Electrokinetic behavior of conical nanopores functionalized with two polyelectrolyte layers: effect of pH gradient
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopo...
Saved in:
Published in | Soft matter Vol. 18; no. 44; pp. 8427 - 8435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
16.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers
via
layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers
via
layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. |
---|---|
AbstractList | The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present. The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present. The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present. The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present. |
Author | Liu, Tien Juin Hsu, Jyh-Ping |
AuthorAffiliation | Department of Chemical Engineering National Taiwan University |
AuthorAffiliation_xml | – name: National Taiwan University – name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Tien Juin surname: Liu fullname: Liu, Tien Juin – sequence: 2 givenname: Jyh-Ping surname: Hsu fullname: Hsu, Jyh-Ping |
BookMark | eNptkc1LAzEQxYNU0FYv3oWAFxGqm4_d7XoTvypUPKjgbckmszY1TdYktdS_3l0rCsXDMMPwew9mXh_1rLOA0AFJTknCijNFwzwhJKevW2iX5JwPsxEf9X5n9rKD-iHMkoSNOMl2kb82IKN3b9pC1BJXMBUf2nnsaiyd1VIYbIV1jfMQcL2wMmpnhdGfoPBSxymOS4cbZ1awNjKrCNiIFfhwjqGu22Xn1YzxqxdKg417aLsWJsD-Tx-g55vrp8vxcPJwe3d5MRlKynkcKsogrYs0FYkkMs3SghZUFiqXI-C1kkSpimeM05RBxSBjohIVcGhLZWnO2AAdr30b794XEGI510GCMcKCW4SS5rRICWctO0BHG-jMLXx7ZkexbzfaUcmakt6F4KEupY6i-0f0QpuSJGUXQnlFH--_Q7htJScbksbrufCr_-HDNeyD_OX-EmVfB0GWBA |
CitedBy_id | crossref_primary_10_1039_D3CP03637E crossref_primary_10_1063_5_0160678 crossref_primary_10_1039_D4NR01325E |
Cites_doi | 10.1002/elps.11501601224 10.1016/S0376-7388(97)00136-1 10.1021/nl062806o 10.1146/annurev-anchem-071213-020107 10.1021/nl062924b 10.1021/jp301957j 10.1002/smll.200500196 10.1039/C5SM02197A 10.1021/jacs.5b09918 10.1021/jacs.5b04911 10.1016/j.jcis.2011.06.063 10.1021/acs.nanolett.8b01281 10.1021/acs.jpclett.1c03513 10.1021/ja901120f 10.1021/nn3010119 10.1038/ncomms9616 10.1002/adfm.201000989 10.1016/j.jcis.2018.11.046 10.1039/c3sm51981c 10.1002/adfm.200500471 10.1039/C9AN01344J 10.1007/s00604-015-1634-1 10.1039/C4CC10087E 10.1039/C9SM02506E 10.1021/acs.jpclett.9b03344 10.1021/acs.jpclett.7b01137 10.1039/C6CP04180A 10.1016/j.snb.2017.11.172 10.1039/C5NR07563G 10.1039/C8TA11233A 10.1016/j.aca.2020.05.011 10.1021/jacs.7b11472 10.1088/0957-4484/21/26/265301 10.1021/jp063204w 10.1002/adma.200904268 10.1021/acsnano.6b07041 10.1016/j.memsci.2020.118073 10.1039/c2sm25777g 10.1039/B822554K 10.1021/acs.langmuir.7b00377 10.1021/acs.nanolett.8b00860 10.1002/adma.201503668 10.1021/la902792f 10.1021/acsnano.6b03280 10.1021/acsnano.6b00939 10.1039/C6NR02506D 10.1021/ja4037669 10.1039/C6RA03698H 10.1039/C4TB00844H 10.1039/C9SM01654F 10.1021/nl051646y 10.1016/j.jcis.2020.08.022 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/d2sm01172g |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 8435 |
ExternalDocumentID | 10_1039_D2SM01172G d2sm01172g |
GroupedDBID | -JG 0-7 0R~ 123 1TJ 4.4 705 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GNO HZ~ H~N J3I KZ1 N9A O9- OK1 P2P R7B RCNCU RNS RPMJG RRC RSCEA SKA SLH VH6 AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP H13 L-8 RAOCF 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c244t-d23e5f955a0c1c5659292c9d7c8e4fdc1ddb4634253eb3e63ababe4ebe4d65733 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri Jul 11 00:24:29 EDT 2025 Mon Jun 30 12:04:32 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Tue Jul 01 03:13:37 EDT 2025 Thu Nov 17 04:37:43 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c244t-d23e5f955a0c1c5659292c9d7c8e4fdc1ddb4634253eb3e63ababe4ebe4d65733 |
Notes | https://doi.org/10.1039/d2sm01172g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4162-1394 |
PQID | 2736573327 |
PQPubID | 2047495 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2729514357 proquest_journals_2736573327 crossref_citationtrail_10_1039_D2SM01172G crossref_primary_10_1039_D2SM01172G rsc_primary_d2sm01172g |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-16 |
PublicationDateYYYYMMDD | 2022-11-16 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Soft matter |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (D2SM01172G/cit9/1) 2015; 137 Cheng (D2SM01172G/cit11/1) 2010; 39 Yeh (D2SM01172G/cit50/1) 2012; 116 Zhao (D2SM01172G/cit21/1) 2017; 33 Hou (D2SM01172G/cit22/1) 2010; 22 Qiu (D2SM01172G/cit8/1) 2016; 10 Gogoi (D2SM01172G/cit20/1) 2019; 7 Ramirez (D2SM01172G/cit47/1) 1997; 135 Daiguji (D2SM01172G/cit33/1) 2005; 5 Vlassiouk (D2SM01172G/cit1/1) 2009; 131 Zhang (D2SM01172G/cit15/1) 2013; 135 Queralt-Martín (D2SM01172G/cit46/1) 2016; 18 Karnik (D2SM01172G/cit41/1) 2007; 7 Liu (D2SM01172G/cit29/1) 2019; 144 Lepoitevin (D2SM01172G/cit23/1) 2015; 51 Nguyen (D2SM01172G/cit32/1) 2010; 21 Lin (D2SM01172G/cit35/1) 2020; 11 Benson (D2SM01172G/cit18/1) 2013; 9 Guo (D2SM01172G/cit25/1) 2010; 20 Vlassiouk (D2SM01172G/cit34/1) 2007; 7 Khatibi (D2SM01172G/cit37/1) 2020; 1122 Hsu (D2SM01172G/cit49/1) 2019; 537 Duval (D2SM01172G/cit52/1) 2011; 362 Gao (D2SM01172G/cit27/1) 2016; 183 Pérez-Mitta (D2SM01172G/cit3/1) 2018; 18 Alcaraz (D2SM01172G/cit44/1) 2006; 110 Heiranian (D2SM01172G/cit10/1) 2015; 6 Wu (D2SM01172G/cit16/1) 2016; 10 Siwy (D2SM01172G/cit36/1) 2006; 16 Tagliazucchi (D2SM01172G/cit17/1) 2012; 8 Cadinu (D2SM01172G/cit2/1) 2018; 18 Zhai (D2SM01172G/cit28/1) 2014; 2 Tsou (D2SM01172G/cit14/1) 2020; 604 Zhang (D2SM01172G/cit13/1) 2017; 8 Zhang (D2SM01172G/cit48/1) 2018; 140 Zhang (D2SM01172G/cit19/1) 2020; 16 Ali (D2SM01172G/cit24/1) 2009; 25 Luo (D2SM01172G/cit7/1) 2014; 7 Ali (D2SM01172G/cit39/1) 2019; 15 Zhang (D2SM01172G/cit5/1) 2015; 137 Han (D2SM01172G/cit12/1) 2016; 8 Lepoitevin (D2SM01172G/cit42/1) 2016; 6 Wu (D2SM01172G/cit38/1) 2021; 582 Gu (D2SM01172G/cit30/1) 2016; 12 Ali (D2SM01172G/cit43/1) 2012; 6 Ohshima (D2SM01172G/cit51/1) 1995; 16 Harrell (D2SM01172G/cit40/1) 2006; 2 Howorka (D2SM01172G/cit4/1) 2016; 10 Tseng (D2SM01172G/cit6/1) 2016; 8 Zhang (D2SM01172G/cit26/1) 2016; 28 Lin (D2SM01172G/cit31/1) 2018; 258 Liu (D2SM01172G/cit45/1) 2021; 12 |
References_xml | – volume: 16 start-page: 1360 year: 1995 ident: D2SM01172G/cit51/1 publication-title: Electrophoresis doi: 10.1002/elps.11501601224 – volume: 135 start-page: 135 year: 1997 ident: D2SM01172G/cit47/1 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00136-1 – volume: 7 start-page: 547 year: 2007 ident: D2SM01172G/cit41/1 publication-title: Nano Lett. doi: 10.1021/nl062806o – volume: 7 start-page: 513 year: 2014 ident: D2SM01172G/cit7/1 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-071213-020107 – volume: 7 start-page: 552 year: 2007 ident: D2SM01172G/cit34/1 publication-title: Nano Lett. doi: 10.1021/nl062924b – volume: 116 start-page: 8672 year: 2012 ident: D2SM01172G/cit50/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp301957j – volume: 2 start-page: 194 year: 2006 ident: D2SM01172G/cit40/1 publication-title: Small doi: 10.1002/smll.200500196 – volume: 12 start-page: 817 year: 2016 ident: D2SM01172G/cit30/1 publication-title: Soft Matter doi: 10.1039/C5SM02197A – volume: 137 start-page: 14765 year: 2015 ident: D2SM01172G/cit5/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09918 – volume: 137 start-page: 11976 year: 2015 ident: D2SM01172G/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04911 – volume: 362 start-page: 439 year: 2011 ident: D2SM01172G/cit52/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.06.063 – volume: 18 start-page: 3303 year: 2018 ident: D2SM01172G/cit3/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01281 – volume: 12 start-page: 11858 year: 2021 ident: D2SM01172G/cit45/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03513 – volume: 131 start-page: 8211 year: 2009 ident: D2SM01172G/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901120f – volume: 6 start-page: 3631 year: 2012 ident: D2SM01172G/cit43/1 publication-title: ACS Nano doi: 10.1021/nn3010119 – volume: 6 start-page: 8616 year: 2015 ident: D2SM01172G/cit10/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9616 – volume: 20 start-page: 3561 year: 2010 ident: D2SM01172G/cit25/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000989 – volume: 537 start-page: 496 year: 2019 ident: D2SM01172G/cit49/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.11.046 – volume: 9 start-page: 9767 year: 2013 ident: D2SM01172G/cit18/1 publication-title: Soft Matter doi: 10.1039/c3sm51981c – volume: 16 start-page: 735 year: 2006 ident: D2SM01172G/cit36/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500471 – volume: 144 start-page: 6118 year: 2019 ident: D2SM01172G/cit29/1 publication-title: Analyst doi: 10.1039/C9AN01344J – volume: 183 start-page: 491 year: 2016 ident: D2SM01172G/cit27/1 publication-title: Microchim. Acta doi: 10.1007/s00604-015-1634-1 – volume: 51 start-page: 5994 year: 2015 ident: D2SM01172G/cit23/1 publication-title: Chem. Commun. doi: 10.1039/C4CC10087E – volume: 16 start-page: 2915 year: 2020 ident: D2SM01172G/cit19/1 publication-title: Soft Matter doi: 10.1039/C9SM02506E – volume: 11 start-page: 60 year: 2020 ident: D2SM01172G/cit35/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03344 – volume: 8 start-page: 2842 year: 2017 ident: D2SM01172G/cit13/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01137 – volume: 18 start-page: 21668 year: 2016 ident: D2SM01172G/cit46/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04180A – volume: 258 start-page: 1223 year: 2018 ident: D2SM01172G/cit31/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.11.172 – volume: 8 start-page: 2350 year: 2016 ident: D2SM01172G/cit6/1 publication-title: Nanoscale doi: 10.1039/C5NR07563G – volume: 7 start-page: 10552 year: 2019 ident: D2SM01172G/cit20/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11233A – volume: 1122 start-page: 48 year: 2020 ident: D2SM01172G/cit37/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.05.011 – volume: 140 start-page: 1083 year: 2018 ident: D2SM01172G/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11472 – volume: 21 start-page: 265301 year: 2010 ident: D2SM01172G/cit32/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/26/265301 – volume: 110 start-page: 21205 year: 2006 ident: D2SM01172G/cit44/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp063204w – volume: 22 start-page: 2440 year: 2010 ident: D2SM01172G/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.200904268 – volume: 10 start-page: 9768 year: 2016 ident: D2SM01172G/cit4/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b07041 – volume: 604 start-page: 118073 year: 2020 ident: D2SM01172G/cit14/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118073 – volume: 8 start-page: 7292 year: 2012 ident: D2SM01172G/cit17/1 publication-title: Soft Matter doi: 10.1039/c2sm25777g – volume: 39 start-page: 923 year: 2010 ident: D2SM01172G/cit11/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B822554K – volume: 33 start-page: 3484 year: 2017 ident: D2SM01172G/cit21/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00377 – volume: 18 start-page: 2738 year: 2018 ident: D2SM01172G/cit2/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00860 – volume: 28 start-page: 144 year: 2016 ident: D2SM01172G/cit26/1 publication-title: Adv. Mater. doi: 10.1002/adma.201503668 – volume: 25 start-page: 11993 year: 2009 ident: D2SM01172G/cit24/1 publication-title: Langmuir doi: 10.1021/la902792f – volume: 10 start-page: 8413 year: 2016 ident: D2SM01172G/cit8/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b03280 – volume: 10 start-page: 4637 year: 2016 ident: D2SM01172G/cit16/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b00939 – volume: 8 start-page: 12318 year: 2016 ident: D2SM01172G/cit12/1 publication-title: Nanoscale doi: 10.1039/C6NR02506D – volume: 135 start-page: 16102 year: 2013 ident: D2SM01172G/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4037669 – volume: 6 start-page: 32228 year: 2016 ident: D2SM01172G/cit42/1 publication-title: RSC Adv. doi: 10.1039/C6RA03698H – volume: 2 start-page: 6371 year: 2014 ident: D2SM01172G/cit28/1 publication-title: J. Mater. Chem. B doi: 10.1039/C4TB00844H – volume: 15 start-page: 9682 year: 2019 ident: D2SM01172G/cit39/1 publication-title: Soft Matter doi: 10.1039/C9SM01654F – volume: 5 start-page: 2274 year: 2005 ident: D2SM01172G/cit33/1 publication-title: Nano Lett. doi: 10.1021/nl051646y – volume: 582 start-page: 741 year: 2021 ident: D2SM01172G/cit38/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.022 |
SSID | ssj0038416 |
Score | 2.400742 |
Snippet | The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers
via
layer-by-layer deposition subject to... The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8427 |
SubjectTerms | Charge density Electric potential Electroosmosis pH effects Polyelectrolytes |
Title | Electrokinetic behavior of conical nanopores functionalized with two polyelectrolyte layers: effect of pH gradient |
URI | https://www.proquest.com/docview/2736573327 https://www.proquest.com/docview/2729514357 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6Tki8TNwmygYyghcUBVrbufGCJiiEakNI66S9RXbsbBVdMjWJUPfrOY7jpGVDAl6iyHYuyuecm4-_g9DrsQypyJhwldShmzAgLgc_w41CCdYHZXwsdUD_5Jsfn7HZuXc-GHzYyFqqK_E2vblzX8n_oAptgKveJfsPyHY3hQY4B3zhCAjD8a8wnpoaNj_AUtS8q3bLvUkVNxsec54XYGKr0tEazAT-Fjc257z6WegyDeu2GM5yXSlnyZs6ELpij2E21jnRsXOxapLDtkL5pyDDnStebaT4Hi9qMwVU7szqRTf14rJpn60v3e9WW7bBBvBTJ6aMdCcfA8ZcP2xK-IL62GwzhJm3hWptGR5bERkyQwZg1S0zdCW3RPmYaiZUScorTVtHLnqF1aUR9p07aJeAn0CGaPdoOv96bJUx1auqZk-seW_LUEujd_3V2zZJ72jsrGwVmMbamD9Ae62bgI8M5g_RQOWP0L0mXTctH6PVNvLYIo-LDLfI4w55vI081shjQB7_hjw2yL_HBnd9r-sYW9yfoLPP0_nH2G2rZ7gpmGyVKwlVXhZ5Hh-nk9TTy-cRSSMZpKFimUwnUgrmU5DZVAmqfMoFF4rBT82kr1ky99EwL3L1FGEBXrQKhOKKKBamhHMW6uV2n8B5QLMRemO_X5K21PK6wskyaVIcaJR8Iqcnzbf-MkKvurHXhlDlzlGHFoak_eHKBCzt5sVIMEIvu24Qh3qNi-eqqPUYEjU-AIzZB_i6Z_RoP_tTxwG638_5QzSsVrV6DiZnJV600-oXFdCG6w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrokinetic+behavior+of+conical+nanopores+functionalized+with+two+polyelectrolyte+layers%3A+effect+of+pH+gradient&rft.jtitle=Soft+matter&rft.au=Liu%2C+Tien+Juin&rft.au=Hsu%2C+Jyh-Ping&rft.date=2022-11-16&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=18&rft.issue=44&rft.spage=8427&rft.epage=8435&rft_id=info:doi/10.1039%2Fd2sm01172g&rft.externalDocID=d2sm01172g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |