Tree oblique for regression with weighted support vector machine

This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning technique in which a linear combination of a set of predictors is used to find the hyperplane that partitions the features’ space at each no...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics
Main Authors Carta, Andrea, Frigau, Luca
Format Journal Article
LanguageEnglish
Published 10.07.2025
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-025-01647-w

Cover

Abstract This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning technique in which a linear combination of a set of predictors is used to find the hyperplane that partitions the features’ space at each node. Our novel algorithm, called Tree Oblique for Regression with weighted Support vector machine (TORS), at each node, first applies a feature selection method based on the predictors’ correlation with the dependent variable, and then dichotomizes the continuous dependent variable and applies a weighted support vector machine classifier with linear kernel to discover the oblique hyperplane that minimizes the deviance. We evaluate the performance of TORS on a set of different types of simulated data, and we find out that TORS performs well in any type of dataset. Moreover, we assess its performance by comparing the prediction power in terms of root mean squared error with respect to that obtained by other oblique tree models and standard decision tree, using both simulated and real data. Based on empirical evidence, TORS outperforms the other oblique decision trees and has the additional advantage of being easier to interpret.
AbstractList This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning technique in which a linear combination of a set of predictors is used to find the hyperplane that partitions the features’ space at each node. Our novel algorithm, called Tree Oblique for Regression with weighted Support vector machine (TORS), at each node, first applies a feature selection method based on the predictors’ correlation with the dependent variable, and then dichotomizes the continuous dependent variable and applies a weighted support vector machine classifier with linear kernel to discover the oblique hyperplane that minimizes the deviance. We evaluate the performance of TORS on a set of different types of simulated data, and we find out that TORS performs well in any type of dataset. Moreover, we assess its performance by comparing the prediction power in terms of root mean squared error with respect to that obtained by other oblique tree models and standard decision tree, using both simulated and real data. Based on empirical evidence, TORS outperforms the other oblique decision trees and has the additional advantage of being easier to interpret.
Author Carta, Andrea
Frigau, Luca
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0003-4077-1822
  surname: Carta
  fullname: Carta, Andrea
– sequence: 2
  givenname: Luca
  surname: Frigau
  fullname: Frigau, Luca
BookMark eNot0EFOwzAQhWELFYm0cAFWvoBhZuLEyQ5UAUWqxKasrdQZN0FtEuyUiNtTKKu3-fUW31zMur5jIW4R7hDA3EcALEABZQow10ZNFyLBHFNV5lkxEwmUOlUacroS8xg_AIgMYSIeNoFZ9tt9-3lk6fsgA-8Cx9j2nZzasZETt7tm5FrG4zD0YZRf7MZTd6hc03Z8LS59tY98878L8f78tFmu1Prt5XX5uFaOtB5V5WtdOI9QcsGkC59qt_WGoTCkfQ6kKUNXl0jeoIO6dFmmHZJzuc4ITLoQdP51oY8xsLdDaA9V-LYI9tfAng3sycD-Gdgp_QGDulG3
Cites_doi 10.1214/13-EJS810
10.1109/IJCNN.1998.687237
10.1142/S0218001407005703
10.1007/s10589-013-9560-9
10.1613/jair.63
10.1016/0020-0190(76)90095-8
10.1007/978-3-319-19066-2_45
10.1007/s00180-022-01195-7
10.1186/s40537-020-00305-w
10.1136/bmj.332.7549.1080
10.1016/j.csda.2015.11.006
10.1023/A:1022643204877
10.1080/01621459.1988.10478652
10.1134/S1054661817040228
10.1186/s13040-017-0154-4
10.1109/TSMCA.2002.806499
10.1201/9781315108230
10.1109/TPAMI.2006.211
10.1023/A:1022627411411
10.1007/s00180-022-01207-6
10.1016/j.eswa.2019.113072
10.1109/TEVC.2002.806857
10.1016/j.eswa.2023.120449
10.1080/10618600.2023.2231048
10.1016/j.neucom.2019.10.118
10.5120/14174-2023
10.1007/978-3-030-85713-4_6
10.1016/j.neucom.2013.01.067
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1007/s00180-025-01647-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1613-9658
ExternalDocumentID 10_1007_s00180_025_01647_w
GroupedDBID .86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BENPR
BSONS
CITATION
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAS
LLZTM
M2O
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ID FETCH-LOGICAL-c244t-afd48cf109e8e248f34cbf7e08724f6024251cd912f71c0d9c554c12cc6452073
ISSN 0943-4062
IngestDate Wed Jul 16 16:48:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c244t-afd48cf109e8e248f34cbf7e08724f6024251cd912f71c0d9c554c12cc6452073
ORCID 0000-0003-4077-1822
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00180-025-01647-w.pdf
ParticipantIDs crossref_primary_10_1007_s00180_025_01647_w
PublicationCentury 2000
PublicationDate 2025-07-10
PublicationDateYYYYMMDD 2025-07-10
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-10
  day: 10
PublicationDecade 2020
PublicationTitle Computational statistics
PublicationYear 2025
References DG Altman (1647_CR1) 2006; 332
MV Shcherbakov (1647_CR34) 2013; 24
JT Hancock (1647_CR15) 2020; 7
L Breiman (1647_CR7) 1984
L Hyafil (1647_CR16) 1976; 5
YD Lee (1647_CR20) 2013; 7
1647_CR9
JJ Rodriguez (1647_CR33) 2006; 28
M Ganaie (1647_CR14) 2020; 143
R Blaser (1647_CR5) 2016; 17
A Zheng (1647_CR44) 2021; 20
DC Wickramarachchi (1647_CR41) 2016; 96
1647_CR30
X-B Li (1647_CR21) 2003; 33
RS Olson (1647_CR27) 2017; 10
1647_CR2
1647_CR4
1647_CR11
W-Y Loh (1647_CR23) 1988; 83
1647_CR35
1647_CR38
1647_CR37
1647_CR17
F Pargent (1647_CR28) 2022; 37
Z Chen (1647_CR12) 2004; 2010
G Van Rossum (1647_CR39) 2009
T Jung (1647_CR18) 2023; 229
JR Quinlan (1647_CR31) 1986; 1
X Yang (1647_CR42) 2007; 21
TM Tomita (1647_CR36) 2020; 21
BL Robertson (1647_CR32) 2013; 56
1647_CR40
1647_CR43
M Kuhn (1647_CR19) 2019
J Cervantes (1647_CR10) 2020; 408
C Cortes (1647_CR13) 1995; 20
1647_CR22
RC Barros (1647_CR3) 2014; 135
1647_CR24
Z Qiao (1647_CR29) 2017; 27
SK Murthy (1647_CR25) 1994; 2
1647_CR26
F Bollwein (1647_CR6) 2022; 37
E Cantú-Paz (1647_CR8) 2003; 7
References_xml – volume: 7
  start-page: 1369
  issue: 1
  year: 2013
  ident: 1647_CR20
  publication-title: Electron J Statist
  doi: 10.1214/13-EJS810
– ident: 1647_CR40
– ident: 1647_CR4
  doi: 10.1109/IJCNN.1998.687237
– volume: 21
  start-page: 961
  issue: 05
  year: 2007
  ident: 1647_CR42
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001407005703
– ident: 1647_CR9
– volume: 56
  start-page: 291
  issue: 2
  year: 2013
  ident: 1647_CR32
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-013-9560-9
– ident: 1647_CR38
– volume: 2
  start-page: 1
  year: 1994
  ident: 1647_CR25
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.63
– volume: 20
  start-page: 1
  issue: 1
  year: 2021
  ident: 1647_CR44
  publication-title: Data Sci J
– volume: 5
  start-page: 15
  issue: 1
  year: 1976
  ident: 1647_CR16
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(76)90095-8
– ident: 1647_CR2
  doi: 10.1007/978-3-319-19066-2_45
– volume-title: Python 3 reference manual
  year: 2009
  ident: 1647_CR39
– volume: 37
  start-page: 2203
  issue: 5
  year: 2022
  ident: 1647_CR6
  publication-title: Comput Stat
  doi: 10.1007/s00180-022-01195-7
– volume: 7
  start-page: 28
  issue: 1
  year: 2020
  ident: 1647_CR15
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00305-w
– volume: 17
  start-page: 126
  issue: 1
  year: 2016
  ident: 1647_CR5
  publication-title: J Mach Learn Res
– volume: 332
  start-page: 1080
  issue: 7549
  year: 2006
  ident: 1647_CR1
  publication-title: BMJ
  doi: 10.1136/bmj.332.7549.1080
– volume: 96
  start-page: 12
  year: 2016
  ident: 1647_CR41
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2015.11.006
– volume: 1
  start-page: 81
  year: 1986
  ident: 1647_CR31
  publication-title: Mach Learn
  doi: 10.1023/A:1022643204877
– volume: 83
  start-page: 715
  issue: 403
  year: 1988
  ident: 1647_CR23
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478652
– volume: 27
  start-page: 855
  year: 2017
  ident: 1647_CR29
  publication-title: Pattern Recognit Image Anal
  doi: 10.1134/S1054661817040228
– ident: 1647_CR30
– volume: 10
  start-page: 1
  issue: 36
  year: 2017
  ident: 1647_CR27
  publication-title: BioData Mining
  doi: 10.1186/s13040-017-0154-4
– volume: 33
  start-page: 194
  issue: 2
  year: 2003
  ident: 1647_CR21
  publication-title: IEEE Trans Syst Man Cybern Part A
  doi: 10.1109/TSMCA.2002.806499
– volume-title: Feature engineering and selection: a practical approach for predictive models
  year: 2019
  ident: 1647_CR19
  doi: 10.1201/9781315108230
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  ident: 1647_CR33
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.211
– ident: 1647_CR37
– volume: 20
  start-page: 273
  year: 1995
  ident: 1647_CR13
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
– volume: 37
  start-page: 2671
  issue: 5
  year: 2022
  ident: 1647_CR28
  publication-title: Comput Stat
  doi: 10.1007/s00180-022-01207-6
– ident: 1647_CR35
– ident: 1647_CR43
– volume-title: Classification and regression trees
  year: 1984
  ident: 1647_CR7
– volume: 2010
  start-page: 2004
  year: 2004
  ident: 1647_CR12
  publication-title: Preprint Ser
– volume: 143
  year: 2020
  ident: 1647_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113072
– volume: 21
  start-page: 4193
  issue: 1
  year: 2020
  ident: 1647_CR36
  publication-title: J Mach Learn Res
– volume: 7
  start-page: 54
  issue: 1
  year: 2003
  ident: 1647_CR8
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.806857
– volume: 229
  year: 2023
  ident: 1647_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120449
– ident: 1647_CR26
– ident: 1647_CR17
  doi: 10.1080/10618600.2023.2231048
– volume: 408
  start-page: 189
  year: 2020
  ident: 1647_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– ident: 1647_CR22
– ident: 1647_CR11
  doi: 10.5120/14174-2023
– ident: 1647_CR24
  doi: 10.1007/978-3-030-85713-4_6
– volume: 24
  start-page: 171
  issue: 24
  year: 2013
  ident: 1647_CR34
  publication-title: World Appl Sci J
– volume: 135
  start-page: 3
  year: 2014
  ident: 1647_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.067
SSID ssj0022721
Score 2.3642638
SecondaryResourceType online_first
Snippet This work presents a new approach to learning oblique decision trees for regression tasks. Oblique decision trees are a type of supervised statistical learning...
SourceID crossref
SourceType Index Database
Title Tree oblique for regression with weighted support vector machine
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPvFNDt6WSBuzfdwUURZBT7uwt5Lm4UXXZR8u-OudTNJ21RXUSyilDKVfmXwz-WaGkPPYRFIKJ5WysWYi5RmTSSKZttbmZZbLBGcRPDwm3b64H3QGzShGrC6ZlhfqfWldyX9QhXuAq6uS_QOytVG4AdeAL6yAMKy_w3hsIOQvn7EHq9MLjs2T17X64uz2HBOfwCkns5Ej2u03TNK3X1BC-blNAY53qFKDrs7It3BuDinGnmiiBLJ25ncQ3csZRvezoPoJOQTeccnJoCYNyUBxCZFk8IvGu0LY6JlrDbPU0XpthZtblkUMLbrGZGzebCvVUfqX3abWANb9ktFGATYKtFHMV8kaT1M8dO_z6zp85ilW0dXvGkqgsBDy23ss0IwFvtDbIpuB6NNrj9o2WTHDHbLxUHfJneySK4cfDfhRwI82-FGHH63wowE_6vGjAb890r-77d10WZhowRTQqCmTVotM2TjKTWa4yOylUKVNTZSlXNgE479Y6TzmNo1VpHMFbE_FXCl3_gzeeJ-0hq9Dc0Co7miuYplCvJqLLFFSRaVSloPBpDRaH5J29QGKkW9cUvz8yY_-9PQxWW_-ohPSmo5n5hS42bQ8Q8g-AL04NwU
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree+oblique+for+regression+with+weighted+support+vector+machine&rft.jtitle=Computational+statistics&rft.au=Carta%2C+Andrea&rft.au=Frigau%2C+Luca&rft.date=2025-07-10&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007%2Fs00180-025-01647-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_025_01647_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon