Tree oblique for regression with weighted support vector machine
This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning technique in which a linear combination of a set of predictors is used to find the hyperplane that partitions the features’ space at each no...
Saved in:
Published in | Computational statistics |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
10.07.2025
|
Online Access | Get full text |
ISSN | 0943-4062 1613-9658 |
DOI | 10.1007/s00180-025-01647-w |
Cover
Abstract | This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning technique in which a linear combination of a set of predictors is used to find the hyperplane that partitions the features’ space at each node. Our novel algorithm, called Tree Oblique for Regression with weighted Support vector machine (TORS), at each node, first applies a feature selection method based on the predictors’ correlation with the dependent variable, and then dichotomizes the continuous dependent variable and applies a weighted support vector machine classifier with linear kernel to discover the oblique hyperplane that minimizes the deviance. We evaluate the performance of TORS on a set of different types of simulated data, and we find out that TORS performs well in any type of dataset. Moreover, we assess its performance by comparing the prediction power in terms of root mean squared error with respect to that obtained by other oblique tree models and standard decision tree, using both simulated and real data. Based on empirical evidence, TORS outperforms the other oblique decision trees and has the additional advantage of being easier to interpret. |
---|---|
AbstractList | This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning technique in which a linear combination of a set of predictors is used to find the hyperplane that partitions the features’ space at each node. Our novel algorithm, called Tree Oblique for Regression with weighted Support vector machine (TORS), at each node, first applies a feature selection method based on the predictors’ correlation with the dependent variable, and then dichotomizes the continuous dependent variable and applies a weighted support vector machine classifier with linear kernel to discover the oblique hyperplane that minimizes the deviance. We evaluate the performance of TORS on a set of different types of simulated data, and we find out that TORS performs well in any type of dataset. Moreover, we assess its performance by comparing the prediction power in terms of root mean squared error with respect to that obtained by other oblique tree models and standard decision tree, using both simulated and real data. Based on empirical evidence, TORS outperforms the other oblique decision trees and has the additional advantage of being easier to interpret. |
Author | Carta, Andrea Frigau, Luca |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0003-4077-1822 surname: Carta fullname: Carta, Andrea – sequence: 2 givenname: Luca surname: Frigau fullname: Frigau, Luca |
BookMark | eNot0EFOwzAQhWELFYm0cAFWvoBhZuLEyQ5UAUWqxKasrdQZN0FtEuyUiNtTKKu3-fUW31zMur5jIW4R7hDA3EcALEABZQow10ZNFyLBHFNV5lkxEwmUOlUacroS8xg_AIgMYSIeNoFZ9tt9-3lk6fsgA-8Cx9j2nZzasZETt7tm5FrG4zD0YZRf7MZTd6hc03Z8LS59tY98878L8f78tFmu1Prt5XX5uFaOtB5V5WtdOI9QcsGkC59qt_WGoTCkfQ6kKUNXl0jeoIO6dFmmHZJzuc4ITLoQdP51oY8xsLdDaA9V-LYI9tfAng3sycD-Gdgp_QGDulG3 |
Cites_doi | 10.1214/13-EJS810 10.1109/IJCNN.1998.687237 10.1142/S0218001407005703 10.1007/s10589-013-9560-9 10.1613/jair.63 10.1016/0020-0190(76)90095-8 10.1007/978-3-319-19066-2_45 10.1007/s00180-022-01195-7 10.1186/s40537-020-00305-w 10.1136/bmj.332.7549.1080 10.1016/j.csda.2015.11.006 10.1023/A:1022643204877 10.1080/01621459.1988.10478652 10.1134/S1054661817040228 10.1186/s13040-017-0154-4 10.1109/TSMCA.2002.806499 10.1201/9781315108230 10.1109/TPAMI.2006.211 10.1023/A:1022627411411 10.1007/s00180-022-01207-6 10.1016/j.eswa.2019.113072 10.1109/TEVC.2002.806857 10.1016/j.eswa.2023.120449 10.1080/10618600.2023.2231048 10.1016/j.neucom.2019.10.118 10.5120/14174-2023 10.1007/978-3-030-85713-4_6 10.1016/j.neucom.2013.01.067 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1007/s00180-025-01647-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1613-9658 |
ExternalDocumentID | 10_1007_s00180_025_01647_w |
GroupedDBID | .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BENPR BSONS CITATION CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAS LLZTM M2O MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR |
ID | FETCH-LOGICAL-c244t-afd48cf109e8e248f34cbf7e08724f6024251cd912f71c0d9c554c12cc6452073 |
ISSN | 0943-4062 |
IngestDate | Wed Jul 16 16:48:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c244t-afd48cf109e8e248f34cbf7e08724f6024251cd912f71c0d9c554c12cc6452073 |
ORCID | 0000-0003-4077-1822 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00180-025-01647-w.pdf |
ParticipantIDs | crossref_primary_10_1007_s00180_025_01647_w |
PublicationCentury | 2000 |
PublicationDate | 2025-07-10 |
PublicationDateYYYYMMDD | 2025-07-10 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics |
PublicationYear | 2025 |
References | DG Altman (1647_CR1) 2006; 332 MV Shcherbakov (1647_CR34) 2013; 24 JT Hancock (1647_CR15) 2020; 7 L Breiman (1647_CR7) 1984 L Hyafil (1647_CR16) 1976; 5 YD Lee (1647_CR20) 2013; 7 1647_CR9 JJ Rodriguez (1647_CR33) 2006; 28 M Ganaie (1647_CR14) 2020; 143 R Blaser (1647_CR5) 2016; 17 A Zheng (1647_CR44) 2021; 20 DC Wickramarachchi (1647_CR41) 2016; 96 1647_CR30 X-B Li (1647_CR21) 2003; 33 RS Olson (1647_CR27) 2017; 10 1647_CR2 1647_CR4 1647_CR11 W-Y Loh (1647_CR23) 1988; 83 1647_CR35 1647_CR38 1647_CR37 1647_CR17 F Pargent (1647_CR28) 2022; 37 Z Chen (1647_CR12) 2004; 2010 G Van Rossum (1647_CR39) 2009 T Jung (1647_CR18) 2023; 229 JR Quinlan (1647_CR31) 1986; 1 X Yang (1647_CR42) 2007; 21 TM Tomita (1647_CR36) 2020; 21 BL Robertson (1647_CR32) 2013; 56 1647_CR40 1647_CR43 M Kuhn (1647_CR19) 2019 J Cervantes (1647_CR10) 2020; 408 C Cortes (1647_CR13) 1995; 20 1647_CR22 RC Barros (1647_CR3) 2014; 135 1647_CR24 Z Qiao (1647_CR29) 2017; 27 SK Murthy (1647_CR25) 1994; 2 1647_CR26 F Bollwein (1647_CR6) 2022; 37 E Cantú-Paz (1647_CR8) 2003; 7 |
References_xml | – volume: 7 start-page: 1369 issue: 1 year: 2013 ident: 1647_CR20 publication-title: Electron J Statist doi: 10.1214/13-EJS810 – ident: 1647_CR40 – ident: 1647_CR4 doi: 10.1109/IJCNN.1998.687237 – volume: 21 start-page: 961 issue: 05 year: 2007 ident: 1647_CR42 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001407005703 – ident: 1647_CR9 – volume: 56 start-page: 291 issue: 2 year: 2013 ident: 1647_CR32 publication-title: Comput Optim Appl doi: 10.1007/s10589-013-9560-9 – ident: 1647_CR38 – volume: 2 start-page: 1 year: 1994 ident: 1647_CR25 publication-title: J Artif Intell Res doi: 10.1613/jair.63 – volume: 20 start-page: 1 issue: 1 year: 2021 ident: 1647_CR44 publication-title: Data Sci J – volume: 5 start-page: 15 issue: 1 year: 1976 ident: 1647_CR16 publication-title: Inf Process Lett doi: 10.1016/0020-0190(76)90095-8 – ident: 1647_CR2 doi: 10.1007/978-3-319-19066-2_45 – volume-title: Python 3 reference manual year: 2009 ident: 1647_CR39 – volume: 37 start-page: 2203 issue: 5 year: 2022 ident: 1647_CR6 publication-title: Comput Stat doi: 10.1007/s00180-022-01195-7 – volume: 7 start-page: 28 issue: 1 year: 2020 ident: 1647_CR15 publication-title: J Big Data doi: 10.1186/s40537-020-00305-w – volume: 17 start-page: 126 issue: 1 year: 2016 ident: 1647_CR5 publication-title: J Mach Learn Res – volume: 332 start-page: 1080 issue: 7549 year: 2006 ident: 1647_CR1 publication-title: BMJ doi: 10.1136/bmj.332.7549.1080 – volume: 96 start-page: 12 year: 2016 ident: 1647_CR41 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2015.11.006 – volume: 1 start-page: 81 year: 1986 ident: 1647_CR31 publication-title: Mach Learn doi: 10.1023/A:1022643204877 – volume: 83 start-page: 715 issue: 403 year: 1988 ident: 1647_CR23 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1988.10478652 – volume: 27 start-page: 855 year: 2017 ident: 1647_CR29 publication-title: Pattern Recognit Image Anal doi: 10.1134/S1054661817040228 – ident: 1647_CR30 – volume: 10 start-page: 1 issue: 36 year: 2017 ident: 1647_CR27 publication-title: BioData Mining doi: 10.1186/s13040-017-0154-4 – volume: 33 start-page: 194 issue: 2 year: 2003 ident: 1647_CR21 publication-title: IEEE Trans Syst Man Cybern Part A doi: 10.1109/TSMCA.2002.806499 – volume-title: Feature engineering and selection: a practical approach for predictive models year: 2019 ident: 1647_CR19 doi: 10.1201/9781315108230 – volume: 28 start-page: 1619 issue: 10 year: 2006 ident: 1647_CR33 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.211 – ident: 1647_CR37 – volume: 20 start-page: 273 year: 1995 ident: 1647_CR13 publication-title: Mach Learn doi: 10.1023/A:1022627411411 – volume: 37 start-page: 2671 issue: 5 year: 2022 ident: 1647_CR28 publication-title: Comput Stat doi: 10.1007/s00180-022-01207-6 – ident: 1647_CR35 – ident: 1647_CR43 – volume-title: Classification and regression trees year: 1984 ident: 1647_CR7 – volume: 2010 start-page: 2004 year: 2004 ident: 1647_CR12 publication-title: Preprint Ser – volume: 143 year: 2020 ident: 1647_CR14 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113072 – volume: 21 start-page: 4193 issue: 1 year: 2020 ident: 1647_CR36 publication-title: J Mach Learn Res – volume: 7 start-page: 54 issue: 1 year: 2003 ident: 1647_CR8 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.806857 – volume: 229 year: 2023 ident: 1647_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120449 – ident: 1647_CR26 – ident: 1647_CR17 doi: 10.1080/10618600.2023.2231048 – volume: 408 start-page: 189 year: 2020 ident: 1647_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – ident: 1647_CR22 – ident: 1647_CR11 doi: 10.5120/14174-2023 – ident: 1647_CR24 doi: 10.1007/978-3-030-85713-4_6 – volume: 24 start-page: 171 issue: 24 year: 2013 ident: 1647_CR34 publication-title: World Appl Sci J – volume: 135 start-page: 3 year: 2014 ident: 1647_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.067 |
SSID | ssj0022721 |
Score | 2.3642638 |
SecondaryResourceType | online_first |
Snippet | This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning... |
SourceID | crossref |
SourceType | Index Database |
Title | Tree oblique for regression with weighted support vector machine |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPvFNDt6WSBuzfdwUURZBT7uwt5Lm4UXXZR8u-OudTNJ21RXUSyilDKVfmXwz-WaGkPPYRFIKJ5WysWYi5RmTSSKZttbmZZbLBGcRPDwm3b64H3QGzShGrC6ZlhfqfWldyX9QhXuAq6uS_QOytVG4AdeAL6yAMKy_w3hsIOQvn7EHq9MLjs2T17X64uz2HBOfwCkns5Ej2u03TNK3X1BC-blNAY53qFKDrs7It3BuDinGnmiiBLJ25ncQ3csZRvezoPoJOQTeccnJoCYNyUBxCZFk8IvGu0LY6JlrDbPU0XpthZtblkUMLbrGZGzebCvVUfqX3abWANb9ktFGATYKtFHMV8kaT1M8dO_z6zp85ilW0dXvGkqgsBDy23ss0IwFvtDbIpuB6NNrj9o2WTHDHbLxUHfJneySK4cfDfhRwI82-FGHH63wowE_6vGjAb890r-77d10WZhowRTQqCmTVotM2TjKTWa4yOylUKVNTZSlXNgE479Y6TzmNo1VpHMFbE_FXCl3_gzeeJ-0hq9Dc0Co7miuYplCvJqLLFFSRaVSloPBpDRaH5J29QGKkW9cUvz8yY_-9PQxWW_-ohPSmo5n5hS42bQ8Q8g-AL04NwU |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree+oblique+for+regression+with+weighted+support+vector+machine&rft.jtitle=Computational+statistics&rft.au=Carta%2C+Andrea&rft.au=Frigau%2C+Luca&rft.date=2025-07-10&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007%2Fs00180-025-01647-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_025_01647_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |