Effects of Different Methods on the Comparison between Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany

Several methods exist for extracting plant phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite observations (Land Surface Phenology or LSP) with ground based phenological observations (Ground Phenology or...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 8; no. 9; p. 753
Main Authors Misra, Gourav, Buras, Allan, Menzel, Annette
Format Journal Article
LanguageEnglish
Published MDPI AG 01.09.2016
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs8090753

Cover

Loading…
Abstract Several methods exist for extracting plant phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite observations (Land Surface Phenology or LSP) with ground based phenological observations (Ground Phenology or GP). The classical pixel to point matching problem along with the temporal and spatial resolution of remote sensing data are some of the many issues encountered. In this study, MODIS-sensor’s Normalised Differenced Vegetation Index (NDVI) time series data were smoothed using two filtering techniques for comparison. Several start of season (SOS) methods established in the literature, namely thresholds of amplitude, derivatives and delayed moving average, were tested for determination of LSP-SOS for broadleaf forests at a site in southwestern Germany using 2001–2013 time series of NDVI data. The different LSP-SOS estimates when compared with species-rich GP dataset revealed that different LSP-SOS extraction methods agree better with specific phases of GP, and the choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods mirroring late SOS dates, i.e., 75% amplitude and 1st derivative, indicated a better match in means and trends, and high, significant correlations of up to 0.7 with leaf unfolding and greening of late understory and broadleaf tree species. GP-SOS of early understory leaf unfolding partly were significantly correlated with earlier detecting LSP-SOS, i.e., 20% amplitude and 3rd derivative. Early understory SOS were, however, more difficult to detect from NDVI due to the lack of a high resolution land cover information.
AbstractList Several methods exist for extracting plant phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite observations (Land Surface Phenology or LSP) with ground based phenological observations (Ground Phenology or GP). The classical pixel to point matching problem along with the temporal and spatial resolution of remote sensing data are some of the many issues encountered. In this study, MODIS-sensor’s Normalised Differenced Vegetation Index (NDVI) time series data were smoothed using two filtering techniques for comparison. Several start of season (SOS) methods established in the literature, namely thresholds of amplitude, derivatives and delayed moving average, were tested for determination of LSP-SOS for broadleaf forests at a site in southwestern Germany using 2001–2013 time series of NDVI data. The different LSP-SOS estimates when compared with species-rich GP dataset revealed that different LSP-SOS extraction methods agree better with specific phases of GP, and the choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods mirroring late SOS dates, i.e., 75% amplitude and 1st derivative, indicated a better match in means and trends, and high, significant correlations of up to 0.7 with leaf unfolding and greening of late understory and broadleaf tree species. GP-SOS of early understory leaf unfolding partly were significantly correlated with earlier detecting LSP-SOS, i.e., 20% amplitude and 3rd derivative. Early understory SOS were, however, more difficult to detect from NDVI due to the lack of a high resolution land cover information.
Author Menzel, Annette
Buras, Allan
Misra, Gourav
Author_xml – sequence: 1
  givenname: Gourav
  surname: Misra
  fullname: Misra, Gourav
– sequence: 2
  givenname: Allan
  surname: Buras
  fullname: Buras, Allan
– sequence: 3
  givenname: Annette
  surname: Menzel
  fullname: Menzel, Annette
BookMark eNptkc1qGzEQx5eSQtMkh76Brj1so69daY_BTd2ASwtu6HGRRqNYYS0FSab4llco9An7JF0nIZSSufw_mPld5m1zFFPEpnnH6AchBnqei6YDVZ141Rxzqngr-cCP_vFvmrNSbuk8QrCByuPm16X3CLWQ5MnHMPuMsZIvWDfJzWUkdYNkkbZ3JocyR4v1J2IkKxMdWe-yN4Dk4Jc57Wb5tsGYpnSz_3P_--KJc8gBzEQWpiBZ153bE5_TlqzTrm7aH1gq5kiWmLcm7k-b195MBc-e9KS5_nT5ffG5XX1dXi0uVi1w2YkWe62opWipY5oxyTh0VgnngYKzTPROCVBaDtz24CUCOKe17juLlvcaxElz9ch1ydyOdzlsTd6PyYTxoUj5ZjS5Bphw9NApBR1nqvfScm87waCXQBXTg-z6mfX-kQU5lZLRP_MYHQ-vGZ9fM--e_7cLoZoaUqzZhOmFi78w-pT4
CitedBy_id crossref_primary_10_3390_rs9060526
crossref_primary_10_1016_j_jag_2021_102670
crossref_primary_10_5194_bg_17_1655_2020
crossref_primary_10_1016_j_scitotenv_2024_176453
crossref_primary_10_3389_fpls_2021_689220
crossref_primary_10_3390_rs14061331
crossref_primary_10_1038_s41598_023_41048_x
crossref_primary_10_1016_j_jag_2022_103148
crossref_primary_10_3390_su10093033
crossref_primary_10_1016_j_ecoinf_2024_102659
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_3390_rs15143616
crossref_primary_10_1016_j_scitotenv_2017_07_237
crossref_primary_10_3390_rs13193982
crossref_primary_10_3390_plants13040520
crossref_primary_10_1016_j_ecolind_2020_107055
crossref_primary_10_1016_j_ecolind_2023_111328
crossref_primary_10_1016_j_rse_2025_114656
crossref_primary_10_1016_j_dendro_2020_125780
crossref_primary_10_1016_j_scitotenv_2024_177938
crossref_primary_10_3390_rs15225366
crossref_primary_10_3390_rs10111757
crossref_primary_10_1016_j_rse_2018_09_027
crossref_primary_10_1016_j_agrformet_2020_108215
crossref_primary_10_1016_j_jag_2023_103359
crossref_primary_10_3390_rs12213570
crossref_primary_10_1007_s00484_021_02110_3
crossref_primary_10_3390_drones7060347
crossref_primary_10_3390_f12050574
crossref_primary_10_1093_forestry_cpad039
crossref_primary_10_3390_rs12172760
crossref_primary_10_1038_s41558_019_0454_4
crossref_primary_10_1016_j_agrformet_2021_108383
crossref_primary_10_1007_s00484_021_02173_2
crossref_primary_10_1080_01431161_2019_1706780
crossref_primary_10_1016_j_agrformet_2017_05_020
crossref_primary_10_1016_j_rse_2020_111698
crossref_primary_10_1002_eco_2663
crossref_primary_10_1007_s11629_020_6534_0
crossref_primary_10_1016_j_rsma_2025_104133
Cites_doi 10.1016/j.rse.2012.04.001
10.3390/rs6010257
10.3390/rs4061781
10.1016/j.rse.2005.10.021
10.1111/j.1365-2486.2006.01193.x
10.1038/17709
10.1007/s00484-001-0109-8
10.1002/2015GL063586
10.1111/j.1365-2486.2009.01910.x
10.1016/j.rse.2014.03.017
10.1016/j.rse.2007.01.004
10.1111/geb.12210
10.1016/j.cageo.2004.05.006
10.1016/j.rse.2008.09.003
10.3390/rs5126159
10.1016/j.rse.2009.07.020
10.1098/rstb.2010.0102
10.1109/JSTARS.2010.2075916
10.1007/s00484-006-0080-5
10.1016/j.rse.2007.12.004
10.1007/978-94-007-6925-0
10.2307/3235884
10.1111/j.1365-2486.2011.02521.x
10.1016/j.rse.2005.10.022
10.3390/s8032017
10.1016/j.rse.2006.08.002
10.3390/rs6064660
10.1038/386698a0
10.1111/j.1469-8137.2004.01059.x
10.1038/srep08833
10.1117/1.JRS.7.073485
10.1002/joc.819
10.1016/j.ecolind.2012.11.010
10.1111/geb.12289
10.1016/j.agrformet.2009.09.010
10.1080/01431169008955174
10.1111/j.1438-8677.2012.00577.x
10.1016/j.ecolind.2012.12.026
10.1111/j.1365-2486.2006.01164.x
10.1111/gcb.12950
10.1016/j.rse.2005.03.008
10.1016/S0034-4257(02)00135-9
10.1111/gcb.12360
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs8090753
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_fc577c52176f4b2fb531c64c07189456
10_3390_rs8090753
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-c2453-e6870b0eb0d1811412c5b73dfc0cdb136d73c78492b6cf4eccdd88865beb268c3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:23:20 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 03:57:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2453-e6870b0eb0d1811412c5b73dfc0cdb136d73c78492b6cf4eccdd88865beb268c3
OpenAccessLink https://doaj.org/article/fc577c52176f4b2fb531c64c07189456
ParticipantIDs doaj_primary_oai_doaj_org_article_fc577c52176f4b2fb531c64c07189456
crossref_primary_10_3390_rs8090753
crossref_citationtrail_10_3390_rs8090753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fisher (ref_11) 2006; 100
Elmore (ref_29) 2012; 18
Hamunyela (ref_13) 2013; 5
Studer (ref_12) 2007; 51
Clerici (ref_28) 2012; 4
ref_33
Richardson (ref_43) 2006; 12
ref_10
Han (ref_21) 2013; 7
Nagai (ref_48) 2010; 150
Wang (ref_39) 2015; 24
Schwartz (ref_26) 2002; 22
Hird (ref_44) 2009; 113
Atkinson (ref_30) 2012; 123
(ref_34) 2008; 8
Zhang (ref_37) 2003; 84
Badeck (ref_4) 2004; 162
White (ref_8) 2009; 15
Tucker (ref_20) 2001; 45
Beck (ref_7) 2006; 100
Ivits (ref_9) 2013; 27
Atzberger (ref_41) 2013; 6
Reed (ref_6) 1994; 5
Gonsamo (ref_32) 2013; 29
ref_25
Sakamoto (ref_31) 2005; 96
Soudani (ref_42) 2008; 112
Fisher (ref_15) 2007; 109
ref_23
ref_45
ref_22
Richardson (ref_36) 2010; 365
Menzel (ref_1) 1999; 397
Lloyd (ref_5) 1990; 11
Doktor (ref_18) 2009; 113
ref_3
Menzel (ref_2) 2006; 12
Bradley (ref_35) 2007; 106
ref_27
White (ref_16) 2014; 148
Xu (ref_40) 2014; 6
Myneni (ref_19) 1997; 386
Dash (ref_14) 2015; 42
Tan (ref_38) 2011; 4
Cornelius (ref_46) 2013; 15
Eklundh (ref_17) 2004; 30
Laube (ref_47) 2014; 20
Fu (ref_24) 2014; 23
References_xml – volume: 123
  start-page: 400
  year: 2012
  ident: ref_30
  article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.001
– volume: 6
  start-page: 257
  year: 2013
  ident: ref_41
  article-title: Phenological metrics derived over the european continent from NDVI3g data and MODIS Time series
  publication-title: Remote Sens.
  doi: 10.3390/rs6010257
– volume: 4
  start-page: 1781
  year: 2012
  ident: ref_28
  article-title: Exploring the use of MODIS NDVI-Based phenology indicators for classifying forest general habitat categories
  publication-title: Remote Sens.
  doi: 10.3390/rs4061781
– volume: 100
  start-page: 321
  year: 2006
  ident: ref_7
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.021
– volume: 12
  start-page: 1969
  year: 2006
  ident: ref_2
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01193.x
– volume: 397
  start-page: 659
  year: 1999
  ident: ref_1
  article-title: Growing season extended in Europe
  publication-title: Nature
  doi: 10.1038/17709
– volume: 45
  start-page: 184
  year: 2001
  ident: ref_20
  article-title: Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-001-0109-8
– volume: 42
  start-page: 2253
  year: 2015
  ident: ref_14
  article-title: Intercomparison of satellite sensor land surface phenology and ground phenology in Europe: Inter-annual comparison and modelling
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL063586
– volume: 15
  start-page: 2335
  year: 2009
  ident: ref_8
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01910.x
– volume: 148
  start-page: 97
  year: 2014
  ident: ref_16
  article-title: Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.017
– volume: 109
  start-page: 261
  year: 2007
  ident: ref_15
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.01.004
– volume: 23
  start-page: 1255
  year: 2014
  ident: ref_24
  article-title: Recent spring phenology shifts in western Central Europe based on multiscale observations: Multiscale observation of spring phenology
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12210
– volume: 30
  start-page: 833
  year: 2004
  ident: ref_17
  article-title: TIMESAT—A program for analyzing time-series of satellite sensor data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.05.006
– volume: 113
  start-page: 248
  year: 2009
  ident: ref_44
  article-title: Noise reduction of NDVI time series: An empirical comparison of selected techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.003
– volume: 5
  start-page: 6159
  year: 2013
  ident: ref_13
  article-title: Trends in spring phenology of Western European deciduous forests
  publication-title: Remote Sens.
  doi: 10.3390/rs5126159
– ident: ref_23
– volume: 113
  start-page: 2618
  year: 2009
  ident: ref_18
  article-title: Influence of heterogeneous landscapes on computed green-up dates based on daily AVHRR NDVI observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.07.020
– volume: 365
  start-page: 3227
  year: 2010
  ident: ref_36
  article-title: Influence of spring and autumn phenological transitions on forest ecosystem productivity
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2010.0102
– volume: 4
  start-page: 361
  year: 2011
  ident: ref_38
  article-title: An enhanced TIMESAT Algorithm for estimating vegetation phenology metrics from MODIS data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2075916
– volume: 51
  start-page: 405
  year: 2007
  ident: ref_12
  article-title: A comparative study of satellite and ground-based phenology
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-006-0080-5
– volume: 112
  start-page: 2643
  year: 2008
  ident: ref_42
  article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.004
– ident: ref_3
  doi: 10.1007/978-94-007-6925-0
– volume: 5
  start-page: 703
  year: 1994
  ident: ref_6
  article-title: Measuring phenological variability from satellite imagery
  publication-title: J. Veg. Sci.
  doi: 10.2307/3235884
– volume: 18
  start-page: 656
  year: 2012
  ident: ref_29
  article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02521.x
– volume: 100
  start-page: 265
  year: 2006
  ident: ref_11
  article-title: Green leaf phenology at Landsat resolution: Scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.022
– volume: 8
  start-page: 2017
  year: 2008
  ident: ref_34
  article-title: Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with MODIS multitemporal data
  publication-title: Sensors
  doi: 10.3390/s8032017
– volume: 106
  start-page: 137
  year: 2007
  ident: ref_35
  article-title: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.08.002
– volume: 6
  start-page: 4660
  year: 2014
  ident: ref_40
  article-title: Evaluating remotely sensed phenological metrics in a dynamic ecosystem model
  publication-title: Remote Sens.
  doi: 10.3390/rs6064660
– volume: 386
  start-page: 698
  year: 1997
  ident: ref_19
  article-title: Increased plant growth in the northern high latitudes from 1981 to 1991
  publication-title: Nature
  doi: 10.1038/386698a0
– ident: ref_25
– ident: ref_33
– ident: ref_27
– volume: 162
  start-page: 295
  year: 2004
  ident: ref_4
  article-title: Responses of spring phenology to climate change
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2004.01059.x
– ident: ref_45
  doi: 10.1038/srep08833
– volume: 7
  start-page: 073485
  year: 2013
  ident: ref_21
  article-title: Remote sensing-based quantification of spatial variation in canopy phenology of four dominant tree species in Europe
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.7.073485
– volume: 22
  start-page: 1793
  year: 2002
  ident: ref_26
  article-title: Assessing satellite-derived start-of-season measures in the conterminous USA
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.819
– volume: 27
  start-page: 17
  year: 2013
  ident: ref_9
  article-title: Ecosystem functional units characterized by satellite observed phenology and productivity gradients: A case study for Europe
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2012.11.010
– volume: 24
  start-page: 621
  year: 2015
  ident: ref_39
  article-title: Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades?
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12289
– volume: 150
  start-page: 152
  year: 2010
  ident: ref_48
  article-title: Field experiments to test the use of the normalized-difference vegetation index for phenology detection
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.09.010
– volume: 11
  start-page: 2269
  year: 1990
  ident: ref_5
  article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955174
– volume: 15
  start-page: 57
  year: 2013
  ident: ref_46
  article-title: Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2012.00577.x
– ident: ref_22
– volume: 29
  start-page: 203
  year: 2013
  ident: ref_32
  article-title: Deriving land surface phenology indicators from CO2 eddy covariance measurements
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2012.12.026
– volume: 12
  start-page: 1174
  year: 2006
  ident: ref_43
  article-title: Phenology of a northern hardwood forest canopy
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01164.x
– ident: ref_10
  doi: 10.1111/gcb.12950
– volume: 96
  start-page: 366
  year: 2005
  ident: ref_31
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.008
– volume: 84
  start-page: 471
  year: 2003
  ident: ref_37
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 20
  start-page: 170
  year: 2014
  ident: ref_47
  article-title: Chilling outweighs photoperiod in preventing precocious spring development
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12360
SSID ssj0000331904
Score 2.3162448
Snippet Several methods exist for extracting plant phenological information from time series of satellite data. However, there have been only a few successful attempts...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 753
SubjectTerms broadleaf forests
leaf unfolding
match in LSP and GP
phenology
start of season (SOS)
understory
Title Effects of Different Methods on the Comparison between Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany
URI https://doaj.org/article/fc577c52176f4b2fb531c64c07189456
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHvQiPvFZFvHgJXSTfSQ51tZapBVBxd5CdjaLB4lS20Nv_gXBX-gvcTablgqCF08Jy7KEncl8M8vs9xFyloS5SXMeBQaz1UCAlkGuIQzAMA3CRKmseLaHN6r_IK5HcrQk9eV6wjw9sN-4lgUZx4AgEysrdGQ1Og0oAQiNSYro76IvYt5SMVXFYI6uxYSnEuJY17fGbwnDQlDyHwC0xNNfAUpvk2zUmSBt-y_YIitFuU3WalHyp9kO-fDMwm_0xdJurWMyocNK8hkHS4q5G-0sdARp3XJFB3lp6N10bHMoqHt350v4uH0q_CH61_tnu15nHvpoB9GMuqbCGXU3TmglrRc8eh4FeuXidznbJQ-9y_tOP6gVFAKIhORBofB31KzQzCCShyKMQOqYGwsMjA65MjGHOBFppBVYgeY0BktiJTUW3CoBvkca5UtZ7BOKeQzTlvHUJkqYxOSWg7AhGBljkhiLA3I-39YManpxp3LxnGGZ4SyQLSxwQE4XU189p8Zvky6cbRYTHA12NYDOkdXOkf3lHIf_scgRWccsSfnGsmPSmIynxQlmIhPdJKvt7nBw16yc7xvPT9-8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Different+Methods+on+the+Comparison+between+Land+Surface+and+Ground+Phenology%E2%80%94A+Methodological+Case+Study+from+South-Western+Germany&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gourav+Misra&rft.au=Allan+Buras&rft.au=Annette+Menzel&rft.date=2016-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=8&rft.issue=9&rft.spage=753&rft_id=info:doi/10.3390%2Frs8090753&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fc577c52176f4b2fb531c64c07189456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon