Plate Theory for Metric-Constrained Actuation of Liquid Crystal Elastomer Sheets

Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is sp...

Full description

Saved in:
Bibliographic Details
Published inJournal of elasticity Vol. 157; no. 2
Main Authors Bouck, Lucas, Padilla-Garza, David, Plucinsky, Paul
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0374-3535
1573-2681
DOI10.1007/s10659-025-10127-7

Cover

Abstract Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples.
AbstractList Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of $\Gamma $ Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples.
Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples.
Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of Γ-convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples.
ArticleNumber 36
Author Plucinsky, Paul
Padilla-Garza, David
Bouck, Lucas
Author_xml – sequence: 1
  givenname: Lucas
  surname: Bouck
  fullname: Bouck, Lucas
  organization: Department of Mathematical Sciences, Carnegie Mellon University
– sequence: 2
  givenname: David
  surname: Padilla-Garza
  fullname: Padilla-Garza, David
  organization: Einstein Institute of Mathematics, The Hebrew University of Jerusalem
– sequence: 3
  givenname: Paul
  surname: Plucinsky
  fullname: Plucinsky, Paul
  email: plucinsk@usc.edu
  organization: Aerospace and Mechanical Engineering, University of Southern California
BookMark eNp9kD1PwzAURS1UJNrCH2CyxGx4ju04GauofEhFVKLMlhPbNFUat7Y79N8TCBIb07vDufdJZ4Ymve8tQrcU7imAfIgUclESyAShQDNJ5AWaUiEZyfKCTtAUmOSECSau0CzGHQCUBYcpWq87nSzebK0PZ-x8wK82hbYhle9jCrrtrcGLJp10an2PvcOr9nhqDa7COSbd4WWnY_J7G_D71toUr9Gl0120N793jj4el5vqmazenl6qxYo0GeeJGC5BawemLkpu88Ll4Epd1w01kjtZArAhyNpIlhtbF5oPiCit1aYoQVA2R3fj7iH448nGpHb-FPrhpWK0oDIHAXygspFqgo8xWKcOod3rcFYU1Lc5NZpTgzn1Y07JocTGUhzg_tOGv-l_Wl_8iHMS
Cites_doi 10.1126/science.1135994
10.1098/rspa.2022.0230
10.1142/S0218202523500331
10.1016/j.ijsolstr.2013.09.019
10.1051/cocv/2010039
10.1007/s00205-015-0871-0
10.1039/D0SM00642D
10.1090/gsm/229
10.1016/j.jmps.2012.01.008
10.1140/epje/s10189-021-00099-6
10.1103/PhysRevE.94.010701
10.4310/jdg/1090415029
10.1016/j.jmps.2017.02.009
10.1137/22M1521584
10.1016/j.jmps.2020.104101
10.1007/s10659-021-09819-7
10.1103/PhysRevLett.127.128001
10.1007/s00205-015-0958-7
10.1103/PhysRevE.97.012504
10.1021/acsami.7b11851
10.1016/j.jmps.2024.105607
10.1039/D3SM01584J
10.1007/s00205-017-1167-3
10.1146/annurev-conmatphys-031119-050738
10.1039/D0SM01192D
10.1016/j.jmps.2008.12.004
10.1103/PhysRevLett.123.127801
10.1038/nmat4433
10.1007/s00205-017-1093-4
10.1007/s00526-008-0194-1
10.1098/rspa.2024.0387
10.1103/PhysRevLett.113.257801
10.1038/425145a
10.1016/j.bulsci.2011.12.004
10.1002/cpa.10048
10.1140/epje/s10189-021-00012-1
10.1103/PhysRevE.91.062405
10.1016/j.na.2012.07.035
10.1039/df9582500019
10.1093/acprof:oso/9780198507840.001.0001
10.1039/C8SM00103K
10.1007/s00205-010-0374-y
10.1016/S0022-5096(01)00120-X
10.1039/c0sm00479k
10.1038/nature22987
10.1002/ange.201205964
10.1016/j.mattod.2024.02.001
10.1088/1361-6544/ac09c1
10.1007/3-540-35657-6_9
10.1103/PhysRevE.47.R3838
10.1126/science.1261019
10.1209/0295-5075/114/24003
10.1073/pnas.1804702115
10.1007/s002050100174
10.1103/PhysRevLett.131.148202
10.1016/j.matpur.2018.04.008
10.1103/PhysRevE.84.021711
10.1007/978-3-031-17495-7
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. 2025
DBID C6C
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s10659-025-10127-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-2681
ExternalDocumentID 10_1007_s10659_025_10127_7
GrantInformation_xml – fundername: National Science Foundation
  grantid: CMMI-CAREER-2237243
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: University of Southern California
– fundername: Zuckerman STEM Leadership Program
– fundername: Army Research Office
  grantid: ARO-W911NF2310137
  funderid: http://dx.doi.org/10.13039/100000183
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
ZY4
~02
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c244t-d470aaf0db894e68f60f9abbc1d74f79003d747bd736deb8a48f659eead890513
IEDL.DBID AGYKE
ISSN 0374-3535
IngestDate Fri Jul 25 09:58:28 EDT 2025
Tue Aug 12 04:01:19 EDT 2025
Wed May 21 12:02:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 74-10
Plate theory
74B20
Calculus of variations
74
Liquid crystal elastomers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-d470aaf0db894e68f60f9abbc1d74f79003d747bd736deb8a48f659eead890513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10659-025-10127-7
PQID 3181760504
PQPubID 326256
ParticipantIDs proquest_journals_3181760504
crossref_primary_10_1007_s10659_025_10127_7
springer_journals_10_1007_s10659_025_10127_7
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Groningen
PublicationSubtitle The Physical and Mathematical Science of Solids
PublicationTitle Journal of elasticity
PublicationTitleAbbrev J Elast
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References O. Ozenda (10127_CR52) 2021; 143
M. Warner (10127_CR64) 2007
P. Plucinsky (10127_CR56) 2016; 94
F. Feng (10127_CR28) 2022; 478
K.K. Yamamoto (10127_CR66) 2021; 44
M. Lewicka (10127_CR43) 2011; 17
P. Plucinsky (10127_CR55) 2017; 102
P. Cesana (10127_CR14) 2015; 218
A.H. Gelebart (10127_CR30) 2017; 546
H. Li (10127_CR44) 2013; 78
T.J. White (10127_CR65) 2015; 14
A. Kotikian (10127_CR38) 2018; 30
P. Plucinsky (10127_CR58) 2018; 227
C.D. Modes (10127_CR13) 2011; 467
A. Pedrini (10127_CR54) 2021; 44
Y. Yang (10127_CR67) 2024; 74
E. Di Nezza (10127_CR21) 2012; 136
F. Cirak (10127_CR15) 2014; 51
J. Gemmer (10127_CR31) 2016; 114
H. Aharoni (10127_CR2) 2018; 115
F. Feng (10127_CR26) 2024; 20
I. Griniasty (10127_CR33) 2019; 123
C.P. Ambulo (10127_CR3) 2017; 9
C.D. Modes (10127_CR47) 2011; 84
L. Bouck (10127_CR11) 2024; 187
D. Duffy (10127_CR23) 2023; 131
S. Conti (10127_CR16) 2006
J.S. Biggins (10127_CR6) 2012; 60
E. Efrati (10127_CR25) 2009; 57
C. Mostajeran (10127_CR49) 2015; 91
F. Feng (10127_CR27) 2020; 102
L.T. de Haan (10127_CR40) 2012; 124
C. Mostajeran (10127_CR50) 2016; 472
S. Bartels (10127_CR4) 2023; 33
Y. Yu (10127_CR68) 2003; 425
M. Lewicka (10127_CR42) 2023
Y. Liu (10127_CR45) 2020; 145
10127_CR9
P. Bladon (10127_CR8) 1994; 4
L. Bouck (10127_CR10) 2023; 61
T.H. Ware (10127_CR60) 2015; 347
H. Olbermann (10127_CR51) 2017; 224
10127_CR24
H. Aharoni (10127_CR1) 2014; 113
Y. Klein (10127_CR37) 2007; 315
E. Sharon (10127_CR59) 2010; 6
P. Hornung (10127_CR36) 2018; 115
P. Plucinsky (10127_CR57) 2018; 14
M. Warner (10127_CR62) 2020; 11
K. Bhattacharya (10127_CR5) 2016; 221
O. Ozenda (10127_CR53) 2020; 16
P. Bladon (10127_CR7) 1993; 47
A. DeSimone (10127_CR20) 2002; 161
B.A. Kowalski (10127_CR39) 2018; 97
G. Leoni (10127_CR41) 2023
M. Warner (10127_CR63) 2018; 474
S. Conti (10127_CR18) 2002; 50
I. Griniasty (10127_CR34) 2021; 127
F.C. Frank (10127_CR19) 1958; 25
A. Goriely (10127_CR32) 2021; 34
A. Braides (10127_CR12) 2002
L.A. Mihai (10127_CR46) 2020; 144
S. Conti (10127_CR17) 2009; 34
G. Friesecke (10127_CR29) 2002; 55
D. Duffy (10127_CR22) 2020; 16
M.R. Pakzad (10127_CR48) 2004; 66
P. Hornung (10127_CR35) 2011; 199
G.C. Verwey (10127_CR61) 1996; 6
References_xml – volume: 315
  start-page: 1116
  issue: 5815
  year: 2007
  ident: 10127_CR37
  publication-title: Science
  doi: 10.1126/science.1135994
– volume: 478
  issue: 2262
  year: 2022
  ident: 10127_CR28
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2022.0230
– volume: 33
  start-page: 1437
  issue: 07
  year: 2023
  ident: 10127_CR4
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202523500331
– ident: 10127_CR9
– volume: 51
  start-page: 144
  issue: 1
  year: 2014
  ident: 10127_CR15
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.09.019
– volume: 17
  start-page: 1158
  issue: 4
  year: 2011
  ident: 10127_CR43
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2010039
– volume: 218
  start-page: 863
  issue: 2
  year: 2015
  ident: 10127_CR14
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-015-0871-0
– volume: 16
  start-page: 8877
  issue: 38
  year: 2020
  ident: 10127_CR53
  publication-title: Soft Matter
  doi: 10.1039/D0SM00642D
– volume-title: A First Course in Fractional Sobolev Spaces
  year: 2023
  ident: 10127_CR41
  doi: 10.1090/gsm/229
– volume: 467
  start-page: 1121
  issue: 2128
  year: 2011
  ident: 10127_CR13
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 60
  start-page: 573
  issue: 4
  year: 2012
  ident: 10127_CR6
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.01.008
– volume: 44
  issue: 7
  year: 2021
  ident: 10127_CR66
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/s10189-021-00099-6
– volume: 94
  issue: 1
  year: 2016
  ident: 10127_CR56
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.010701
– volume: 66
  start-page: 47
  issue: 1
  year: 2004
  ident: 10127_CR48
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1090415029
– volume: 102
  start-page: 125
  year: 2017
  ident: 10127_CR55
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.02.009
– volume: 61
  start-page: 2887
  issue: 6
  year: 2023
  ident: 10127_CR10
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/22M1521584
– volume: 474
  issue: 2210
  year: 2018
  ident: 10127_CR63
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 4
  start-page: 75
  issue: 1
  year: 1994
  ident: 10127_CR8
  publication-title: J. Phys. II
– volume: 144
  year: 2020
  ident: 10127_CR46
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104101
– volume: 145
  year: 2020
  ident: 10127_CR45
  publication-title: J. Mech. Phys. Solids
– volume: 143
  start-page: 359
  issue: 2
  year: 2021
  ident: 10127_CR52
  publication-title: J. Elast.
  doi: 10.1007/s10659-021-09819-7
– volume: 127
  issue: 12
  year: 2021
  ident: 10127_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.128001
– volume: 221
  start-page: 143
  issue: 1
  year: 2016
  ident: 10127_CR5
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-015-0958-7
– volume: 97
  issue: 1
  year: 2018
  ident: 10127_CR39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.012504
– volume: 9
  start-page: 37332
  issue: 42
  year: 2017
  ident: 10127_CR3
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11851
– volume: 187
  year: 2024
  ident: 10127_CR11
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2024.105607
– volume: 20
  start-page: 2132
  issue: 9
  year: 2024
  ident: 10127_CR26
  publication-title: Soft Matter
  doi: 10.1039/D3SM01584J
– volume-title: Liquid Crystal Elastomers
  year: 2007
  ident: 10127_CR64
– volume: 227
  start-page: 149
  issue: 1
  year: 2018
  ident: 10127_CR58
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-017-1167-3
– volume: 11
  start-page: 125
  year: 2020
  ident: 10127_CR62
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031119-050738
– volume: 16
  start-page: 10935
  issue: 48
  year: 2020
  ident: 10127_CR22
  publication-title: Soft Matter
  doi: 10.1039/D0SM01192D
– volume: 57
  start-page: 762
  issue: 4
  year: 2009
  ident: 10127_CR25
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2008.12.004
– volume: 123
  issue: 12
  year: 2019
  ident: 10127_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.127801
– volume: 14
  start-page: 1087
  issue: 11
  year: 2015
  ident: 10127_CR65
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4433
– volume: 30
  issue: 10
  year: 2018
  ident: 10127_CR38
  publication-title: Adv. Mater.
– volume: 224
  start-page: 985
  year: 2017
  ident: 10127_CR51
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-017-1093-4
– volume: 34
  start-page: 531
  issue: 4
  year: 2009
  ident: 10127_CR17
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-008-0194-1
– ident: 10127_CR24
  doi: 10.1098/rspa.2024.0387
– volume: 113
  issue: 25
  year: 2014
  ident: 10127_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.257801
– volume: 102
  issue: 1
  year: 2020
  ident: 10127_CR27
  publication-title: Phys. Rev. E
– volume: 425
  start-page: 145
  issue: 6954
  year: 2003
  ident: 10127_CR68
  publication-title: Nature
  doi: 10.1038/425145a
– volume: 136
  start-page: 521
  issue: 5
  year: 2012
  ident: 10127_CR21
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2011.12.004
– volume: 55
  start-page: 1461
  issue: 11
  year: 2002
  ident: 10127_CR29
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.10048
– volume: 44
  start-page: 1
  year: 2021
  ident: 10127_CR54
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/s10189-021-00012-1
– volume: 91
  issue: 6
  year: 2015
  ident: 10127_CR49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.062405
– volume: 78
  start-page: 1
  year: 2013
  ident: 10127_CR44
  publication-title: Nonlinear Anal., Theory Methods Appl.
  doi: 10.1016/j.na.2012.07.035
– volume: 25
  start-page: 19
  year: 1958
  ident: 10127_CR19
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9582500019
– volume: 6
  start-page: 1273
  issue: 9
  year: 1996
  ident: 10127_CR61
  publication-title: J. Phys. II
– volume-title: Gamma-Convergence for Beginners
  year: 2002
  ident: 10127_CR12
  doi: 10.1093/acprof:oso/9780198507840.001.0001
– volume: 14
  start-page: 3127
  issue: 16
  year: 2018
  ident: 10127_CR57
  publication-title: Soft Matter
  doi: 10.1039/C8SM00103K
– volume: 472
  issue: 2189
  year: 2016
  ident: 10127_CR50
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 199
  start-page: 1015
  issue: 3
  year: 2011
  ident: 10127_CR35
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-010-0374-y
– volume: 50
  start-page: 1431
  issue: 7
  year: 2002
  ident: 10127_CR18
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00120-X
– volume: 6
  start-page: 5693
  issue: 22
  year: 2010
  ident: 10127_CR59
  publication-title: Soft Matter
  doi: 10.1039/c0sm00479k
– volume: 546
  start-page: 632
  issue: 7660
  year: 2017
  ident: 10127_CR30
  publication-title: Nature
  doi: 10.1038/nature22987
– volume: 124
  start-page: 12637
  issue: 50
  year: 2012
  ident: 10127_CR40
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201205964
– volume: 74
  start-page: 167
  year: 2024
  ident: 10127_CR67
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2024.02.001
– volume: 34
  issue: 8
  year: 2021
  ident: 10127_CR32
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ac09c1
– start-page: 225
  volume-title: Analysis, Modeling and Simulation of Multiscale Problems
  year: 2006
  ident: 10127_CR16
  doi: 10.1007/3-540-35657-6_9
– volume: 47
  issue: 6
  year: 1993
  ident: 10127_CR7
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.R3838
– volume: 347
  start-page: 982
  issue: 6225
  year: 2015
  ident: 10127_CR60
  publication-title: Science
  doi: 10.1126/science.1261019
– volume: 114
  issue: 2
  year: 2016
  ident: 10127_CR31
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/114/24003
– volume: 115
  start-page: 7206
  issue: 28
  year: 2018
  ident: 10127_CR2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1804702115
– volume: 161
  start-page: 181
  issue: 3
  year: 2002
  ident: 10127_CR20
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050100174
– volume: 131
  issue: 14
  year: 2023
  ident: 10127_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.148202
– volume: 115
  start-page: 1
  year: 2018
  ident: 10127_CR36
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2018.04.008
– volume: 84
  issue: 2
  year: 2011
  ident: 10127_CR47
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.021711
– volume-title: Calculus of Variations on Thin Prestressed Films
  year: 2023
  ident: 10127_CR42
  doi: 10.1007/978-3-031-17495-7
SSID ssj0009840
Score 2.3866806
Snippet Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Actuation
Bending
Biomechanics
Classical and Continuum Physics
Classical Mechanics
Constraints
Deformation
Elastomers
Engineering
Liquid crystals
Lower bounds
Materials Science
Mathematical Applications in the Physical Sciences
Nematic crystals
Plate theory
Theoretical and Applied Mechanics
Thickness
Title Plate Theory for Metric-Constrained Actuation of Liquid Crystal Elastomer Sheets
URI https://link.springer.com/article/10.1007/s10659-025-10127-7
https://www.proquest.com/docview/3181760504
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDWiaHrwpjXb6Nb2SAhI_BUSJcHTsnZdJCIojIP-9b6OLSDRg5elybpme--17-v63vcAzjV6AcXiiGpUOMWGTyPFIorOS7oqSJTUWbTFQ9Dts5uBP8iTwmZFtHtxJJmt1CvJboEvqS2_ajmpOOWbUPZdIUUJys3r59v2kmxXZImQllqFNvyGnyfL_D7KT4e0RJlrB6OZv-lUoF-86SLM5PVqnqor_bVG4vjfT9mFnRyAkubCYvZgw4yrUMnBKMmn-qwK2ytMhfvQ640QlJJFJj9BoEvubSkuTW3Bz6zMBD7ctMkoVtFkkpC74cd8GJPW9BPx54i0EaWnkzczJY8vxqSzA-h32k-tLs2LMVCNCCClMeNOFCVOrIRkJhBJ4CQyUkq7MWcJtz9EscFVzBtBbJSIGHbxpUFLFZYDrHEIpfFkbI6AcFfjWEp5tiw7k57QQlriNw_RZyQdWYOLQiPh-4JzI1yyK1vRhSi6MBNdyGtQL5QW5vNvFuJK5XLcqTmsBpeFDpa3_x7t-H_dT2DLs2rMIiDrUEqnc3OKKCVVZ7lRnsFmK2jhte81vwH2jd2N
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1jKhxPHY1UVFWirSrRSt8hOHFGptNCkA_-ec5ooBcHAZinODXe27yW-ew_gNsIsoFgsaYQBpzjwqFRMUkxewlZ-okSUV1sM_O6YPU28SdEUlpbV7uWVZH5SbzS7-Z6gRn7VcFJxyrdhB8FAYHQLxk6rotoN8jZIQ6xCXc_1ilaZ3218T0cVxvxxLZpnm4cjOChgImmt43oMW3peh8MCMpJiQ6Z12N_gEzyB4XCG0JGs--0JwlHSN4JZETWynLkYBL7cMi0jJhxkkZDe9GM1jUl7-YkocUY6iKWzxZtekpdXrbP0FMYPnVG7SwvJBBphns5ozLglZWLFKhBM-0HiW4mQSkV2zFnCzW9LHHAVc9ePtQokwyme0LieAsPU5Z5Bbb6Y63Mg3I7QllKOEU9nwgmiQBh6NgcxohSWaMBd6bnwfc2MEVYcyMbPIfo5zP0c8gY0S-eGxS5JQzxPbI7fUxZrwH3p8Orx39Yu_jf9Bna7o34v7D0Oni9hzzHxz2sWm1DLlit9hbgiU9f5MvoCHVLBrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGCRhxPHY1VaFShVJajULYoTR1QqaWnTgX_POQ-lIBjYLMW-4c7OfYnv-w7gOsQsIFkU0BADTnHg0ECygGLyEqZ0YynCrNpi4PZG7HHsjNdY_Fm1e3klmXMatEpTkt7No_hujfjmOoLqVqxan4pTvglbTKc-fV3rtivZXS-jRGqRFWo7tlPQZn638T01VXjzxxVplnm6B7BXQEbSymN8CBsqqcN-AR9JcTiXddhd0xY8guFwijCS5Nx7gtCUPOvmWSHVLTqzxhC4uKXpIzo0ZBaT_uRjNYlIe_GJiHFKOoir09m7WpCXN6XS5TGMup3Xdo8W7RNoiDk7pRHjRhDERiQ9wZTrxa4Ri0DK0Iw4i7n-hYkDLiNuu5GSXsBwiiMU7i1Pq3bZJ1BLZok6BcLNEG1JaelG6kxYXugJLdVmIV4MhCEacFN6zp_nKhl-pYes_eyjn_3Mzz5vQLN0rl-cmKWP7xaT47eVwRpwWzq8evy3tbP_Tb-C7eF91-8_DJ7OYcfS4c_KF5tQSxcrdYEQI5WX2S76AprexdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plate+Theory+for+Metric-Constrained+Actuation+of+Liquid+Crystal+Elastomer+Sheets&rft.jtitle=Journal+of+elasticity&rft.au=Bouck%2C+Lucas&rft.au=Padilla-Garza%2C+David&rft.au=Plucinsky%2C+Paul&rft.date=2025-05-01&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=2&rft_id=info:doi/10.1007%2Fs10659-025-10127-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10659_025_10127_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon