Plate Theory for Metric-Constrained Actuation of Liquid Crystal Elastomer Sheets
Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is sp...
Saved in:
Published in | Journal of elasticity Vol. 157; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0374-3535 1573-2681 |
DOI | 10.1007/s10659-025-10127-7 |
Cover
Abstract | Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of
Γ
-convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples. |
---|---|
AbstractList | Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of $\Gamma $ Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples. Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples. Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of Γ-convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples. |
ArticleNumber | 36 |
Author | Plucinsky, Paul Padilla-Garza, David Bouck, Lucas |
Author_xml | – sequence: 1 givenname: Lucas surname: Bouck fullname: Bouck, Lucas organization: Department of Mathematical Sciences, Carnegie Mellon University – sequence: 2 givenname: David surname: Padilla-Garza fullname: Padilla-Garza, David organization: Einstein Institute of Mathematics, The Hebrew University of Jerusalem – sequence: 3 givenname: Paul surname: Plucinsky fullname: Plucinsky, Paul email: plucinsk@usc.edu organization: Aerospace and Mechanical Engineering, University of Southern California |
BookMark | eNp9kD1PwzAURS1UJNrCH2CyxGx4ju04GauofEhFVKLMlhPbNFUat7Y79N8TCBIb07vDufdJZ4Ymve8tQrcU7imAfIgUclESyAShQDNJ5AWaUiEZyfKCTtAUmOSECSau0CzGHQCUBYcpWq87nSzebK0PZ-x8wK82hbYhle9jCrrtrcGLJp10an2PvcOr9nhqDa7COSbd4WWnY_J7G_D71toUr9Gl0120N793jj4el5vqmazenl6qxYo0GeeJGC5BawemLkpu88Ll4Epd1w01kjtZArAhyNpIlhtbF5oPiCit1aYoQVA2R3fj7iH448nGpHb-FPrhpWK0oDIHAXygspFqgo8xWKcOod3rcFYU1Lc5NZpTgzn1Y07JocTGUhzg_tOGv-l_Wl_8iHMS |
Cites_doi | 10.1126/science.1135994 10.1098/rspa.2022.0230 10.1142/S0218202523500331 10.1016/j.ijsolstr.2013.09.019 10.1051/cocv/2010039 10.1007/s00205-015-0871-0 10.1039/D0SM00642D 10.1090/gsm/229 10.1016/j.jmps.2012.01.008 10.1140/epje/s10189-021-00099-6 10.1103/PhysRevE.94.010701 10.4310/jdg/1090415029 10.1016/j.jmps.2017.02.009 10.1137/22M1521584 10.1016/j.jmps.2020.104101 10.1007/s10659-021-09819-7 10.1103/PhysRevLett.127.128001 10.1007/s00205-015-0958-7 10.1103/PhysRevE.97.012504 10.1021/acsami.7b11851 10.1016/j.jmps.2024.105607 10.1039/D3SM01584J 10.1007/s00205-017-1167-3 10.1146/annurev-conmatphys-031119-050738 10.1039/D0SM01192D 10.1016/j.jmps.2008.12.004 10.1103/PhysRevLett.123.127801 10.1038/nmat4433 10.1007/s00205-017-1093-4 10.1007/s00526-008-0194-1 10.1098/rspa.2024.0387 10.1103/PhysRevLett.113.257801 10.1038/425145a 10.1016/j.bulsci.2011.12.004 10.1002/cpa.10048 10.1140/epje/s10189-021-00012-1 10.1103/PhysRevE.91.062405 10.1016/j.na.2012.07.035 10.1039/df9582500019 10.1093/acprof:oso/9780198507840.001.0001 10.1039/C8SM00103K 10.1007/s00205-010-0374-y 10.1016/S0022-5096(01)00120-X 10.1039/c0sm00479k 10.1038/nature22987 10.1002/ange.201205964 10.1016/j.mattod.2024.02.001 10.1088/1361-6544/ac09c1 10.1007/3-540-35657-6_9 10.1103/PhysRevE.47.R3838 10.1126/science.1261019 10.1209/0295-5075/114/24003 10.1073/pnas.1804702115 10.1007/s002050100174 10.1103/PhysRevLett.131.148202 10.1016/j.matpur.2018.04.008 10.1103/PhysRevE.84.021711 10.1007/978-3-031-17495-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | C6C AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s10659-025-10127-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-2681 |
ExternalDocumentID | 10_1007_s10659_025_10127_7 |
GrantInformation_xml | – fundername: National Science Foundation grantid: CMMI-CAREER-2237243 funderid: http://dx.doi.org/10.13039/100000001 – fundername: University of Southern California – fundername: Zuckerman STEM Leadership Program – fundername: Army Research Office grantid: ARO-W911NF2310137 funderid: http://dx.doi.org/10.13039/100000183 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 ZMTXR ZY4 ~02 ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c244t-d470aaf0db894e68f60f9abbc1d74f79003d747bd736deb8a48f659eead890513 |
IEDL.DBID | AGYKE |
ISSN | 0374-3535 |
IngestDate | Fri Jul 25 09:58:28 EDT 2025 Tue Aug 12 04:01:19 EDT 2025 Wed May 21 12:02:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 74-10 Plate theory 74B20 Calculus of variations 74 Liquid crystal elastomers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-d470aaf0db894e68f60f9abbc1d74f79003d747bd736deb8a48f659eead890513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10659-025-10127-7 |
PQID | 3181760504 |
PQPubID | 326256 |
ParticipantIDs | proquest_journals_3181760504 crossref_primary_10_1007_s10659_025_10127_7 springer_journals_10_1007_s10659_025_10127_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Groningen |
PublicationSubtitle | The Physical and Mathematical Science of Solids |
PublicationTitle | Journal of elasticity |
PublicationTitleAbbrev | J Elast |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | O. Ozenda (10127_CR52) 2021; 143 M. Warner (10127_CR64) 2007 P. Plucinsky (10127_CR56) 2016; 94 F. Feng (10127_CR28) 2022; 478 K.K. Yamamoto (10127_CR66) 2021; 44 M. Lewicka (10127_CR43) 2011; 17 P. Plucinsky (10127_CR55) 2017; 102 P. Cesana (10127_CR14) 2015; 218 A.H. Gelebart (10127_CR30) 2017; 546 H. Li (10127_CR44) 2013; 78 T.J. White (10127_CR65) 2015; 14 A. Kotikian (10127_CR38) 2018; 30 P. Plucinsky (10127_CR58) 2018; 227 C.D. Modes (10127_CR13) 2011; 467 A. Pedrini (10127_CR54) 2021; 44 Y. Yang (10127_CR67) 2024; 74 E. Di Nezza (10127_CR21) 2012; 136 F. Cirak (10127_CR15) 2014; 51 J. Gemmer (10127_CR31) 2016; 114 H. Aharoni (10127_CR2) 2018; 115 F. Feng (10127_CR26) 2024; 20 I. Griniasty (10127_CR33) 2019; 123 C.P. Ambulo (10127_CR3) 2017; 9 C.D. Modes (10127_CR47) 2011; 84 L. Bouck (10127_CR11) 2024; 187 D. Duffy (10127_CR23) 2023; 131 S. Conti (10127_CR16) 2006 J.S. Biggins (10127_CR6) 2012; 60 E. Efrati (10127_CR25) 2009; 57 C. Mostajeran (10127_CR49) 2015; 91 F. Feng (10127_CR27) 2020; 102 L.T. de Haan (10127_CR40) 2012; 124 C. Mostajeran (10127_CR50) 2016; 472 S. Bartels (10127_CR4) 2023; 33 Y. Yu (10127_CR68) 2003; 425 M. Lewicka (10127_CR42) 2023 Y. Liu (10127_CR45) 2020; 145 10127_CR9 P. Bladon (10127_CR8) 1994; 4 L. Bouck (10127_CR10) 2023; 61 T.H. Ware (10127_CR60) 2015; 347 H. Olbermann (10127_CR51) 2017; 224 10127_CR24 H. Aharoni (10127_CR1) 2014; 113 Y. Klein (10127_CR37) 2007; 315 E. Sharon (10127_CR59) 2010; 6 P. Hornung (10127_CR36) 2018; 115 P. Plucinsky (10127_CR57) 2018; 14 M. Warner (10127_CR62) 2020; 11 K. Bhattacharya (10127_CR5) 2016; 221 O. Ozenda (10127_CR53) 2020; 16 P. Bladon (10127_CR7) 1993; 47 A. DeSimone (10127_CR20) 2002; 161 B.A. Kowalski (10127_CR39) 2018; 97 G. Leoni (10127_CR41) 2023 M. Warner (10127_CR63) 2018; 474 S. Conti (10127_CR18) 2002; 50 I. Griniasty (10127_CR34) 2021; 127 F.C. Frank (10127_CR19) 1958; 25 A. Goriely (10127_CR32) 2021; 34 A. Braides (10127_CR12) 2002 L.A. Mihai (10127_CR46) 2020; 144 S. Conti (10127_CR17) 2009; 34 G. Friesecke (10127_CR29) 2002; 55 D. Duffy (10127_CR22) 2020; 16 M.R. Pakzad (10127_CR48) 2004; 66 P. Hornung (10127_CR35) 2011; 199 G.C. Verwey (10127_CR61) 1996; 6 |
References_xml | – volume: 315 start-page: 1116 issue: 5815 year: 2007 ident: 10127_CR37 publication-title: Science doi: 10.1126/science.1135994 – volume: 478 issue: 2262 year: 2022 ident: 10127_CR28 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2022.0230 – volume: 33 start-page: 1437 issue: 07 year: 2023 ident: 10127_CR4 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202523500331 – ident: 10127_CR9 – volume: 51 start-page: 144 issue: 1 year: 2014 ident: 10127_CR15 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.09.019 – volume: 17 start-page: 1158 issue: 4 year: 2011 ident: 10127_CR43 publication-title: ESAIM Control Optim. Calc. Var. doi: 10.1051/cocv/2010039 – volume: 218 start-page: 863 issue: 2 year: 2015 ident: 10127_CR14 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-015-0871-0 – volume: 16 start-page: 8877 issue: 38 year: 2020 ident: 10127_CR53 publication-title: Soft Matter doi: 10.1039/D0SM00642D – volume-title: A First Course in Fractional Sobolev Spaces year: 2023 ident: 10127_CR41 doi: 10.1090/gsm/229 – volume: 467 start-page: 1121 issue: 2128 year: 2011 ident: 10127_CR13 publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – volume: 60 start-page: 573 issue: 4 year: 2012 ident: 10127_CR6 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2012.01.008 – volume: 44 issue: 7 year: 2021 ident: 10127_CR66 publication-title: Eur. Phys. J. E doi: 10.1140/epje/s10189-021-00099-6 – volume: 94 issue: 1 year: 2016 ident: 10127_CR56 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.010701 – volume: 66 start-page: 47 issue: 1 year: 2004 ident: 10127_CR48 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1090415029 – volume: 102 start-page: 125 year: 2017 ident: 10127_CR55 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.02.009 – volume: 61 start-page: 2887 issue: 6 year: 2023 ident: 10127_CR10 publication-title: SIAM J. Numer. Anal. doi: 10.1137/22M1521584 – volume: 474 issue: 2210 year: 2018 ident: 10127_CR63 publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – volume: 4 start-page: 75 issue: 1 year: 1994 ident: 10127_CR8 publication-title: J. Phys. II – volume: 144 year: 2020 ident: 10127_CR46 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104101 – volume: 145 year: 2020 ident: 10127_CR45 publication-title: J. Mech. Phys. Solids – volume: 143 start-page: 359 issue: 2 year: 2021 ident: 10127_CR52 publication-title: J. Elast. doi: 10.1007/s10659-021-09819-7 – volume: 127 issue: 12 year: 2021 ident: 10127_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.128001 – volume: 221 start-page: 143 issue: 1 year: 2016 ident: 10127_CR5 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-015-0958-7 – volume: 97 issue: 1 year: 2018 ident: 10127_CR39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.012504 – volume: 9 start-page: 37332 issue: 42 year: 2017 ident: 10127_CR3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11851 – volume: 187 year: 2024 ident: 10127_CR11 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2024.105607 – volume: 20 start-page: 2132 issue: 9 year: 2024 ident: 10127_CR26 publication-title: Soft Matter doi: 10.1039/D3SM01584J – volume-title: Liquid Crystal Elastomers year: 2007 ident: 10127_CR64 – volume: 227 start-page: 149 issue: 1 year: 2018 ident: 10127_CR58 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-017-1167-3 – volume: 11 start-page: 125 year: 2020 ident: 10127_CR62 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031119-050738 – volume: 16 start-page: 10935 issue: 48 year: 2020 ident: 10127_CR22 publication-title: Soft Matter doi: 10.1039/D0SM01192D – volume: 57 start-page: 762 issue: 4 year: 2009 ident: 10127_CR25 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2008.12.004 – volume: 123 issue: 12 year: 2019 ident: 10127_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.127801 – volume: 14 start-page: 1087 issue: 11 year: 2015 ident: 10127_CR65 publication-title: Nat. Mater. doi: 10.1038/nmat4433 – volume: 30 issue: 10 year: 2018 ident: 10127_CR38 publication-title: Adv. Mater. – volume: 224 start-page: 985 year: 2017 ident: 10127_CR51 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-017-1093-4 – volume: 34 start-page: 531 issue: 4 year: 2009 ident: 10127_CR17 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-008-0194-1 – ident: 10127_CR24 doi: 10.1098/rspa.2024.0387 – volume: 113 issue: 25 year: 2014 ident: 10127_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.257801 – volume: 102 issue: 1 year: 2020 ident: 10127_CR27 publication-title: Phys. Rev. E – volume: 425 start-page: 145 issue: 6954 year: 2003 ident: 10127_CR68 publication-title: Nature doi: 10.1038/425145a – volume: 136 start-page: 521 issue: 5 year: 2012 ident: 10127_CR21 publication-title: Bull. Sci. Math. doi: 10.1016/j.bulsci.2011.12.004 – volume: 55 start-page: 1461 issue: 11 year: 2002 ident: 10127_CR29 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.10048 – volume: 44 start-page: 1 year: 2021 ident: 10127_CR54 publication-title: Eur. Phys. J. E doi: 10.1140/epje/s10189-021-00012-1 – volume: 91 issue: 6 year: 2015 ident: 10127_CR49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.062405 – volume: 78 start-page: 1 year: 2013 ident: 10127_CR44 publication-title: Nonlinear Anal., Theory Methods Appl. doi: 10.1016/j.na.2012.07.035 – volume: 25 start-page: 19 year: 1958 ident: 10127_CR19 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9582500019 – volume: 6 start-page: 1273 issue: 9 year: 1996 ident: 10127_CR61 publication-title: J. Phys. II – volume-title: Gamma-Convergence for Beginners year: 2002 ident: 10127_CR12 doi: 10.1093/acprof:oso/9780198507840.001.0001 – volume: 14 start-page: 3127 issue: 16 year: 2018 ident: 10127_CR57 publication-title: Soft Matter doi: 10.1039/C8SM00103K – volume: 472 issue: 2189 year: 2016 ident: 10127_CR50 publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – volume: 199 start-page: 1015 issue: 3 year: 2011 ident: 10127_CR35 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-010-0374-y – volume: 50 start-page: 1431 issue: 7 year: 2002 ident: 10127_CR18 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(01)00120-X – volume: 6 start-page: 5693 issue: 22 year: 2010 ident: 10127_CR59 publication-title: Soft Matter doi: 10.1039/c0sm00479k – volume: 546 start-page: 632 issue: 7660 year: 2017 ident: 10127_CR30 publication-title: Nature doi: 10.1038/nature22987 – volume: 124 start-page: 12637 issue: 50 year: 2012 ident: 10127_CR40 publication-title: Angew. Chem. doi: 10.1002/ange.201205964 – volume: 74 start-page: 167 year: 2024 ident: 10127_CR67 publication-title: Mater. Today doi: 10.1016/j.mattod.2024.02.001 – volume: 34 issue: 8 year: 2021 ident: 10127_CR32 publication-title: Nonlinearity doi: 10.1088/1361-6544/ac09c1 – start-page: 225 volume-title: Analysis, Modeling and Simulation of Multiscale Problems year: 2006 ident: 10127_CR16 doi: 10.1007/3-540-35657-6_9 – volume: 47 issue: 6 year: 1993 ident: 10127_CR7 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.R3838 – volume: 347 start-page: 982 issue: 6225 year: 2015 ident: 10127_CR60 publication-title: Science doi: 10.1126/science.1261019 – volume: 114 issue: 2 year: 2016 ident: 10127_CR31 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/114/24003 – volume: 115 start-page: 7206 issue: 28 year: 2018 ident: 10127_CR2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1804702115 – volume: 161 start-page: 181 issue: 3 year: 2002 ident: 10127_CR20 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050100174 – volume: 131 issue: 14 year: 2023 ident: 10127_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.148202 – volume: 115 start-page: 1 year: 2018 ident: 10127_CR36 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2018.04.008 – volume: 84 issue: 2 year: 2011 ident: 10127_CR47 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.021711 – volume-title: Calculus of Variations on Thin Prestressed Films year: 2023 ident: 10127_CR42 doi: 10.1007/978-3-031-17495-7 |
SSID | ssj0009840 |
Score | 2.3866806 |
Snippet | Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Actuation Bending Biomechanics Classical and Continuum Physics Classical Mechanics Constraints Deformation Elastomers Engineering Liquid crystals Lower bounds Materials Science Mathematical Applications in the Physical Sciences Nematic crystals Plate theory Theoretical and Applied Mechanics Thickness |
Title | Plate Theory for Metric-Constrained Actuation of Liquid Crystal Elastomer Sheets |
URI | https://link.springer.com/article/10.1007/s10659-025-10127-7 https://www.proquest.com/docview/3181760504 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDWiaHrwpjXb6Nb2SAhI_BUSJcHTsnZdJCIojIP-9b6OLSDRg5elybpme--17-v63vcAzjV6AcXiiGpUOMWGTyPFIorOS7oqSJTUWbTFQ9Dts5uBP8iTwmZFtHtxJJmt1CvJboEvqS2_ajmpOOWbUPZdIUUJys3r59v2kmxXZImQllqFNvyGnyfL_D7KT4e0RJlrB6OZv-lUoF-86SLM5PVqnqor_bVG4vjfT9mFnRyAkubCYvZgw4yrUMnBKMmn-qwK2ytMhfvQ640QlJJFJj9BoEvubSkuTW3Bz6zMBD7ctMkoVtFkkpC74cd8GJPW9BPx54i0EaWnkzczJY8vxqSzA-h32k-tLs2LMVCNCCClMeNOFCVOrIRkJhBJ4CQyUkq7MWcJtz9EscFVzBtBbJSIGHbxpUFLFZYDrHEIpfFkbI6AcFfjWEp5tiw7k57QQlriNw_RZyQdWYOLQiPh-4JzI1yyK1vRhSi6MBNdyGtQL5QW5vNvFuJK5XLcqTmsBpeFDpa3_x7t-H_dT2DLs2rMIiDrUEqnc3OKKCVVZ7lRnsFmK2jhte81vwH2jd2N |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1jKhxPHY1UVFWirSrRSt8hOHFGptNCkA_-ec5ooBcHAZinODXe27yW-ew_gNsIsoFgsaYQBpzjwqFRMUkxewlZ-okSUV1sM_O6YPU28SdEUlpbV7uWVZH5SbzS7-Z6gRn7VcFJxyrdhB8FAYHQLxk6rotoN8jZIQ6xCXc_1ilaZ3218T0cVxvxxLZpnm4cjOChgImmt43oMW3peh8MCMpJiQ6Z12N_gEzyB4XCG0JGs--0JwlHSN4JZETWynLkYBL7cMi0jJhxkkZDe9GM1jUl7-YkocUY6iKWzxZtekpdXrbP0FMYPnVG7SwvJBBphns5ozLglZWLFKhBM-0HiW4mQSkV2zFnCzW9LHHAVc9ePtQokwyme0LieAsPU5Z5Bbb6Y63Mg3I7QllKOEU9nwgmiQBh6NgcxohSWaMBd6bnwfc2MEVYcyMbPIfo5zP0c8gY0S-eGxS5JQzxPbI7fUxZrwH3p8Orx39Yu_jf9Bna7o34v7D0Oni9hzzHxz2sWm1DLlit9hbgiU9f5MvoCHVLBrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGCRhxPHY1VaFShVJajULYoTR1QqaWnTgX_POQ-lIBjYLMW-4c7OfYnv-w7gOsQsIFkU0BADTnHg0ECygGLyEqZ0YynCrNpi4PZG7HHsjNdY_Fm1e3klmXMatEpTkt7No_hujfjmOoLqVqxan4pTvglbTKc-fV3rtivZXS-jRGqRFWo7tlPQZn638T01VXjzxxVplnm6B7BXQEbSymN8CBsqqcN-AR9JcTiXddhd0xY8guFwijCS5Nx7gtCUPOvmWSHVLTqzxhC4uKXpIzo0ZBaT_uRjNYlIe_GJiHFKOoir09m7WpCXN6XS5TGMup3Xdo8W7RNoiDk7pRHjRhDERiQ9wZTrxa4Ri0DK0Iw4i7n-hYkDLiNuu5GSXsBwiiMU7i1Pq3bZJ1BLZok6BcLNEG1JaelG6kxYXugJLdVmIV4MhCEacFN6zp_nKhl-pYes_eyjn_3Mzz5vQLN0rl-cmKWP7xaT47eVwRpwWzq8evy3tbP_Tb-C7eF91-8_DJ7OYcfS4c_KF5tQSxcrdYEQI5WX2S76AprexdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plate+Theory+for+Metric-Constrained+Actuation+of+Liquid+Crystal+Elastomer+Sheets&rft.jtitle=Journal+of+elasticity&rft.au=Bouck%2C+Lucas&rft.au=Padilla-Garza%2C+David&rft.au=Plucinsky%2C+Paul&rft.date=2025-05-01&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=2&rft_id=info:doi/10.1007%2Fs10659-025-10127-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10659_025_10127_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon |