
– ident: S2632673625100099_r46
  doi: 10.1016/j.jbiomech.2009.03.009
– ident: S2632673625100099_r57
  doi: 10.3390/sym13040705
– ident: S2632673625100099_r2
  doi: 10.1115/1.1392310
– ident: S2632673625100099_r49
  doi: 10.1016/j.gaitpost.2018.08.025
– ident: S2632673625100099_r39
  doi: 10.1109/TNNLS.2020.2979188
– ident: S2632673625100099_r72
  doi: 10.1371/journal.pcbi.1011556
– ident: S2632673625100099_r4
  doi: 10.1109/TBME.2021.3061998
– start-page: 294
  year: 2001
  ident: S2632673625100099_r55
  article-title: Occam’s razor
  publication-title: Advances in Neural Information Processing Systems
– ident: S2632673625100099_r32
  doi: 10.1109/TNSRE.2019.2914095
– ident: S2632673625100099_r24
  doi: 10.1186/s12984-020-00668-4
– ident: S2632673625100099_r14
  doi: 10.1109/OJEMB.2022.3221306
– ident: S2632673625100099_r63
  doi: 10.1016/j.clinbiomech.2017.04.001
– volume: 18
  start-page: 1
  year: 2019
  ident: S2632673625100099_r5
  article-title: Proposal of a new conceptual gait model for patients with Parkinson’s disease based on factor analysis
  publication-title: Biomedical Engineering Online
– ident: S2632673625100099_r16
  doi: 10.1177/1352458505070609
– ident: S2632673625100099_r76
  doi: 10.1016/j.jbiomech.2013.09.032
– ident: S2632673625100099_r75
  doi: 10.1007/s00221-006-0676-3
– ident: S2632673625100099_r23
  doi: 10.1016/B978-0-444-52001-2.00011-X
– volume: 28
  year: 2015
  ident: S2632673625100099_r40
  article-title: Statistical model criticism using kernel two sample tests
  publication-title: Advances in Neural Information Processing Systems
– volume: 5
  start-page: 567
  year: 2009
  ident: S2632673625100099_r67
  article-title: Variational learning of inducing variables in sparse Gaussian processes
  publication-title: Journal of Machine Learning Research
– ident: S2632673625100099_r15
  doi: 10.1016/j.gaitpost.2005.12.002
– ident: S2632673625100099_r69
  doi: 10.1093/gerona/glp033
– ident: S2632673625100099_r18
– ident: S2632673625100099_r61
  doi: 10.1016/j.medengphy.2010.03.007
– ident: S2632673625100099_r53
  doi: 10.1038/s41746-021-00513-5
– ident: S2632673625100099_r52
  doi: 10.3390/sym13040598
– ident: S2632673625100099_r12
  doi: 10.1016/j.gaitpost.2016.09.026
– ident: S2632673625100099_r6
  doi: 10.3390/app122412932
– ident: S2632673625100099_r66
  doi: 10.1007/s10439-012-0685-2
– start-page: 841
  volume-title: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11
  year: 2011
  ident: S2632673625100099_r38
– ident: S2632673625100099_r31
  doi: 10.1186/1471-2105-14-252
– ident: S2632673625100099_r65
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 18
  start-page: 1
  year: 2018
  ident: S2632673625100099_r30
  article-title: Variational fourier features for gaussian processes
  publication-title: Journal of Machine Learning Research
– ident: S2632673625100099_r43
  doi: 10.1016/S0268-0033(98)00089-8
– ident: S2632673625100099_r59
  doi: 10.1371/journal.pone.0171764
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: S2632673625100099_r56
– volume: 6
  start-page: 1939
  year: 2005
  ident: S2632673625100099_r54
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: Journal of Machine Learning Research
– ident: S2632673625100099_r25
  doi: 10.1109/HUMANOIDS.2014.7041428
– ident: S2632673625100099_r1
– ident: S2632673625100099_r42
– ident: S2632673625100099_r44
  doi: 10.1016/j.humov.2016.03.010
– ident: S2632673625100099_r3
  doi: 10.1007/s00415-020-09928-8
– ident: S2632673625100099_r62
  doi: 10.1016/j.msard.2020.102053
– ident: S2632673625100099_r10
  doi: 10.1109/ICARA.2015.7081147
– ident: S2632673625100099_r37
  doi: 10.1212/WNL.33.11.1444
– ident: S2632673625100099_r29
  doi: 10.1152/jappl.1995.78.1.349
– ident: S2632673625100099_r26
  doi: 10.1016/j.medengphy.2015.02.003
– ident: S2632673625100099_r28
  doi: 10.3390/s18010145
– volume: 18
  start-page: 1
  year: 2017
  ident: S2632673625100099_r17
  article-title: Gpflow: A Gaussian process library using tensorflow
  publication-title: Journal of Machine Learning Research
– ident: S2632673625100099_r64
  doi: 10.1007/s00415-019-09500-z
– start-page: 93
  volume-title: The Wasserstein Distances
  year: 2009
  ident: S2632673625100099_r70
– ident: S2632673625100099_r68
  doi: 10.1136/jnnp.2006.106914
– volume: 13
  start-page: 723
  year: 2012
  ident: S2632673625100099_r27
  article-title: A kernel two-sample test
  publication-title: Journal of Machine Learning Research
– ident: S2632673625100099_r21
  doi: 10.1109/SSP.2016.7551815
– ident: S2632673625100099_r51
  doi: 10.1016/j.gaitpost.2017.08.023
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: S2632673625100099_r7
– volume: 35
  start-page: 1472
  year: 2013
  ident: S2632673625100099_r48
  article-title: Gait characteristics of multiple sclerosis patients in the absence of clinical disability
  publication-title: Disability and Rehabilitation
  doi: 10.3109/09638288.2012.738760
– volume: 18
  start-page: 1
  year: 2017
  ident: S2632673625100099_r8
  article-title: A unifying framework for Gaussian process pseudo-point approximations using power expectation propagation
  publication-title: Journal of Machine Learning Research
– ident: S2632673625100099_r41
  doi: 10.1093/gerona/gls255
– ident: S2632673625100099_r33
  doi: 10.1016/j.gaitpost.2016.07.073
– ident: S2632673625100099_r19
  doi: 10.3389/fnbot.2020.00058
– ident: S2632673625100099_r58
  doi: 10.1016/j.apmr.2012.02.019
– ident: S2632673625100099_r20
  doi: 10.1038/s41598-018-22676-0
– ident: S2632673625100099_r71
  doi: 10.1109/TPAMI.2007.1167
– ident: S2632673625100099_r45
  doi: 10.1371/journal.pone.0171346
– ident: S2632673625100099_r13
  doi: 10.1023/A:1022627411411
– ident: S2632673625100099_r73
  doi: 10.1109/TASE.2018.2841358
– volume-title: Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation
  year: 2016
  ident: S2632673625100099_r47
– ident: S2632673625100099_r36
  doi: 10.1016/j.gaitpost.2010.03.008
– ident: S2632673625100099_r11
  doi: 10.1109/JBHI.2021.3092875
– ident: S2632673625100099_r50
  doi: 10.1016/j.jbiomech.2017.01.005
– ident: S2632673625100099_r34
  doi: 10.1038/s41598-019-38748-8
– ident: S2632673625100099_r74
  doi: 10.1007/s00158-010-0496-8
– ident: S2632673625100099_r60
  doi: 10.1016/j.renene.2019.09.145
– ident: S2632673625100099_r35
  doi: 10.3390/s22113980
SSID ssj0002793525
Score 2.2787514
Snippet Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Angular velocity
Ankle
Disease
Gait
gait analysis
Gaussian process
Heterogeneity
heteroscedastic
hierarchical
Kinematics
Modelling
Multiple sclerosis
Pattern recognition
Sensors
Trends
Variability
Velocity
Title Hierarchical Gaussian processes for characterizing gait variability in multiple sclerosis
URI https://www.proquest.com/docview/3237200494
https://doaj.org/article/fbd67911561f4a77b11347943c605428
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJy9-i9UqexA8hSabZDd7VGktQj1ZqKdlvyIRicW0gh787c7uJqXgwYuXHEJglzeZnTfJzBuELqmRSQpEONKUQYJiJI94zlRkJPBTiI82Y653ePpAJ7Psfp7PN0Z9uZqwIA8cgBuWylAGHglxvswkYyrxzY9ZqoGIA3d2p2_M441k6sX_TuNO57NTaUzY0GgniklyVxbgqg83opAX6_91FvsAM95DOy0zxNdhR_toy9YHaLdlibj1weYQPU0q1zTsZ5i84ju5alwfJF6Ein_bYKChWK91mL8gNuFnWS3xB6TFQZX7E1c17koJcQPLwS6r5gjNxqPH20nUDkiINMlyHtlUSyoh4CtgPdpwS4tSWcM0kYzGkhkgF7oEDmZVTG2ZaKJVnGhuKBCDmMr0GPXqt9qeIMxVQWQJFi0yniliCwuolYyWhSWQg7E-uuoAE4uggyFCgRgTAK1w0AoPbR_dODzXTzn9an8DrCpaq4q_rNpHg84aonWqRqTEjdRxgjan_7HGGdp2uw7fUwaot3xf2XNgGEt14V8muE6_Rz-8gM32
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Gaussian+processes+for+characterizing+gait+variability+in+multiple+sclerosis&rft.jtitle=Data-Centric+Engineering+%28Online%29&rft.au=Stihi%2C+Alexandru&rft.au=Mazz%C3%A0%2C+Claudia&rft.au=Cross%2C+Elizabeth&rft.au=Rogers%2C+Timothy+James&rft.date=2025-01-01&rft.issn=2632-6736&rft.eissn=2632-6736&rft.volume=6&rft_id=info:doi/10.1017%2Fdce.2025.10009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_dce_2025_10009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-6736&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-6736&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-6736&client=summon