Electrokinetic behavior of conical nanopores functionalized with two polyelectrolyte layers: effect of pH gradient

The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopo...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 18; no. 44; pp. 8427 - 8435
Main Authors Liu, Tien Juin, Hsu, Jyh-Ping
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 16.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present. The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically.
AbstractList The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present. The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically.
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.
Author Liu, Tien Juin
Hsu, Jyh-Ping
AuthorAffiliation Department of Chemical Engineering
National Taiwan University
AuthorAffiliation_xml – name: National Taiwan University
– name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Tien Juin
  surname: Liu
  fullname: Liu, Tien Juin
– sequence: 2
  givenname: Jyh-Ping
  surname: Hsu
  fullname: Hsu, Jyh-Ping
BookMark eNptkc1LAzEQxYNU0FYv3oWAFxGqm4_d7XoTvypUPKjgbckmszY1TdYktdS_3l0rCsXDMMPwew9mXh_1rLOA0AFJTknCijNFwzwhJKevW2iX5JwPsxEf9X5n9rKD-iHMkoSNOMl2kb82IKN3b9pC1BJXMBUf2nnsaiyd1VIYbIV1jfMQcL2wMmpnhdGfoPBSxymOS4cbZ1awNjKrCNiIFfhwjqGu22Xn1YzxqxdKg417aLsWJsD-Tx-g55vrp8vxcPJwe3d5MRlKynkcKsogrYs0FYkkMs3SghZUFiqXI-C1kkSpimeM05RBxSBjohIVcGhLZWnO2AAdr30b794XEGI510GCMcKCW4SS5rRICWctO0BHG-jMLXx7ZkexbzfaUcmakt6F4KEupY6i-0f0QpuSJGUXQnlFH--_Q7htJScbksbrufCr_-HDNeyD_OX-EmVfB0GWBA
CitedBy_id crossref_primary_10_1039_D3CP03637E
crossref_primary_10_1063_5_0160678
crossref_primary_10_1039_D4NR01325E
Cites_doi 10.1002/elps.11501601224
10.1016/S0376-7388(97)00136-1
10.1021/nl062806o
10.1146/annurev-anchem-071213-020107
10.1021/nl062924b
10.1021/jp301957j
10.1002/smll.200500196
10.1039/C5SM02197A
10.1021/jacs.5b09918
10.1021/jacs.5b04911
10.1016/j.jcis.2011.06.063
10.1021/acs.nanolett.8b01281
10.1021/acs.jpclett.1c03513
10.1021/ja901120f
10.1021/nn3010119
10.1038/ncomms9616
10.1002/adfm.201000989
10.1016/j.jcis.2018.11.046
10.1039/c3sm51981c
10.1002/adfm.200500471
10.1039/C9AN01344J
10.1007/s00604-015-1634-1
10.1039/C4CC10087E
10.1039/C9SM02506E
10.1021/acs.jpclett.9b03344
10.1021/acs.jpclett.7b01137
10.1039/C6CP04180A
10.1016/j.snb.2017.11.172
10.1039/C5NR07563G
10.1039/C8TA11233A
10.1016/j.aca.2020.05.011
10.1021/jacs.7b11472
10.1088/0957-4484/21/26/265301
10.1021/jp063204w
10.1002/adma.200904268
10.1021/acsnano.6b07041
10.1016/j.memsci.2020.118073
10.1039/c2sm25777g
10.1039/B822554K
10.1021/acs.langmuir.7b00377
10.1021/acs.nanolett.8b00860
10.1002/adma.201503668
10.1021/la902792f
10.1021/acsnano.6b03280
10.1021/acsnano.6b00939
10.1039/C6NR02506D
10.1021/ja4037669
10.1039/C6RA03698H
10.1039/C4TB00844H
10.1039/C9SM01654F
10.1021/nl051646y
10.1016/j.jcis.2020.08.022
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/d2sm01172g
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 8435
ExternalDocumentID 10_1039_D2SM01172G
d2sm01172g
GroupedDBID -JG
0-7
0R~
123
1TJ
4.4
705
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ~
H~N
J3I
KZ1
N9A
O9-
OK1
P2P
R7B
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRZK
AGEGJ
AHGCF
AKMSF
APEMP
CITATION
GGIMP
H13
L-8
RAOCF
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c244t-d23e5f955a0c1c5659292c9d7c8e4fdc1ddb4634253eb3e63ababe4ebe4d65733
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 00:24:29 EDT 2025
Mon Jun 30 12:04:32 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Tue Jul 01 03:13:37 EDT 2025
Thu Nov 17 04:37:43 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c244t-d23e5f955a0c1c5659292c9d7c8e4fdc1ddb4634253eb3e63ababe4ebe4d65733
Notes https://doi.org/10.1039/d2sm01172g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4162-1394
PQID 2736573327
PQPubID 2047495
PageCount 9
ParticipantIDs proquest_miscellaneous_2729514357
proquest_journals_2736573327
crossref_citationtrail_10_1039_D2SM01172G
crossref_primary_10_1039_D2SM01172G
rsc_primary_d2sm01172g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-16
PublicationDateYYYYMMDD 2022-11-16
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-16
  day: 16
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Soft matter
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (D2SM01172G/cit9/1) 2015; 137
Cheng (D2SM01172G/cit11/1) 2010; 39
Yeh (D2SM01172G/cit50/1) 2012; 116
Zhao (D2SM01172G/cit21/1) 2017; 33
Hou (D2SM01172G/cit22/1) 2010; 22
Qiu (D2SM01172G/cit8/1) 2016; 10
Gogoi (D2SM01172G/cit20/1) 2019; 7
Ramirez (D2SM01172G/cit47/1) 1997; 135
Daiguji (D2SM01172G/cit33/1) 2005; 5
Vlassiouk (D2SM01172G/cit1/1) 2009; 131
Zhang (D2SM01172G/cit15/1) 2013; 135
Queralt-Martín (D2SM01172G/cit46/1) 2016; 18
Karnik (D2SM01172G/cit41/1) 2007; 7
Liu (D2SM01172G/cit29/1) 2019; 144
Lepoitevin (D2SM01172G/cit23/1) 2015; 51
Nguyen (D2SM01172G/cit32/1) 2010; 21
Lin (D2SM01172G/cit35/1) 2020; 11
Benson (D2SM01172G/cit18/1) 2013; 9
Guo (D2SM01172G/cit25/1) 2010; 20
Vlassiouk (D2SM01172G/cit34/1) 2007; 7
Khatibi (D2SM01172G/cit37/1) 2020; 1122
Hsu (D2SM01172G/cit49/1) 2019; 537
Duval (D2SM01172G/cit52/1) 2011; 362
Gao (D2SM01172G/cit27/1) 2016; 183
Pérez-Mitta (D2SM01172G/cit3/1) 2018; 18
Alcaraz (D2SM01172G/cit44/1) 2006; 110
Heiranian (D2SM01172G/cit10/1) 2015; 6
Wu (D2SM01172G/cit16/1) 2016; 10
Siwy (D2SM01172G/cit36/1) 2006; 16
Tagliazucchi (D2SM01172G/cit17/1) 2012; 8
Cadinu (D2SM01172G/cit2/1) 2018; 18
Zhai (D2SM01172G/cit28/1) 2014; 2
Tsou (D2SM01172G/cit14/1) 2020; 604
Zhang (D2SM01172G/cit13/1) 2017; 8
Zhang (D2SM01172G/cit48/1) 2018; 140
Zhang (D2SM01172G/cit19/1) 2020; 16
Ali (D2SM01172G/cit24/1) 2009; 25
Luo (D2SM01172G/cit7/1) 2014; 7
Ali (D2SM01172G/cit39/1) 2019; 15
Zhang (D2SM01172G/cit5/1) 2015; 137
Han (D2SM01172G/cit12/1) 2016; 8
Lepoitevin (D2SM01172G/cit42/1) 2016; 6
Wu (D2SM01172G/cit38/1) 2021; 582
Gu (D2SM01172G/cit30/1) 2016; 12
Ali (D2SM01172G/cit43/1) 2012; 6
Ohshima (D2SM01172G/cit51/1) 1995; 16
Harrell (D2SM01172G/cit40/1) 2006; 2
Howorka (D2SM01172G/cit4/1) 2016; 10
Tseng (D2SM01172G/cit6/1) 2016; 8
Zhang (D2SM01172G/cit26/1) 2016; 28
Lin (D2SM01172G/cit31/1) 2018; 258
Liu (D2SM01172G/cit45/1) 2021; 12
References_xml – volume: 16
  start-page: 1360
  year: 1995
  ident: D2SM01172G/cit51/1
  publication-title: Electrophoresis
  doi: 10.1002/elps.11501601224
– volume: 135
  start-page: 135
  year: 1997
  ident: D2SM01172G/cit47/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00136-1
– volume: 7
  start-page: 547
  year: 2007
  ident: D2SM01172G/cit41/1
  publication-title: Nano Lett.
  doi: 10.1021/nl062806o
– volume: 7
  start-page: 513
  year: 2014
  ident: D2SM01172G/cit7/1
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-071213-020107
– volume: 7
  start-page: 552
  year: 2007
  ident: D2SM01172G/cit34/1
  publication-title: Nano Lett.
  doi: 10.1021/nl062924b
– volume: 116
  start-page: 8672
  year: 2012
  ident: D2SM01172G/cit50/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp301957j
– volume: 2
  start-page: 194
  year: 2006
  ident: D2SM01172G/cit40/1
  publication-title: Small
  doi: 10.1002/smll.200500196
– volume: 12
  start-page: 817
  year: 2016
  ident: D2SM01172G/cit30/1
  publication-title: Soft Matter
  doi: 10.1039/C5SM02197A
– volume: 137
  start-page: 14765
  year: 2015
  ident: D2SM01172G/cit5/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09918
– volume: 137
  start-page: 11976
  year: 2015
  ident: D2SM01172G/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04911
– volume: 362
  start-page: 439
  year: 2011
  ident: D2SM01172G/cit52/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.06.063
– volume: 18
  start-page: 3303
  year: 2018
  ident: D2SM01172G/cit3/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01281
– volume: 12
  start-page: 11858
  year: 2021
  ident: D2SM01172G/cit45/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03513
– volume: 131
  start-page: 8211
  year: 2009
  ident: D2SM01172G/cit1/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901120f
– volume: 6
  start-page: 3631
  year: 2012
  ident: D2SM01172G/cit43/1
  publication-title: ACS Nano
  doi: 10.1021/nn3010119
– volume: 6
  start-page: 8616
  year: 2015
  ident: D2SM01172G/cit10/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9616
– volume: 20
  start-page: 3561
  year: 2010
  ident: D2SM01172G/cit25/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000989
– volume: 537
  start-page: 496
  year: 2019
  ident: D2SM01172G/cit49/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.11.046
– volume: 9
  start-page: 9767
  year: 2013
  ident: D2SM01172G/cit18/1
  publication-title: Soft Matter
  doi: 10.1039/c3sm51981c
– volume: 16
  start-page: 735
  year: 2006
  ident: D2SM01172G/cit36/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500471
– volume: 144
  start-page: 6118
  year: 2019
  ident: D2SM01172G/cit29/1
  publication-title: Analyst
  doi: 10.1039/C9AN01344J
– volume: 183
  start-page: 491
  year: 2016
  ident: D2SM01172G/cit27/1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-015-1634-1
– volume: 51
  start-page: 5994
  year: 2015
  ident: D2SM01172G/cit23/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10087E
– volume: 16
  start-page: 2915
  year: 2020
  ident: D2SM01172G/cit19/1
  publication-title: Soft Matter
  doi: 10.1039/C9SM02506E
– volume: 11
  start-page: 60
  year: 2020
  ident: D2SM01172G/cit35/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03344
– volume: 8
  start-page: 2842
  year: 2017
  ident: D2SM01172G/cit13/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01137
– volume: 18
  start-page: 21668
  year: 2016
  ident: D2SM01172G/cit46/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04180A
– volume: 258
  start-page: 1223
  year: 2018
  ident: D2SM01172G/cit31/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.11.172
– volume: 8
  start-page: 2350
  year: 2016
  ident: D2SM01172G/cit6/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR07563G
– volume: 7
  start-page: 10552
  year: 2019
  ident: D2SM01172G/cit20/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11233A
– volume: 1122
  start-page: 48
  year: 2020
  ident: D2SM01172G/cit37/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.05.011
– volume: 140
  start-page: 1083
  year: 2018
  ident: D2SM01172G/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11472
– volume: 21
  start-page: 265301
  year: 2010
  ident: D2SM01172G/cit32/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/26/265301
– volume: 110
  start-page: 21205
  year: 2006
  ident: D2SM01172G/cit44/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063204w
– volume: 22
  start-page: 2440
  year: 2010
  ident: D2SM01172G/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904268
– volume: 10
  start-page: 9768
  year: 2016
  ident: D2SM01172G/cit4/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07041
– volume: 604
  start-page: 118073
  year: 2020
  ident: D2SM01172G/cit14/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118073
– volume: 8
  start-page: 7292
  year: 2012
  ident: D2SM01172G/cit17/1
  publication-title: Soft Matter
  doi: 10.1039/c2sm25777g
– volume: 39
  start-page: 923
  year: 2010
  ident: D2SM01172G/cit11/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B822554K
– volume: 33
  start-page: 3484
  year: 2017
  ident: D2SM01172G/cit21/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00377
– volume: 18
  start-page: 2738
  year: 2018
  ident: D2SM01172G/cit2/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00860
– volume: 28
  start-page: 144
  year: 2016
  ident: D2SM01172G/cit26/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503668
– volume: 25
  start-page: 11993
  year: 2009
  ident: D2SM01172G/cit24/1
  publication-title: Langmuir
  doi: 10.1021/la902792f
– volume: 10
  start-page: 8413
  year: 2016
  ident: D2SM01172G/cit8/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03280
– volume: 10
  start-page: 4637
  year: 2016
  ident: D2SM01172G/cit16/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00939
– volume: 8
  start-page: 12318
  year: 2016
  ident: D2SM01172G/cit12/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR02506D
– volume: 135
  start-page: 16102
  year: 2013
  ident: D2SM01172G/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4037669
– volume: 6
  start-page: 32228
  year: 2016
  ident: D2SM01172G/cit42/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03698H
– volume: 2
  start-page: 6371
  year: 2014
  ident: D2SM01172G/cit28/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00844H
– volume: 15
  start-page: 9682
  year: 2019
  ident: D2SM01172G/cit39/1
  publication-title: Soft Matter
  doi: 10.1039/C9SM01654F
– volume: 5
  start-page: 2274
  year: 2005
  ident: D2SM01172G/cit33/1
  publication-title: Nano Lett.
  doi: 10.1021/nl051646y
– volume: 582
  start-page: 741
  year: 2021
  ident: D2SM01172G/cit38/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.022
SSID ssj0038416
Score 2.400742
Snippet The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to...
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8427
SubjectTerms Charge density
Electric potential
Electroosmosis
pH effects
Polyelectrolytes
Title Electrokinetic behavior of conical nanopores functionalized with two polyelectrolyte layers: effect of pH gradient
URI https://www.proquest.com/docview/2736573327
https://www.proquest.com/docview/2729514357
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6Tki8TNwmygYyghcUBVrbufGCJiiEakNI66S9RXbsbBVdMjWJUPfrOY7jpGVDAl6iyHYuyuecm4-_g9DrsQypyJhwldShmzAgLgc_w41CCdYHZXwsdUD_5Jsfn7HZuXc-GHzYyFqqK_E2vblzX8n_oAptgKveJfsPyHY3hQY4B3zhCAjD8a8wnpoaNj_AUtS8q3bLvUkVNxsec54XYGKr0tEazAT-Fjc257z6WegyDeu2GM5yXSlnyZs6ELpij2E21jnRsXOxapLDtkL5pyDDnStebaT4Hi9qMwVU7szqRTf14rJpn60v3e9WW7bBBvBTJ6aMdCcfA8ZcP2xK-IL62GwzhJm3hWptGR5bERkyQwZg1S0zdCW3RPmYaiZUScorTVtHLnqF1aUR9p07aJeAn0CGaPdoOv96bJUx1auqZk-seW_LUEujd_3V2zZJ72jsrGwVmMbamD9Ae62bgI8M5g_RQOWP0L0mXTctH6PVNvLYIo-LDLfI4w55vI081shjQB7_hjw2yL_HBnd9r-sYW9yfoLPP0_nH2G2rZ7gpmGyVKwlVXhZ5Hh-nk9TTy-cRSSMZpKFimUwnUgrmU5DZVAmqfMoFF4rBT82kr1ky99EwL3L1FGEBXrQKhOKKKBamhHMW6uV2n8B5QLMRemO_X5K21PK6wskyaVIcaJR8Iqcnzbf-MkKvurHXhlDlzlGHFoak_eHKBCzt5sVIMEIvu24Qh3qNi-eqqPUYEjU-AIzZB_i6Z_RoP_tTxwG638_5QzSsVrV6DiZnJV600-oXFdCG6w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrokinetic+behavior+of+conical+nanopores+functionalized+with+two+polyelectrolyte+layers%3A+effect+of+pH+gradient&rft.jtitle=Soft+matter&rft.au=Liu%2C+Tien+Juin&rft.au=Hsu%2C+Jyh-Ping&rft.date=2022-11-16&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=18&rft.issue=44&rft.spage=8427&rft.epage=8435&rft_id=info:doi/10.1039%2Fd2sm01172g&rft.externalDocID=d2sm01172g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon