Golf strategy optimization and the “Drive for show, putt for dough” adage
This study explores strategic decision-making in professional golf’s Stroke Play format through a computational lens. We develop a Markov Decision Process (MDP) model–specifically, a stochastic shortest path formulation–to optimize a golfer’s strategy on any given course, incorporating both course l...
Saved in:
Published in | Computational statistics |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
26.07.2025
|
Online Access | Get full text |
ISSN | 0943-4062 1613-9658 |
DOI | 10.1007/s00180-025-01659-6 |
Cover
Abstract | This study explores strategic decision-making in professional golf’s Stroke Play format through a computational lens. We develop a Markov Decision Process (MDP) model–specifically, a stochastic shortest path formulation–to optimize a golfer’s strategy on any given course, incorporating both course layout and player skill data. While MDPs have been widely used in sports analytics, applying them to golf presents significant scalability challenges due to the curse of dimensionality. Our primary objective is not to predict player performance with high precision, but rather to demonstrate that an exact, data-driven MDP approach is computationally tractable on full scale, real-world instances. We show that, with careful problem structuring, low-level coding, and efficient memory management, it is possible to solve such large-scale models without resorting to heuristics or Q-learning approximations, as used in existing approaches. To illustrate the model’s potential, we show how one can use PGA Tour data and aerial course imagery to simulate strategic outcomes and analyze how different skill profiles influence performance. In particular, we assess the relative impact of driving and putting, challenging the popular adage “Drive for show, putt for dough.” These results support the value of our methodology as a robust proof of concept and a foundation for future enhancements. All code and analyses (in R and C++) are made available as open-source resources to support reproducibility and further research. |
---|---|
AbstractList | This study explores strategic decision-making in professional golf’s Stroke Play format through a computational lens. We develop a Markov Decision Process (MDP) model–specifically, a stochastic shortest path formulation–to optimize a golfer’s strategy on any given course, incorporating both course layout and player skill data. While MDPs have been widely used in sports analytics, applying them to golf presents significant scalability challenges due to the curse of dimensionality. Our primary objective is not to predict player performance with high precision, but rather to demonstrate that an exact, data-driven MDP approach is computationally tractable on full scale, real-world instances. We show that, with careful problem structuring, low-level coding, and efficient memory management, it is possible to solve such large-scale models without resorting to heuristics or Q-learning approximations, as used in existing approaches. To illustrate the model’s potential, we show how one can use PGA Tour data and aerial course imagery to simulate strategic outcomes and analyze how different skill profiles influence performance. In particular, we assess the relative impact of driving and putting, challenging the popular adage “Drive for show, putt for dough.” These results support the value of our methodology as a robust proof of concept and a foundation for future enhancements. All code and analyses (in R and C++) are made available as open-source resources to support reproducibility and further research. |
Author | Stauffer, Gautier Guillot, Matthieu |
Author_xml | – sequence: 1 givenname: Gautier orcidid: 0000-0002-2809-8447 surname: Stauffer fullname: Stauffer, Gautier – sequence: 2 givenname: Matthieu surname: Guillot fullname: Guillot, Matthieu |
BookMark | eNot0E1OQjEYheHGaCKgG3DUBVj9-svt0KCiCcaJjpvSH7gGbklbNDhiIbo5VqKCo5N3cgZPHx13qQsIXVC4ogDD6wJAGyDAJAGqpCbqCPWoopxoJZtj1AMtOBGg2Cnql_IGwNiQ0R56GqdFxKVmW8Nsg9Oqtsv209Y2ddh2Htd5wLvt121u3wOOKeMyTx-XeLWudZ8-rWfz3fYbW29n4QydRLso4fx_B-j1_u5l9EAmz-PH0c2EOCZEJW4qmZCy0doLz6NVOgbGQ9O4yKRzIQTvHTQglXLOT0FxEfxQUR9pVMxrPkDs8OtyKiWHaFa5Xdq8MRTMH4g5gJhfELMHMYr_AFRzWFU |
Cites_doi | 10.1109/WSC.2008.4736403 10.1016/j.jcorpfin.2014.05.003 10.5351/KJAS.2017.30.1.041 10.1109/IJCNN.2010.5596458 10.1016/j.cad.2010.11.006 10.1515/1559-0410.1495 10.1016/j.jebo.2015.04.007 10.1177/1527002503260797 10.1287/inte.1120.0626 10.1007/s00180-024-01555-5 10.1123/ijgs.2014-0016 10.1109/AIM.2013.6584323 10.1147/sj.41.0025 10.1260/1747-9541.5.2.205 10.1080/02640414.2017.1347269 10.1177/1527002514528517 10.1177/1527002518794788 10.1016/j.ijforecast.2011.01.004 10.1515/1559-0410.1476 10.1287/inte.1110.0615 10.1515/jqas-2014-0043 10.1109/QEST.2012.40 10.2202/1559-0410.1268 10.1260/174795408785024225 10.1198/016214507000000310 10.1109/WSC.2009.5429280 10.1016/j.aci.2017.09.005 10.3233/JSA-180214 10.1142/S0218001413550100 10.1007/978-3-030-55240-4_14 10.1016/j.ejor.2018.10.052 10.1080/02640414.2014.893370 10.2202/1559-0410.1161 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1007/s00180-025-01659-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1613-9658 |
ExternalDocumentID | 10_1007_s00180_025_01659_6 |
GroupedDBID | .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BENPR BGNMA BSONS CITATION CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAS LLZTM M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR |
ID | FETCH-LOGICAL-c244t-cb52455899d4d3fa69fe23e88cf25cceeeddc080566ccdb0634ed761df1f62d93 |
ISSN | 0943-4062 |
IngestDate | Thu Jul 31 01:00:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c244t-cb52455899d4d3fa69fe23e88cf25cceeeddc080566ccdb0634ed761df1f62d93 |
ORCID | 0000-0002-2809-8447 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00180-025-01659-6.pdf |
ParticipantIDs | crossref_primary_10_1007_s00180_025_01659_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-26 |
PublicationDateYYYYMMDD | 2025-07-26 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics |
PublicationYear | 2025 |
References | J Bresenham (1659_CR6) 1965; 4 C Drappi (1659_CR15) 2018; 5 E Gnagy (1659_CR18) 2015; 4 DC Hickman (1659_CR24) 2019; 20 1659_CR41 1659_CR22 1659_CR44 1659_CR4 1659_CR21 1659_CR43 E Trumbelj (1659_CR42) 2012; 28 1659_CR26 1659_CR25 1659_CR28 1659_CR27 J Lim (1659_CR30) 2017; 30 DC Hickman (1659_CR23) 2015; 116 CD Baugher (1659_CR5) 2016; 17 M Broadie (1659_CR8) 2012; 42 C Au (1659_CR3) 2011; 43 N James (1659_CR29) 2008; 3 J Arkes (1659_CR2) 2016; 11 1659_CR7 S Robertson (1659_CR34) 2014; 32 1659_CR9 M Pfeiffer (1659_CR33) 2010; 5 M Guillot (1659_CR20) 2018; 285 1659_CR31 1659_CR13 Ryan Elmore (1659_CR16) 2018; 4 A Terroba (1659_CR40) 2013; 27 1659_CR12 B Rotella (1659_CR35) 2012 1659_CR37 1659_CR36 1659_CR17 S Ozbeklik (1659_CR32) 2017; 44 1659_CR39 M Stockl (1659_CR38) 2018; 36 RA Connolly (1659_CR11) 2008; 103 DL Alexander (1659_CR1) 2005; 6 RA Connolly (1659_CR14) 2012; 42 CM Grinstead (1659_CR19) 1997 RP Bunker (1659_CR10) 2019; 15 |
References_xml | – ident: 1659_CR4 doi: 10.1109/WSC.2008.4736403 – ident: 1659_CR7 – volume: 44 start-page: 506 year: 2017 ident: 1659_CR32 publication-title: J Corp Financ doi: 10.1016/j.jcorpfin.2014.05.003 – volume: 30 start-page: 41 issue: 1 year: 2017 ident: 1659_CR30 publication-title: Korean J Appl Stat doi: 10.5351/KJAS.2017.30.1.041 – volume-title: Introduction to probability year: 1997 ident: 1659_CR19 – ident: 1659_CR27 doi: 10.1109/IJCNN.2010.5596458 – volume: 43 start-page: 417 issue: 4 year: 2011 ident: 1659_CR3 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.11.006 – ident: 1659_CR13 doi: 10.1515/1559-0410.1495 – volume: 116 start-page: 319 year: 2015 ident: 1659_CR23 publication-title: J Econ Behav Organ doi: 10.1016/j.jebo.2015.04.007 – volume: 6 start-page: 46 issue: 1 year: 2005 ident: 1659_CR1 publication-title: J Sports Econ doi: 10.1177/1527002503260797 – volume: 42 start-page: 146 issue: 2 year: 2012 ident: 1659_CR8 publication-title: Interfaces doi: 10.1287/inte.1120.0626 – ident: 1659_CR43 doi: 10.1007/s00180-024-01555-5 – volume: 4 start-page: 89 issue: 2 year: 2015 ident: 1659_CR18 publication-title: Int J Golf Sci doi: 10.1123/ijgs.2014-0016 – ident: 1659_CR39 doi: 10.1109/AIM.2013.6584323 – ident: 1659_CR37 – ident: 1659_CR44 – volume: 4 start-page: 25 year: 1965 ident: 1659_CR6 publication-title: IBM Syst J doi: 10.1147/sj.41.0025 – volume: 11 start-page: 99 issue: 2 year: 2016 ident: 1659_CR2 publication-title: Int J Sport Financ – volume-title: Golf is not a game of perfect year: 2012 ident: 1659_CR35 – volume: 5 start-page: 205 issue: 2 year: 2010 ident: 1659_CR33 publication-title: Int J Sports Sci Coach doi: 10.1260/1747-9541.5.2.205 – volume: 36 start-page: 978 issue: 9 year: 2018 ident: 1659_CR38 publication-title: J Sports Sci doi: 10.1080/02640414.2017.1347269 – ident: 1659_CR26 – volume: 17 start-page: 207 issue: 2 year: 2016 ident: 1659_CR5 publication-title: J Sports Econ doi: 10.1177/1527002514528517 – volume: 20 start-page: 509 issue: 4 year: 2019 ident: 1659_CR24 publication-title: J Sports Econ doi: 10.1177/1527002518794788 – volume: 28 start-page: 532 issue: 2 year: 2012 ident: 1659_CR42 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2011.01.004 – ident: 1659_CR21 doi: 10.1515/1559-0410.1476 – volume: 42 start-page: 554 issue: 6 year: 2012 ident: 1659_CR14 publication-title: Interfaces doi: 10.1287/inte.1110.0615 – ident: 1659_CR22 doi: 10.1515/jqas-2014-0043 – volume: 5 start-page: 1 issue: 2 year: 2018 ident: 1659_CR15 publication-title: J Sports Anal – ident: 1659_CR28 – ident: 1659_CR31 doi: 10.1109/QEST.2012.40 – ident: 1659_CR17 doi: 10.2202/1559-0410.1268 – volume: 3 start-page: 145 issue: 1 year: 2008 ident: 1659_CR29 publication-title: Int J Sports Sci Coach doi: 10.1260/174795408785024225 – volume: 103 start-page: 74 issue: 481 year: 2008 ident: 1659_CR11 publication-title: J Am Stat Assoc doi: 10.1198/016214507000000310 – ident: 1659_CR9 doi: 10.1109/WSC.2009.5429280 – volume: 15 start-page: 27 issue: 1 year: 2019 ident: 1659_CR10 publication-title: Appl Comput Inform doi: 10.1016/j.aci.2017.09.005 – ident: 1659_CR41 – volume: 4 start-page: 275 issue: 4 year: 2018 ident: 1659_CR16 publication-title: J Sports Anal doi: 10.3233/JSA-180214 – ident: 1659_CR36 – volume: 27 start-page: 1355010 issue: 06 year: 2013 ident: 1659_CR40 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001413550100 – ident: 1659_CR25 doi: 10.1007/978-3-030-55240-4_14 – volume: 285 start-page: 148 issue: 1 year: 2018 ident: 1659_CR20 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.10.052 – volume: 32 start-page: 1341 issue: 14 year: 2014 ident: 1659_CR34 publication-title: J Sports Sci doi: 10.1080/02640414.2014.893370 – ident: 1659_CR12 doi: 10.2202/1559-0410.1161 |
SSID | ssj0022721 |
Score | 2.3653612 |
SecondaryResourceType | online_first |
Snippet | This study explores strategic decision-making in professional golf’s Stroke Play format through a computational lens. We develop a Markov Decision Process... |
SourceID | crossref |
SourceType | Index Database |
Title | Golf strategy optimization and the “Drive for show, putt for dough” adage |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIYtlgscEKvY5QO3ElQ7-xGxCqmcqMQt8hZRqbRV6xzg1AeBl-NJGNtJWqBIlEvUWtYozde64_H8MwidEKYUUSn1CGsm5piReCwgCrYqPCaBSlMXzGndR7ft4O4xfJw0QbTqEs3PxOtMXcl_qMIYcDUq2TnI1kZhAF4DX7gCYbj-ifFNv5s3Rq6-7EujD7_-51JWWSdGVskMF5fDqsD36Mmd5wwKre2ANJ16qomXDSbZ1wQh1_mhihoaCZKr7lxHZzQrTJsVG2Nn8HknGb83Rafb7ZeqIK2fOqqYjjPQ0AQwnZi9ChgGPiAs107llktwBjxTPmbmYuzyL0xvs6TpWYskClNvRuXrb_9IdZ5gXVPZ2sjARmZtZNEiWqZxbA_m2_S83mLT2Crt6nstZVJWLPnjPqZckSmf4mEdrZWbAXzuyG6gBdXbRKutupLuaAu1DGNcMcbTjDEwxjAVf4zfLF0MMLGhe4oNW_vWsv0Yv2NLdRu1r68eLm69sgWGJ8Dv0p7gIQ3CEDbFMpB-zqI0V9RXSSJyGgpwcJSUplY8OOVCSA7-ZqBkHBGZkzyiMvV30FKv31O7CHPCJIm4oJzJII1EwpTweTMVjOaSKLKHGtXTyAau0kn2-_Pfn2v2AVqZfKUO0ZIeFuoInDnNjy2_T3HIRlk |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golf+strategy+optimization+and+the+%E2%80%9CDrive+for+show%2C+putt+for+dough%E2%80%9D+adage&rft.jtitle=Computational+statistics&rft.au=Stauffer%2C+Gautier&rft.au=Guillot%2C+Matthieu&rft.date=2025-07-26&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007%2Fs00180-025-01659-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_025_01659_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |