MP: motion program synthesis with machine learning interpretability and knowledge graph analogy
The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development ti...
Saved in:
Published in | Automated software engineering Vol. 32; no. 1; p. 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development time for developers. To facilitate development on physics-based engines, this paper proposes MP that is a motion program synthesis approach based on machine learning and analogical reasoning. MP follows the paradigm of test-driven development, where programs are generated to fit test cases of motions subject to multiple environmental factors such as gravity and airflows. To reduce the search space of code generation, regression models are used to find variables that cause significant influences to motions, while analogical reasoning on knowledge graphs is used to find operators that work for the found variables. Besides, constraint solving is used to probabilistically estimate the values of constants in motion programs. Experimental results have demonstrated that MP is efficient in various motion program generation tasks, with random forest regressors achieving low data and time requirements. |
---|---|
AbstractList | The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development time for developers. To facilitate development on physics-based engines, this paper proposes MP that is a motion program synthesis approach based on machine learning and analogical reasoning. MP follows the paradigm of test-driven development, where programs are generated to fit test cases of motions subject to multiple environmental factors such as gravity and airflows. To reduce the search space of code generation, regression models are used to find variables that cause significant influences to motions, while analogical reasoning on knowledge graphs is used to find operators that work for the found variables. Besides, constraint solving is used to probabilistically estimate the values of constants in motion programs. Experimental results have demonstrated that MP is efficient in various motion program generation tasks, with random forest regressors achieving low data and time requirements. |
ArticleNumber | 21 |
Author | Cai, Cheng-Hao |
Author_xml | – sequence: 1 givenname: Cheng-Hao surname: Cai fullname: Cai, Cheng-Hao email: cheng-hao.cai@monash.edu organization: Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Department of Data Science and Artificial Intelligence, Monash University |
BookMark | eNp9kM1OwzAQhC1UJNrCC3CyxDmwjuPE5oYq_qQiOMDZcpJt4pI6xU5V5e1xKRI3DquVRvONdmdGJq53SMglg2sGUNwEBoKJBNI4kCmRyBMyZaLgSSG4mJApqFQmUjE4I7MQ1gCgcqWmRL-83dJNP9je0a3vG282NIxuaDHYQPd2aOnGVK11SDs03lnXUOsG9FuPgyltZ4eRGlfTT9fvO6wbpDFj20bNdH0znpPTlekCXvzuOfl4uH9fPCXL18fnxd0yqdIsGxKUVZbXUrAy55ivcp4ZVquCAxZ1ZSCtgYtcRI0XnOWIUKpUYZGqQpoyZcDn5OqYG5_42mEY9Lrf-XhD0BGQjEsuDq706Kp8H4LHld56uzF-1Az0oUh9LFLHIvVPkVpGiB-hEM2uQf8X_Q_1DZIJeIQ |
Cites_doi | 10.1007/S10009-007-0063-9 10.1109/TSE.2011.104 10.1103/PhysRevE.103.043307 10.1007/S10515-019-00264-4 10.1145/3528223.3530157 10.48550/ARXIV.2308.12950 10.1016/J.KNOSYS.2022.109597 10.1109/ICDAR.1995.598994 10.1126/sciadv.aay2631 10.1007/3-540-45657-0_29 10.1007/978-3-319-33600-8_25 10.1007/978-3-319-71237-6_1 10.5555/1953048.2078195 10.1016/J.ESWA.2015.09.029 10.1007/978-3-642-54516-0_7 10.1017/CBO9781139195881 10.1007/S10462-023-10622-0 10.1145/3411764.3445646 10.1016/J.ESWA.2021.114806 10.1145/3313831.3376442 10.1145/2594291.2594297 10.1007/978-3-319-98938-9_20 10.48550/ARXIV.2203.07814 10.1145/3297280.3297282 10.1198/tast.2009.08199 10.1145/3591366.3591376 10.1007/S100090050046 10.3390/E25060888 10.1145/3592395 10.1109/32.588521 10.1016/J.ESWA.2019.112948 10.1145/3536430 10.1016/J.RESS.2015.05.018 10.1038/323533a0 10.1017/CBO9780511624162 10.1145/1477926.1477936 10.48550/ARXIV.2305.01582 10.1109/CVPR46437.2021.00650 10.1109/TSMCC.2009.2033566 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. May 2025 |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s10515-025-00495-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7535 |
ExternalDocumentID | 10_1007_s10515_025_00495_8 |
GrantInformation_xml | – fundername: Suzhou Industrial Park grantid: MSRI8001023 – fundername: Monash University |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PHGZT PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ JQ2 |
ID | FETCH-LOGICAL-c244t-e8c46d851b63e6f634a1d9730e7dca02d03565a1d37316ee0b929e72978ab2103 |
IEDL.DBID | U2A |
ISSN | 0928-8910 |
IngestDate | Fri Jul 25 10:51:59 EDT 2025 Tue Jul 01 05:12:55 EDT 2025 Sun Apr 06 01:11:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Interpretable machine learning Analogical reasoning Motion programming Program synthesis Knowledge graph |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-e8c46d851b63e6f634a1d9730e7dca02d03565a1d37316ee0b929e72978ab2103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s10515-025-00495-8 |
PQID | 3168138350 |
PQPubID | 2043871 |
ParticipantIDs | proquest_journals_3168138350 crossref_primary_10_1007_s10515_025_00495_8 springer_journals_10_1007_s10515_025_00495_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250500 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Automated software engineering |
PublicationTitleAbbrev | Autom Softw Eng |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | A Cimatti (495_CR9) 2000; 2 R Zhang (495_CR47) 2016 H Bride (495_CR3) 2021; 176 495_CR26 X Chen (495_CR10) 2020; 141 495_CR46 W Li (495_CR27) 2023; 42 C Le Goues (495_CR28) 2012; 38 N Makke (495_CR29) 2024; 57 T Shen (495_CR40) 2022; 255 495_CR30 C Cai (495_CR13) 2022; 34 P Li (495_CR24) 2022; 41 C Cai (495_CR12) 2019; 26 M Leuschel (495_CR25) 2008; 10 495_CR34 495_CR11 GJ Holzmann (495_CR20) 1997; 23 495_CR32 J Abrial (495_CR1) 1996 495_CR31 PG Espejo (495_CR15) 2010; 40 S-M Udrescu (495_CR41) 2020; 6 F Pedregosa (495_CR33) 2011; 12 495_CR8 S Jain (495_CR22) 2009; 28 495_CR7 J Abrial (495_CR2) 2010 CM Bishop (495_CR5) 2007 495_CR6 495_CR16 495_CR38 M Wong (495_CR44) 2023; 25 495_CR37 495_CR14 495_CR36 495_CR19 495_CR18 495_CR39 495_CR23 T Berners-Lee (495_CR4) 2023; 52 495_CR21 DE Rumelhart (495_CR35) 1986; 323 495_CR43 M Göçken (495_CR17) 2016; 44 P Wei (495_CR45) 2015; 142 S-M Udrescu (495_CR42) 2021; 103 |
References_xml | – volume: 10 start-page: 185 issue: 2 year: 2008 ident: 495_CR25 publication-title: Int. J. Softw. Tools Technol. Transf. doi: 10.1007/S10009-007-0063-9 – volume: 38 start-page: 54 issue: 1 year: 2012 ident: 495_CR28 publication-title: IEEE Transact. Softw. Eng. doi: 10.1109/TSE.2011.104 – volume: 103 year: 2021 ident: 495_CR42 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.043307 – volume: 26 start-page: 653 issue: 3 year: 2019 ident: 495_CR12 publication-title: Autom. Softw. Eng. doi: 10.1007/S10515-019-00264-4 – volume: 41 start-page: 138 issue: 4 year: 2022 ident: 495_CR24 publication-title: ACM Transact. Graph. doi: 10.1145/3528223.3530157 – volume-title: Pattern Recognit. Mach. Learn. year: 2007 ident: 495_CR5 – ident: 495_CR34 doi: 10.48550/ARXIV.2308.12950 – ident: 495_CR21 – volume: 255 year: 2022 ident: 495_CR40 publication-title: Knowl-Based Syst. doi: 10.1016/J.KNOSYS.2022.109597 – ident: 495_CR19 doi: 10.1109/ICDAR.1995.598994 – volume: 6 start-page: 2631 issue: 16 year: 2020 ident: 495_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2631 – ident: 495_CR7 – ident: 495_CR8 doi: 10.1007/3-540-45657-0_29 – ident: 495_CR37 doi: 10.1007/978-3-319-33600-8_25 – ident: 495_CR16 doi: 10.1007/978-3-319-71237-6_1 – ident: 495_CR32 – volume: 12 start-page: 2825 year: 2011 ident: 495_CR33 publication-title: J. Mach. Learn. Res. doi: 10.5555/1953048.2078195 – volume: 44 start-page: 320 year: 2016 ident: 495_CR17 publication-title: Exp. Syst. Appl. doi: 10.1016/J.ESWA.2015.09.029 – ident: 495_CR36 doi: 10.1007/978-3-642-54516-0_7 – volume-title: Modeling in Event-B - System and Software Engineering year: 2010 ident: 495_CR2 doi: 10.1017/CBO9781139195881 – volume: 57 start-page: 2 issue: 1 year: 2024 ident: 495_CR29 publication-title: Artif. Intell. Rev. doi: 10.1007/S10462-023-10622-0 – ident: 495_CR46 doi: 10.1145/3411764.3445646 – volume: 176 year: 2021 ident: 495_CR3 publication-title: Expert Syst. Appl. doi: 10.1016/J.ESWA.2021.114806 – ident: 495_CR14 doi: 10.1145/3313831.3376442 – ident: 495_CR31 doi: 10.1145/2594291.2594297 – ident: 495_CR38 doi: 10.1007/978-3-319-98938-9_20 – ident: 495_CR26 doi: 10.48550/ARXIV.2203.07814 – ident: 495_CR39 – ident: 495_CR30 doi: 10.1145/3297280.3297282 – ident: 495_CR18 doi: 10.1198/tast.2009.08199 – volume: 52 start-page: 91 year: 2023 ident: 495_CR4 publication-title: Link. World’s Info. Essays Tim Berners-Lee’s Invent. World Wide Web doi: 10.1145/3591366.3591376 – volume: 2 start-page: 410 issue: 4 year: 2000 ident: 495_CR9 publication-title: Int. J. Softw. Tools Technol. Transf. doi: 10.1007/S100090050046 – ident: 495_CR43 – volume: 25 start-page: 888 issue: 6 year: 2023 ident: 495_CR44 publication-title: Entropy doi: 10.3390/E25060888 – volume: 42 start-page: 94 issue: 4 year: 2023 ident: 495_CR27 publication-title: ACM Transact. Graph. doi: 10.1145/3592395 – volume: 23 start-page: 279 issue: 5 year: 1997 ident: 495_CR20 publication-title: IEEE Transact. Softw. Eng. doi: 10.1109/32.588521 – volume: 141 year: 2020 ident: 495_CR10 publication-title: Exp. Syst. Appl. doi: 10.1016/J.ESWA.2019.112948 – volume: 34 start-page: 1 issue: 2 year: 2022 ident: 495_CR13 publication-title: Form. Asp. Comput. doi: 10.1145/3536430 – ident: 495_CR6 – volume: 142 start-page: 399 year: 2015 ident: 495_CR45 publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/J.RESS.2015.05.018 – volume: 323 start-page: 533 year: 1986 ident: 495_CR35 publication-title: Nature doi: 10.1038/323533a0 – volume-title: The B-Book - Assigning Programs to Meanings year: 1996 ident: 495_CR1 doi: 10.1017/CBO9780511624162 – volume: 28 start-page: 10 issue: 1 year: 2009 ident: 495_CR22 publication-title: ACM Transact. Graph. doi: 10.1145/1477926.1477936 – ident: 495_CR11 doi: 10.48550/ARXIV.2305.01582 – ident: 495_CR23 doi: 10.1109/CVPR46437.2021.00650 – start-page: 1781 volume-title: Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Recognizing and Representing Events year: 2016 ident: 495_CR47 – volume: 40 start-page: 121 issue: 2 year: 2010 ident: 495_CR15 publication-title: IEEE Transact. Syst. Man Cybern. Part C doi: 10.1109/TSMCC.2009.2033566 |
SSID | ssj0009699 |
Score | 2.367542 |
Snippet | The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 21 |
SubjectTerms | Artificial Intelligence Cognition & reasoning Computer Science Engines Knowledge representation Machine learning Reasoning Regression models Software Engineering/Programming and Operating Systems Synthesis User experience Virtual reality |
Title | MP: motion program synthesis with machine learning interpretability and knowledge graph analogy |
URI | https://link.springer.com/article/10.1007/s10515-025-00495-8 https://www.proquest.com/docview/3168138350 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2sJTmw3HZ2qqlArVioFKZrDh2UQdSRMrQf8_ZcRpAMDBFciIPZzvvnX1-D-BKqZglXppQvyM5DZXPqFSppDj-gQ41gpTV2Z5M2XgW3s-jubsUlpfV7uWRpP1Tf7nshthLjf2qobUR5TVoRCZ3x1k883uV1C7rFgp7Pqcc0dBdlfm9j-9wVHHMH8eiFm1GB7DnaCLpFeN6CDs6O4L90oKBuBV5DGLyeEsKJx7iSq1IvsmQ1eXLnJhNVvJqyyU1cf4QL2S5rTO0hbEbkmSKbPfWiJWwxjazq7M5gdlo-DQYU-eZQFME6jXVPA2ZQholWaDZggVh0lFdXMY6Vmni-coLkMJhW2Asq7T2JPIjjQw75onE9C84hXq2yvQZkJh78QKznUByo9OnOEI54hxniYoXXsyacF2GTrwV0hiiEkE2gRYYaGEDLXgTWmV0hVsmuTCuWR3MkSOvCTdlxKvXf_d2_r_PL2DXt4NuChVbUF-_f-hLJBNr2YZGb9TvT83z7vlh2IbagA3adkZ9ArVww40 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1Eo4IENLKX5sF02VFEVaCuGVupmxbGLOhAQKUP_PWfHaUQFA6sTeTj79N7Z5_cArrXmLA2ylIZtJWisQ0aVzhTF9Y9MbBCknM72cMT6k_hpmky9TI59C7N2f2-fuCHiUmu6aslsQsUmbMVYKdv2vS7r1gK7rFPq6oWCCsRA_0Dm9zl-glDNLNcuQx3G9PZh15NDcl-u5gFsmPwQ9irjBeLz8Ajk8OWOlP47xDdYkWKZI5cr5gWxR6vkzTVJGuJdIV7JfNVd6NphlyTNNVmdqBEnXI1j9ixneQyT3sO426feKYFmCM8LakQWM43kSbHIsBmL4rStO5i8hussDUIdREjccCyyRlXGBApZkUFezUWqsOiLTqCRv-fmFAgXAZ9hjRMpYdX5tEAAR3QTLNV8FnDWhJsqdPKjFMSQtfSxDbTEQEsXaCma0KqiK31yFNJ6ZbWxMk6CJtxWEa8__z3b2f9-v4Lt_ng4kIPH0fM57IRuA9hWxRY0Fp9f5gLpxEJdun30DXwKvnI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAL34hCAQ9sYDXNh-OyoUJVPlp1oFI3K44d1IFQkTD033N2kqYgGFjtyMM51ntn370HcKlUyCInjqjbkZz6ymVUqlhS3H9P-xpByupsD0dsMPEfp8F0pYvfVrtXT5JFT4NRaUrz9lwl7ZXGN8RhaqxYDcUNKF-HDcxU7ENtj_Vq2V3WLdT2XE45ImPZNvP7Gt-hqeabP55ILfL0d2G7pIzkttjjPVjT6T7sVHYMpDydByCG4xtSuPKQsuyKZIsUGV42y4i5cCVvtnRSk9Ir4pXMljWHtkh2QaJUkeU9G7Fy1jhmbngWhzDp37_0BrT0T6AxgnZONY99ppBSSeZpljDPjzqqi0dahyqOHFc5HtI5HPOMfZXWjkSupJFthzySmAp6R9BI31N9DCTkTphg5uNJbjT7FEdYR8zjLFJh4oSsCVdV6MS8kMkQtSCyCbTAQAsbaMGb0KqiK8ojkwnjoNXBfDlwmnBdRbye_nu1k_99fgGb47u-eH4YPZ3Clmv339QvtqCRf3zqM-QYuTy3v9EXwCXGuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MP%3A+motion+program+synthesis+with+machine+learning+interpretability+and+knowledge+graph+analogy&rft.jtitle=Automated+software+engineering&rft.au=Cai%2C+Cheng-Hao&rft.date=2025-05-01&rft.issn=0928-8910&rft.eissn=1573-7535&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1007%2Fs10515-025-00495-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10515_025_00495_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-8910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-8910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-8910&client=summon |