Hierarchical Gaussian processes for characterizing gait variability in multiple sclerosis
Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in in...
Saved in:
Published in | Data-Centric Engineering (Online) Vol. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2632-6736 2632-6736 |
DOI | 10.1017/dce.2025.10009 |
Cover
Loading…
Abstract | Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in individuals with multiple sclerosis (MS), where gait patterns exhibit significant heterogeneity. This study introduces a novel perspective on modeling kinematic gait patterns, recognizing the inherent hierarchical structure of the data, which is gathered from contralateral limbs, individuals, and groups of individuals comprising a population, using wearable sensors. Rather than summarizing features, this approach models the entire gait cycle functionally, including its variation. A Hierarchical Variational Sparse Heteroscedastic Gaussian Process was used to model the shank angular velocity across 28 MS and 28 healthy individuals. The utility of this methodology was underscored by its granular analysis capabilities. This facilitated a range of quantifiable comparisons, spanning from group-level assessments to patient-specific analyses, addressing the complexity of pathological gait patterns and offering a robust methodology for kinematic pattern characterization for large datasets. The group-level analysis highlighted notable differences during the swing phase and towards the end of the stance phase, aligning with previously established literature findings. Moreover, the study identified the heteroscedastic gait pattern variability as a distinguishing feature of MS gait. Additionally, a novel approach for lower limb gait asymmetry quantification has been proposed. The use of probabilistic hierarchical modeling facilitated a better understanding of the impaired gait pattern, while also expressing potential for extrapolation to other pathological conditions affecting gait. |
---|---|
AbstractList | Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in individuals with multiple sclerosis (MS), where gait patterns exhibit significant heterogeneity. This study introduces a novel perspective on modeling kinematic gait patterns, recognizing the inherent hierarchical structure of the data, which is gathered from contralateral limbs, individuals, and groups of individuals comprising a population, using wearable sensors. Rather than summarizing features, this approach models the entire gait cycle functionally, including its variation. A Hierarchical Variational Sparse Heteroscedastic Gaussian Process was used to model the shank angular velocity across 28 MS and 28 healthy individuals. The utility of this methodology was underscored by its granular analysis capabilities. This facilitated a range of quantifiable comparisons, spanning from group-level assessments to patient-specific analyses, addressing the complexity of pathological gait patterns and offering a robust methodology for kinematic pattern characterization for large datasets. The group-level analysis highlighted notable differences during the swing phase and towards the end of the stance phase, aligning with previously established literature findings. Moreover, the study identified the heteroscedastic gait pattern variability as a distinguishing feature of MS gait. Additionally, a novel approach for lower limb gait asymmetry quantification has been proposed. The use of probabilistic hierarchical modeling facilitated a better understanding of the impaired gait pattern, while also expressing potential for extrapolation to other pathological conditions affecting gait. |
ArticleNumber | e36 |
Author | Stihi, Alexandru Mazzà, Claudia Cross, Elizabeth Rogers, Timothy James |
Author_xml | – sequence: 1 givenname: Alexandru orcidid: 0000-0002-6073-671X surname: Stihi fullname: Stihi, Alexandru – sequence: 2 givenname: Claudia orcidid: 0000-0002-5215-1746 surname: Mazzà fullname: Mazzà, Claudia – sequence: 3 givenname: Elizabeth orcidid: 0000-0001-5204-1910 surname: Cross fullname: Cross, Elizabeth – sequence: 4 givenname: Timothy James orcidid: 0000-0002-3433-3247 surname: Rogers fullname: Rogers, Timothy James |
BookMark | eNpNUU1LwzAYDjLBOXf1HPDcmY82aY4ydBsMvOjBU3ibJltG186kFeavN9tEPL0fPDwfPLdo1HatReiekhklVD7Wxs4YYUW6CFFXaMwEZ5mQXIz-7TdoGuMuIZhUvGDFGH0svQ0QzNYbaPAChhg9tPgQOmNjtBG7LmCzhQCmt8F_-3aDN-B7_AXBQ-Ub3x-xb_F-aHp_aCyOprGhiz7eoWsHTbTT3zlB7y_Pb_Nltn5drOZP68ywvFCZ5QYEKEoqmnNTKytKV9laGgZSEJB1mQvjREFsRYR11DBTEWpULYgsiQA-QasLb93BTh-C30M46g68Pj-6sNEQep9saVfVQipKC0FdDlJWlPJcqqQrSJGzMnE9XLhS_s_Bxl7vuiG0yb7mjEtGSJ7QEzS7oEwKGoN1f6qU6FMbOrWhT23ocxv8B9H2fvA |
Cites_doi | 10.1016/j.patcog.2017.09.005 10.1109/TNNLS.2022.3152255 10.1016/j.jbiomech.2009.03.009 10.3390/sym13040705 10.1115/1.1392310 10.1016/j.gaitpost.2018.08.025 10.1109/TNNLS.2020.2979188 10.1371/journal.pcbi.1011556 10.1109/TBME.2021.3061998 10.1109/TNSRE.2019.2914095 10.1186/s12984-020-00668-4 10.1109/OJEMB.2022.3221306 10.1016/j.clinbiomech.2017.04.001 10.1177/1352458505070609 10.1016/j.jbiomech.2013.09.032 10.1007/s00221-006-0676-3 10.1016/B978-0-444-52001-2.00011-X 10.1016/j.gaitpost.2005.12.002 10.1093/gerona/glp033 10.1016/j.medengphy.2010.03.007 10.1038/s41746-021-00513-5 10.3390/sym13040598 10.1016/j.gaitpost.2016.09.026 10.3390/app122412932 10.1007/s10439-012-0685-2 10.1186/1471-2105-14-252 10.1023/B:STCO.0000035301.49549.88 10.1016/S0268-0033(98)00089-8 10.1371/journal.pone.0171764 10.1109/HUMANOIDS.2014.7041428 10.1016/j.humov.2016.03.010 10.1007/s00415-020-09928-8 10.1016/j.msard.2020.102053 10.1109/ICARA.2015.7081147 10.1212/WNL.33.11.1444 10.1152/jappl.1995.78.1.349 10.1016/j.medengphy.2015.02.003 10.3390/s18010145 10.1007/s00415-019-09500-z 10.1136/jnnp.2006.106914 10.1109/SSP.2016.7551815 10.1016/j.gaitpost.2017.08.023 10.3109/09638288.2012.738760 10.1093/gerona/gls255 10.1016/j.gaitpost.2016.07.073 10.3389/fnbot.2020.00058 10.1016/j.apmr.2012.02.019 10.1038/s41598-018-22676-0 10.1109/TPAMI.2007.1167 10.1371/journal.pone.0171346 10.1023/A:1022627411411 10.1109/TASE.2018.2841358 10.1016/j.gaitpost.2010.03.008 10.1109/JBHI.2021.3092875 10.1016/j.jbiomech.2017.01.005 10.1038/s41598-019-38748-8 10.1007/s00158-010-0496-8 10.1016/j.renene.2019.09.145 10.3390/s22113980 |
ContentType | Journal Article |
Copyright | The Author(s), 2025. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2025. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION DOA |
DOI | 10.1017/dce.2025.10009 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2632-6736 |
ExternalDocumentID | oai_doaj_org_article_fbd67911561f4a77b11347943c605428 10_1017_dce_2025_10009 |
GroupedDBID | 09C 09E 0R~ AANRG AASVR AAYXX ABGDZ ABJCF ABVZP ABXHF ACAJB ACDLN ACZWT ADDNB ADKIL ADOVH ADVJH AEBAK AFKRA AFZFC AGABE AGBYD AGJUD AHRGI AKMAY ALMA_UNASSIGNED_HOLDINGS AQJOH ARAPS ARCSS AZQEC BENPR BGLVJ BLZWO CCPQU CCQAD CITATION CJCSC DOHLZ DWQXO EBS EJD GNUQQ GROUPED_DOAJ HCIFZ IKXGN IPYYG M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RCA ROL WFFJZ |
ID | FETCH-LOGICAL-c2459-e3ca6a910b143cd9e68fbed7c2a760a7d846cf650eb06ef1c2cb01c9d607806a3 |
IEDL.DBID | DOA |
ISSN | 2632-6736 |
IngestDate | Wed Aug 27 01:32:32 EDT 2025 Fri Aug 08 05:10:54 EDT 2025 Wed Aug 13 23:49:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2459-e3ca6a910b143cd9e68fbed7c2a760a7d846cf650eb06ef1c2cb01c9d607806a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6073-671X 0000-0001-5204-1910 0000-0002-3433-3247 0000-0002-5215-1746 |
OpenAccessLink | https://doaj.org/article/fbd67911561f4a77b11347943c605428 |
PQID | 3237200494 |
PQPubID | 4930816 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fbd67911561f4a77b11347943c605428 proquest_journals_3237200494 crossref_primary_10_1017_dce_2025_10009 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Data-Centric Engineering (Online) |
PublicationYear | 2025 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Hensman (S2632673625100099_r30) 2018; 18 S2632673625100099_r62 S2632673625100099_r61 S2632673625100099_r60 S2632673625100099_r22 S2632673625100099_r66 S2632673625100099_r65 S2632673625100099_r21 S2632673625100099_r64 S2632673625100099_r20 S2632673625100099_r63 de G. Matthews (S2632673625100099_r17) 2017; 18 S2632673625100099_r26 S2632673625100099_r25 S2632673625100099_r69 S2632673625100099_r24 S2632673625100099_r68 S2632673625100099_r23 S2632673625100099_r29 S2632673625100099_r28 Bui (S2632673625100099_r8) 2017; 18 S2632673625100099_r73 S2632673625100099_r72 S2632673625100099_r71 S2632673625100099_r33 S2632673625100099_r76 S2632673625100099_r32 S2632673625100099_r31 S2632673625100099_r75 S2632673625100099_r74 S2632673625100099_r37 S2632673625100099_r36 S2632673625100099_r35 S2632673625100099_r34 S2632673625100099_r39 Rasmussen (S2632673625100099_r55) 2001 Neumann (S2632673625100099_r47) 2016 Teixeira (S2632673625100099_r48) 2013; 35 S2632673625100099_r44 S2632673625100099_r43 S2632673625100099_r42 S2632673625100099_r41 S2632673625100099_r46 S2632673625100099_r45 S2632673625100099_r9 Arcolin (S2632673625100099_r5) 2019; 18 S2632673625100099_r49 S2632673625100099_r6 Bishop (S2632673625100099_r7) 2006 S2632673625100099_r4 Villani (S2632673625100099_r70) 2009 S2632673625100099_r3 S2632673625100099_r2 Quiñonero-Candela (S2632673625100099_r54) 2005; 6 S2632673625100099_r1 Lázaro-Gredilla (S2632673625100099_r38) 2011 Gretton (S2632673625100099_r27) 2012; 13 S2632673625100099_r51 S2632673625100099_r50 Rasmussen (S2632673625100099_r56) 2006 S2632673625100099_r11 S2632673625100099_r10 S2632673625100099_r53 S2632673625100099_r52 S2632673625100099_r59 S2632673625100099_r15 S2632673625100099_r14 S2632673625100099_r58 S2632673625100099_r13 S2632673625100099_r57 S2632673625100099_r12 S2632673625100099_r19 S2632673625100099_r18 S2632673625100099_r16 Lloyd (S2632673625100099_r40) 2015; 28 Titsias (S2632673625100099_r67) 2009; 5 |
References_xml | – ident: S2632673625100099_r22 doi: 10.1016/j.patcog.2017.09.005 – ident: S2632673625100099_r9 doi: 10.1109/TNNLS.2022.3152255 – ident: S2632673625100099_r46 doi: 10.1016/j.jbiomech.2009.03.009 – ident: S2632673625100099_r57 doi: 10.3390/sym13040705 – ident: S2632673625100099_r2 doi: 10.1115/1.1392310 – ident: S2632673625100099_r49 doi: 10.1016/j.gaitpost.2018.08.025 – ident: S2632673625100099_r39 doi: 10.1109/TNNLS.2020.2979188 – ident: S2632673625100099_r72 doi: 10.1371/journal.pcbi.1011556 – ident: S2632673625100099_r4 doi: 10.1109/TBME.2021.3061998 – start-page: 294 year: 2001 ident: S2632673625100099_r55 article-title: Occam’s razor publication-title: Advances in Neural Information Processing Systems – ident: S2632673625100099_r32 doi: 10.1109/TNSRE.2019.2914095 – ident: S2632673625100099_r24 doi: 10.1186/s12984-020-00668-4 – ident: S2632673625100099_r14 doi: 10.1109/OJEMB.2022.3221306 – ident: S2632673625100099_r63 doi: 10.1016/j.clinbiomech.2017.04.001 – volume: 18 start-page: 1 year: 2019 ident: S2632673625100099_r5 article-title: Proposal of a new conceptual gait model for patients with Parkinson’s disease based on factor analysis publication-title: Biomedical Engineering Online – ident: S2632673625100099_r16 doi: 10.1177/1352458505070609 – ident: S2632673625100099_r76 doi: 10.1016/j.jbiomech.2013.09.032 – ident: S2632673625100099_r75 doi: 10.1007/s00221-006-0676-3 – ident: S2632673625100099_r23 doi: 10.1016/B978-0-444-52001-2.00011-X – volume: 28 year: 2015 ident: S2632673625100099_r40 article-title: Statistical model criticism using kernel two sample tests publication-title: Advances in Neural Information Processing Systems – volume: 5 start-page: 567 year: 2009 ident: S2632673625100099_r67 article-title: Variational learning of inducing variables in sparse Gaussian processes publication-title: Journal of Machine Learning Research – ident: S2632673625100099_r15 doi: 10.1016/j.gaitpost.2005.12.002 – ident: S2632673625100099_r69 doi: 10.1093/gerona/glp033 – ident: S2632673625100099_r18 – ident: S2632673625100099_r61 doi: 10.1016/j.medengphy.2010.03.007 – ident: S2632673625100099_r53 doi: 10.1038/s41746-021-00513-5 – ident: S2632673625100099_r52 doi: 10.3390/sym13040598 – ident: S2632673625100099_r12 doi: 10.1016/j.gaitpost.2016.09.026 – ident: S2632673625100099_r6 doi: 10.3390/app122412932 – ident: S2632673625100099_r66 doi: 10.1007/s10439-012-0685-2 – start-page: 841 volume-title: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11 year: 2011 ident: S2632673625100099_r38 – ident: S2632673625100099_r31 doi: 10.1186/1471-2105-14-252 – ident: S2632673625100099_r65 doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 18 start-page: 1 year: 2018 ident: S2632673625100099_r30 article-title: Variational fourier features for gaussian processes publication-title: Journal of Machine Learning Research – ident: S2632673625100099_r43 doi: 10.1016/S0268-0033(98)00089-8 – ident: S2632673625100099_r59 doi: 10.1371/journal.pone.0171764 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: S2632673625100099_r56 – volume: 6 start-page: 1939 year: 2005 ident: S2632673625100099_r54 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: Journal of Machine Learning Research – ident: S2632673625100099_r25 doi: 10.1109/HUMANOIDS.2014.7041428 – ident: S2632673625100099_r1 – ident: S2632673625100099_r42 – ident: S2632673625100099_r44 doi: 10.1016/j.humov.2016.03.010 – ident: S2632673625100099_r3 doi: 10.1007/s00415-020-09928-8 – ident: S2632673625100099_r62 doi: 10.1016/j.msard.2020.102053 – ident: S2632673625100099_r10 doi: 10.1109/ICARA.2015.7081147 – ident: S2632673625100099_r37 doi: 10.1212/WNL.33.11.1444 – ident: S2632673625100099_r29 doi: 10.1152/jappl.1995.78.1.349 – ident: S2632673625100099_r26 doi: 10.1016/j.medengphy.2015.02.003 – ident: S2632673625100099_r28 doi: 10.3390/s18010145 – volume: 18 start-page: 1 year: 2017 ident: S2632673625100099_r17 article-title: Gpflow: A Gaussian process library using tensorflow publication-title: Journal of Machine Learning Research – ident: S2632673625100099_r64 doi: 10.1007/s00415-019-09500-z – start-page: 93 volume-title: The Wasserstein Distances year: 2009 ident: S2632673625100099_r70 – ident: S2632673625100099_r68 doi: 10.1136/jnnp.2006.106914 – volume: 13 start-page: 723 year: 2012 ident: S2632673625100099_r27 article-title: A kernel two-sample test publication-title: Journal of Machine Learning Research – ident: S2632673625100099_r21 doi: 10.1109/SSP.2016.7551815 – ident: S2632673625100099_r51 doi: 10.1016/j.gaitpost.2017.08.023 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: S2632673625100099_r7 – volume: 35 start-page: 1472 year: 2013 ident: S2632673625100099_r48 article-title: Gait characteristics of multiple sclerosis patients in the absence of clinical disability publication-title: Disability and Rehabilitation doi: 10.3109/09638288.2012.738760 – volume: 18 start-page: 1 year: 2017 ident: S2632673625100099_r8 article-title: A unifying framework for Gaussian process pseudo-point approximations using power expectation propagation publication-title: Journal of Machine Learning Research – ident: S2632673625100099_r41 doi: 10.1093/gerona/gls255 – ident: S2632673625100099_r33 doi: 10.1016/j.gaitpost.2016.07.073 – ident: S2632673625100099_r19 doi: 10.3389/fnbot.2020.00058 – ident: S2632673625100099_r58 doi: 10.1016/j.apmr.2012.02.019 – ident: S2632673625100099_r20 doi: 10.1038/s41598-018-22676-0 – ident: S2632673625100099_r71 doi: 10.1109/TPAMI.2007.1167 – ident: S2632673625100099_r45 doi: 10.1371/journal.pone.0171346 – ident: S2632673625100099_r13 doi: 10.1023/A:1022627411411 – ident: S2632673625100099_r73 doi: 10.1109/TASE.2018.2841358 – volume-title: Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation year: 2016 ident: S2632673625100099_r47 – ident: S2632673625100099_r36 doi: 10.1016/j.gaitpost.2010.03.008 – ident: S2632673625100099_r11 doi: 10.1109/JBHI.2021.3092875 – ident: S2632673625100099_r50 doi: 10.1016/j.jbiomech.2017.01.005 – ident: S2632673625100099_r34 doi: 10.1038/s41598-019-38748-8 – ident: S2632673625100099_r74 doi: 10.1007/s00158-010-0496-8 – ident: S2632673625100099_r60 doi: 10.1016/j.renene.2019.09.145 – ident: S2632673625100099_r35 doi: 10.3390/s22113980 |
SSID | ssj0002793525 |
Score | 2.2787514 |
Snippet | Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
SubjectTerms | Angular velocity Ankle Disease Gait gait analysis Gaussian process Heterogeneity heteroscedastic hierarchical Kinematics Modelling Multiple sclerosis Pattern recognition Sensors Trends Variability Velocity |
Title | Hierarchical Gaussian processes for characterizing gait variability in multiple sclerosis |
URI | https://www.proquest.com/docview/3237200494 https://doaj.org/article/fbd67911561f4a77b11347943c605428 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJy9-i9UqexA8hSabZDd7VGktQj1ZqKdlvyIRicW0gh787c7uJqXgwYuXHEJglzeZnTfJzBuELqmRSQpEONKUQYJiJI94zlRkJPBTiI82Y653ePpAJ7Psfp7PN0Z9uZqwIA8cgBuWylAGHglxvswkYyrxzY9ZqoGIA3d2p2_M441k6sX_TuNO57NTaUzY0GgniklyVxbgqg83opAX6_91FvsAM95DOy0zxNdhR_toy9YHaLdlibj1weYQPU0q1zTsZ5i84ju5alwfJF6Ein_bYKChWK91mL8gNuFnWS3xB6TFQZX7E1c17koJcQPLwS6r5gjNxqPH20nUDkiINMlyHtlUSyoh4CtgPdpwS4tSWcM0kYzGkhkgF7oEDmZVTG2ZaKJVnGhuKBCDmMr0GPXqt9qeIMxVQWQJFi0yniliCwuolYyWhSWQg7E-uuoAE4uggyFCgRgTAK1w0AoPbR_dODzXTzn9an8DrCpaq4q_rNpHg84aonWqRqTEjdRxgjan_7HGGdp2uw7fUwaot3xf2XNgGEt14V8muE6_Rz-8gM32 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Gaussian+processes+for+characterizing+gait+variability+in+multiple+sclerosis&rft.jtitle=Data-Centric+Engineering+%28Online%29&rft.au=Stihi%2C+Alexandru&rft.au=Mazz%C3%A0%2C+Claudia&rft.au=Cross%2C+Elizabeth&rft.au=Rogers%2C+Timothy+James&rft.date=2025-01-01&rft.issn=2632-6736&rft.eissn=2632-6736&rft.volume=6&rft_id=info:doi/10.1017%2Fdce.2025.10009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_dce_2025_10009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-6736&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-6736&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-6736&client=summon |