MP: motion program synthesis with machine learning interpretability and knowledge graph analogy

The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development ti...

Full description

Saved in:
Bibliographic Details
Published inAutomated software engineering Vol. 32; no. 1; p. 21
Main Author Cai, Cheng-Hao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development time for developers. To facilitate development on physics-based engines, this paper proposes MP that is a motion program synthesis approach based on machine learning and analogical reasoning. MP follows the paradigm of test-driven development, where programs are generated to fit test cases of motions subject to multiple environmental factors such as gravity and airflows. To reduce the search space of code generation, regression models are used to find variables that cause significant influences to motions, while analogical reasoning on knowledge graphs is used to find operators that work for the found variables. Besides, constraint solving is used to probabilistically estimate the values of constants in motion programs. Experimental results have demonstrated that MP is efficient in various motion program generation tasks, with random forest regressors achieving low data and time requirements.
AbstractList The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development time for developers. To facilitate development on physics-based engines, this paper proposes MP that is a motion program synthesis approach based on machine learning and analogical reasoning. MP follows the paradigm of test-driven development, where programs are generated to fit test cases of motions subject to multiple environmental factors such as gravity and airflows. To reduce the search space of code generation, regression models are used to find variables that cause significant influences to motions, while analogical reasoning on knowledge graphs is used to find operators that work for the found variables. Besides, constraint solving is used to probabilistically estimate the values of constants in motion programs. Experimental results have demonstrated that MP is efficient in various motion program generation tasks, with random forest regressors achieving low data and time requirements.
ArticleNumber 21
Author Cai, Cheng-Hao
Author_xml – sequence: 1
  givenname: Cheng-Hao
  surname: Cai
  fullname: Cai, Cheng-Hao
  email: cheng-hao.cai@monash.edu
  organization: Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Department of Data Science and Artificial Intelligence, Monash University
BookMark eNp9kM1OwzAQhC1UJNrCC3CyxDmwjuPE5oYq_qQiOMDZcpJt4pI6xU5V5e1xKRI3DquVRvONdmdGJq53SMglg2sGUNwEBoKJBNI4kCmRyBMyZaLgSSG4mJApqFQmUjE4I7MQ1gCgcqWmRL-83dJNP9je0a3vG282NIxuaDHYQPd2aOnGVK11SDs03lnXUOsG9FuPgyltZ4eRGlfTT9fvO6wbpDFj20bNdH0znpPTlekCXvzuOfl4uH9fPCXL18fnxd0yqdIsGxKUVZbXUrAy55ivcp4ZVquCAxZ1ZSCtgYtcRI0XnOWIUKpUYZGqQpoyZcDn5OqYG5_42mEY9Lrf-XhD0BGQjEsuDq706Kp8H4LHld56uzF-1Az0oUh9LFLHIvVPkVpGiB-hEM2uQf8X_Q_1DZIJeIQ
Cites_doi 10.1007/S10009-007-0063-9
10.1109/TSE.2011.104
10.1103/PhysRevE.103.043307
10.1007/S10515-019-00264-4
10.1145/3528223.3530157
10.48550/ARXIV.2308.12950
10.1016/J.KNOSYS.2022.109597
10.1109/ICDAR.1995.598994
10.1126/sciadv.aay2631
10.1007/3-540-45657-0_29
10.1007/978-3-319-33600-8_25
10.1007/978-3-319-71237-6_1
10.5555/1953048.2078195
10.1016/J.ESWA.2015.09.029
10.1007/978-3-642-54516-0_7
10.1017/CBO9781139195881
10.1007/S10462-023-10622-0
10.1145/3411764.3445646
10.1016/J.ESWA.2021.114806
10.1145/3313831.3376442
10.1145/2594291.2594297
10.1007/978-3-319-98938-9_20
10.48550/ARXIV.2203.07814
10.1145/3297280.3297282
10.1198/tast.2009.08199
10.1145/3591366.3591376
10.1007/S100090050046
10.3390/E25060888
10.1145/3592395
10.1109/32.588521
10.1016/J.ESWA.2019.112948
10.1145/3536430
10.1016/J.RESS.2015.05.018
10.1038/323533a0
10.1017/CBO9780511624162
10.1145/1477926.1477936
10.48550/ARXIV.2305.01582
10.1109/CVPR46437.2021.00650
10.1109/TSMCC.2009.2033566
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. May 2025
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s10515-025-00495-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7535
ExternalDocumentID 10_1007_s10515_025_00495_8
GrantInformation_xml – fundername: Suzhou Industrial Park
  grantid: MSRI8001023
– fundername: Monash University
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PHGZT
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
JQ2
ID FETCH-LOGICAL-c244t-e8c46d851b63e6f634a1d9730e7dca02d03565a1d37316ee0b929e72978ab2103
IEDL.DBID U2A
ISSN 0928-8910
IngestDate Fri Jul 25 10:51:59 EDT 2025
Tue Jul 01 05:12:55 EDT 2025
Sun Apr 06 01:11:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interpretable machine learning
Analogical reasoning
Motion programming
Program synthesis
Knowledge graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-e8c46d851b63e6f634a1d9730e7dca02d03565a1d37316ee0b929e72978ab2103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10515-025-00495-8
PQID 3168138350
PQPubID 2043871
ParticipantIDs proquest_journals_3168138350
crossref_primary_10_1007_s10515_025_00495_8
springer_journals_10_1007_s10515_025_00495_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Automated software engineering
PublicationTitleAbbrev Autom Softw Eng
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Cimatti (495_CR9) 2000; 2
R Zhang (495_CR47) 2016
H Bride (495_CR3) 2021; 176
495_CR26
X Chen (495_CR10) 2020; 141
495_CR46
W Li (495_CR27) 2023; 42
C Le Goues (495_CR28) 2012; 38
N Makke (495_CR29) 2024; 57
T Shen (495_CR40) 2022; 255
495_CR30
C Cai (495_CR13) 2022; 34
P Li (495_CR24) 2022; 41
C Cai (495_CR12) 2019; 26
M Leuschel (495_CR25) 2008; 10
495_CR34
495_CR11
GJ Holzmann (495_CR20) 1997; 23
495_CR32
J Abrial (495_CR1) 1996
495_CR31
PG Espejo (495_CR15) 2010; 40
S-M Udrescu (495_CR41) 2020; 6
F Pedregosa (495_CR33) 2011; 12
495_CR8
S Jain (495_CR22) 2009; 28
495_CR7
J Abrial (495_CR2) 2010
CM Bishop (495_CR5) 2007
495_CR6
495_CR16
495_CR38
M Wong (495_CR44) 2023; 25
495_CR37
495_CR14
495_CR36
495_CR19
495_CR18
495_CR39
495_CR23
T Berners-Lee (495_CR4) 2023; 52
495_CR21
DE Rumelhart (495_CR35) 1986; 323
495_CR43
M Göçken (495_CR17) 2016; 44
P Wei (495_CR45) 2015; 142
S-M Udrescu (495_CR42) 2021; 103
References_xml – volume: 10
  start-page: 185
  issue: 2
  year: 2008
  ident: 495_CR25
  publication-title: Int. J. Softw. Tools Technol. Transf.
  doi: 10.1007/S10009-007-0063-9
– volume: 38
  start-page: 54
  issue: 1
  year: 2012
  ident: 495_CR28
  publication-title: IEEE Transact. Softw. Eng.
  doi: 10.1109/TSE.2011.104
– volume: 103
  year: 2021
  ident: 495_CR42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.103.043307
– volume: 26
  start-page: 653
  issue: 3
  year: 2019
  ident: 495_CR12
  publication-title: Autom. Softw. Eng.
  doi: 10.1007/S10515-019-00264-4
– volume: 41
  start-page: 138
  issue: 4
  year: 2022
  ident: 495_CR24
  publication-title: ACM Transact. Graph.
  doi: 10.1145/3528223.3530157
– volume-title: Pattern Recognit. Mach. Learn.
  year: 2007
  ident: 495_CR5
– ident: 495_CR34
  doi: 10.48550/ARXIV.2308.12950
– ident: 495_CR21
– volume: 255
  year: 2022
  ident: 495_CR40
  publication-title: Knowl-Based Syst.
  doi: 10.1016/J.KNOSYS.2022.109597
– ident: 495_CR19
  doi: 10.1109/ICDAR.1995.598994
– volume: 6
  start-page: 2631
  issue: 16
  year: 2020
  ident: 495_CR41
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay2631
– ident: 495_CR7
– ident: 495_CR8
  doi: 10.1007/3-540-45657-0_29
– ident: 495_CR37
  doi: 10.1007/978-3-319-33600-8_25
– ident: 495_CR16
  doi: 10.1007/978-3-319-71237-6_1
– ident: 495_CR32
– volume: 12
  start-page: 2825
  year: 2011
  ident: 495_CR33
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/1953048.2078195
– volume: 44
  start-page: 320
  year: 2016
  ident: 495_CR17
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/J.ESWA.2015.09.029
– ident: 495_CR36
  doi: 10.1007/978-3-642-54516-0_7
– volume-title: Modeling in Event-B - System and Software Engineering
  year: 2010
  ident: 495_CR2
  doi: 10.1017/CBO9781139195881
– volume: 57
  start-page: 2
  issue: 1
  year: 2024
  ident: 495_CR29
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/S10462-023-10622-0
– ident: 495_CR46
  doi: 10.1145/3411764.3445646
– volume: 176
  year: 2021
  ident: 495_CR3
  publication-title: Expert Syst. Appl.
  doi: 10.1016/J.ESWA.2021.114806
– ident: 495_CR14
  doi: 10.1145/3313831.3376442
– ident: 495_CR31
  doi: 10.1145/2594291.2594297
– ident: 495_CR38
  doi: 10.1007/978-3-319-98938-9_20
– ident: 495_CR26
  doi: 10.48550/ARXIV.2203.07814
– ident: 495_CR39
– ident: 495_CR30
  doi: 10.1145/3297280.3297282
– ident: 495_CR18
  doi: 10.1198/tast.2009.08199
– volume: 52
  start-page: 91
  year: 2023
  ident: 495_CR4
  publication-title: Link. World’s Info. Essays Tim Berners-Lee’s Invent. World Wide Web
  doi: 10.1145/3591366.3591376
– volume: 2
  start-page: 410
  issue: 4
  year: 2000
  ident: 495_CR9
  publication-title: Int. J. Softw. Tools Technol. Transf.
  doi: 10.1007/S100090050046
– ident: 495_CR43
– volume: 25
  start-page: 888
  issue: 6
  year: 2023
  ident: 495_CR44
  publication-title: Entropy
  doi: 10.3390/E25060888
– volume: 42
  start-page: 94
  issue: 4
  year: 2023
  ident: 495_CR27
  publication-title: ACM Transact. Graph.
  doi: 10.1145/3592395
– volume: 23
  start-page: 279
  issue: 5
  year: 1997
  ident: 495_CR20
  publication-title: IEEE Transact. Softw. Eng.
  doi: 10.1109/32.588521
– volume: 141
  year: 2020
  ident: 495_CR10
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/J.ESWA.2019.112948
– volume: 34
  start-page: 1
  issue: 2
  year: 2022
  ident: 495_CR13
  publication-title: Form. Asp. Comput.
  doi: 10.1145/3536430
– ident: 495_CR6
– volume: 142
  start-page: 399
  year: 2015
  ident: 495_CR45
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/J.RESS.2015.05.018
– volume: 323
  start-page: 533
  year: 1986
  ident: 495_CR35
  publication-title: Nature
  doi: 10.1038/323533a0
– volume-title: The B-Book - Assigning Programs to Meanings
  year: 1996
  ident: 495_CR1
  doi: 10.1017/CBO9780511624162
– volume: 28
  start-page: 10
  issue: 1
  year: 2009
  ident: 495_CR22
  publication-title: ACM Transact. Graph.
  doi: 10.1145/1477926.1477936
– ident: 495_CR11
  doi: 10.48550/ARXIV.2305.01582
– ident: 495_CR23
  doi: 10.1109/CVPR46437.2021.00650
– start-page: 1781
  volume-title: Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Recognizing and Representing Events
  year: 2016
  ident: 495_CR47
– volume: 40
  start-page: 121
  issue: 2
  year: 2010
  ident: 495_CR15
  publication-title: IEEE Transact. Syst. Man Cybern. Part C
  doi: 10.1109/TSMCC.2009.2033566
SSID ssj0009699
Score 2.367542
Snippet The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 21
SubjectTerms Artificial Intelligence
Cognition & reasoning
Computer Science
Engines
Knowledge representation
Machine learning
Reasoning
Regression models
Software Engineering/Programming and Operating Systems
Synthesis
User experience
Virtual reality
Title MP: motion program synthesis with machine learning interpretability and knowledge graph analogy
URI https://link.springer.com/article/10.1007/s10515-025-00495-8
https://www.proquest.com/docview/3168138350
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2sJTmw3HZ2qqlArVioFKZrDh2UQdSRMrQf8_ZcRpAMDBFciIPZzvvnX1-D-BKqZglXppQvyM5DZXPqFSppDj-gQ41gpTV2Z5M2XgW3s-jubsUlpfV7uWRpP1Tf7nshthLjf2qobUR5TVoRCZ3x1k883uV1C7rFgp7Pqcc0dBdlfm9j-9wVHHMH8eiFm1GB7DnaCLpFeN6CDs6O4L90oKBuBV5DGLyeEsKJx7iSq1IvsmQ1eXLnJhNVvJqyyU1cf4QL2S5rTO0hbEbkmSKbPfWiJWwxjazq7M5gdlo-DQYU-eZQFME6jXVPA2ZQholWaDZggVh0lFdXMY6Vmni-coLkMJhW2Asq7T2JPIjjQw75onE9C84hXq2yvQZkJh78QKznUByo9OnOEI54hxniYoXXsyacF2GTrwV0hiiEkE2gRYYaGEDLXgTWmV0hVsmuTCuWR3MkSOvCTdlxKvXf_d2_r_PL2DXt4NuChVbUF-_f-hLJBNr2YZGb9TvT83z7vlh2IbagA3adkZ9ArVww40
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1Eo4IENLKX5sF02VFEVaCuGVupmxbGLOhAQKUP_PWfHaUQFA6sTeTj79N7Z5_cArrXmLA2ylIZtJWisQ0aVzhTF9Y9MbBCknM72cMT6k_hpmky9TI59C7N2f2-fuCHiUmu6aslsQsUmbMVYKdv2vS7r1gK7rFPq6oWCCsRA_0Dm9zl-glDNLNcuQx3G9PZh15NDcl-u5gFsmPwQ9irjBeLz8Ajk8OWOlP47xDdYkWKZI5cr5gWxR6vkzTVJGuJdIV7JfNVd6NphlyTNNVmdqBEnXI1j9ixneQyT3sO426feKYFmCM8LakQWM43kSbHIsBmL4rStO5i8hussDUIdREjccCyyRlXGBApZkUFezUWqsOiLTqCRv-fmFAgXAZ9hjRMpYdX5tEAAR3QTLNV8FnDWhJsqdPKjFMSQtfSxDbTEQEsXaCma0KqiK31yFNJ6ZbWxMk6CJtxWEa8__z3b2f9-v4Lt_ng4kIPH0fM57IRuA9hWxRY0Fp9f5gLpxEJdun30DXwKvnI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAL34hCAQ9sYDXNh-OyoUJVPlp1oFI3K44d1IFQkTD033N2kqYgGFjtyMM51ntn370HcKlUyCInjqjbkZz6ymVUqlhS3H9P-xpByupsD0dsMPEfp8F0pYvfVrtXT5JFT4NRaUrz9lwl7ZXGN8RhaqxYDcUNKF-HDcxU7ENtj_Vq2V3WLdT2XE45ImPZNvP7Gt-hqeabP55ILfL0d2G7pIzkttjjPVjT6T7sVHYMpDydByCG4xtSuPKQsuyKZIsUGV42y4i5cCVvtnRSk9Ir4pXMljWHtkh2QaJUkeU9G7Fy1jhmbngWhzDp37_0BrT0T6AxgnZONY99ppBSSeZpljDPjzqqi0dahyqOHFc5HtI5HPOMfZXWjkSupJFthzySmAp6R9BI31N9DCTkTphg5uNJbjT7FEdYR8zjLFJh4oSsCVdV6MS8kMkQtSCyCbTAQAsbaMGb0KqiK8ojkwnjoNXBfDlwmnBdRbye_nu1k_99fgGb47u-eH4YPZ3Clmv339QvtqCRf3zqM-QYuTy3v9EXwCXGuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MP%3A+motion+program+synthesis+with+machine+learning+interpretability+and+knowledge+graph+analogy&rft.jtitle=Automated+software+engineering&rft.au=Cai%2C+Cheng-Hao&rft.date=2025-05-01&rft.issn=0928-8910&rft.eissn=1573-7535&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1007%2Fs10515-025-00495-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10515_025_00495_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-8910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-8910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-8910&client=summon