A robust conductive covalent organic framework for ultra-stable potassium storage

Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 45; pp. 24661 - 24666
Main Authors Li, Yu-Yang, Xiao, Ji-Miao, Xie, Mo, Wu, Lei-Feng, Chen, Yan-Fei, Yuan, Shuai, Bin, De-Shan, Zuo, Jing-lin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K + /e − ) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g −1 over more than 800 cycles at a current density of 1C (0.3 A g −1 ). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage. A conductive and redox-active COF (Ni-TTF) have been synthesized and applied as an promising anode for KIBs, exhibiting remarkable stability with no capacity loss after 2500 cycles at 2C, making it one of the best organic anode materials for KIBs.
AbstractList Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K + /e − ) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g −1 over more than 800 cycles at a current density of 1C (0.3 A g −1 ). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage. A conductive and redox-active COF (Ni-TTF) have been synthesized and applied as an promising anode for KIBs, exhibiting remarkable stability with no capacity loss after 2500 cycles at 2C, making it one of the best organic anode materials for KIBs.
Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K+/e−) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g−1 over more than 800 cycles at a current density of 1C (0.3 A g−1). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage.
Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K + /e − ) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g −1 over more than 800 cycles at a current density of 1C (0.3 A g −1 ). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage.
Author Bin, De-Shan
Li, Yu-Yang
Zuo, Jing-lin
Yuan, Shuai
Xiao, Ji-Miao
Chen, Yan-Fei
Xie, Mo
Wu, Lei-Feng
AuthorAffiliation Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
State Key Laboratory of Coordination Chemistry
Jinan University
Nanjing University
School of Chemistry and Chemical Engineering
College of Chemistry and Materials Science
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Coordination Chemistry
– sequence: 0
  name: Nanjing University
– sequence: 0
  name: College of Chemistry and Materials Science
– sequence: 0
  name: Jinan University
– sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
Author_xml – sequence: 1
  givenname: Yu-Yang
  surname: Li
  fullname: Li, Yu-Yang
– sequence: 2
  givenname: Ji-Miao
  surname: Xiao
  fullname: Xiao, Ji-Miao
– sequence: 3
  givenname: Mo
  surname: Xie
  fullname: Xie, Mo
– sequence: 4
  givenname: Lei-Feng
  surname: Wu
  fullname: Wu, Lei-Feng
– sequence: 5
  givenname: Yan-Fei
  surname: Chen
  fullname: Chen, Yan-Fei
– sequence: 6
  givenname: Shuai
  surname: Yuan
  fullname: Yuan, Shuai
– sequence: 7
  givenname: De-Shan
  surname: Bin
  fullname: Bin, De-Shan
– sequence: 8
  givenname: Jing-lin
  surname: Zuo
  fullname: Zuo, Jing-lin
BookMark eNptkUFLAzEQhYMoWGsv3oWAN2F1tkl2k2OpVoWCCPW8zGazJXW7qUm24r93a6WCOJd5h-_NMG_OyHHrWkPIRQo3KTB1W7GIIJRQ9REZjEFAknOVHR-0lKdkFMIK-pIAmVID8jKh3pVdiFS7tup0tFvTyy02po3U-SW2VtPa49p8OP9Ga-dp10SPSYhYNoZuXMQQbLemITqPS3NOTmpsghn99CF5nd0vpo_J_PnhaTqZJ3rMeUxQsVwzmXEJwghWSoFMoWYZoKgAasx5WRkDdWpKVQmuTApZXlUce5hnjA3J1X7uxrv3zoRYrFzn235lMZaKKSmY2lGwp7R3IXhTF9pGjNa1_Q22KVIodtkVd2wx-c5u1luu_1g23q7Rf_4PX-5hH_SB-30E-wLPoXuB
CitedBy_id crossref_primary_10_1002_smll_202410973
crossref_primary_10_1039_D4TA02504K
crossref_primary_10_1016_j_cej_2024_154743
crossref_primary_10_1021_acs_accounts_4c00228
crossref_primary_10_1016_j_jcis_2024_03_167
crossref_primary_10_1016_j_est_2025_116269
crossref_primary_10_1039_D4NR01092B
Cites_doi 10.1038/s41467-019-13739-5
10.1002/anie.201913174
10.1016/j.elecom.2016.12.005
10.1002/anie.202110373
10.1016/j.jcis.2023.04.107
10.1038/s41467-018-02889-7
10.1002/chem.202301048
10.1039/D3EE00073G
10.1002/smll.201903194
10.1016/j.matt.2019.12.018
10.1126/sciadv.aav7412
10.1002/anie.202103052
10.1002/anie.201805540
10.1002/anie.201906890
10.1073/pnas.1717892115
10.1126/science.1212741
10.1021/jacs.6b12185
10.1038/nenergy.2017.74
10.1021/acsami.7b15314
10.1021/acs.chemrev.9b00535
10.1002/adma.201903176
10.1002/smll.201801806
10.1021/jacs.8b02178
10.1016/j.mattod.2022.02.013
10.1021/acs.chemrev.0c00767
10.1021/acs.jpcc.7b03837
10.1021/ja512437u
10.1016/j.matlet.2018.08.126
10.1002/adfm.201705553
10.1021/acs.chemrev.9b00618
10.1016/j.scib.2022.07.002
10.1016/j.jcis.2023.07.007
10.1039/C4SC02593H
10.1016/j.elecom.2015.09.002
10.1021/acsami.9b16280
10.1016/j.electacta.2018.10.040
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta05959f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 24666
ExternalDocumentID 10_1039_D3TA05959F
d3ta05959f
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c244t-a937c3864805e53b85a39ac360a5d00fa74bdee0f1eb9d549e1067dd4a53b4633
ISSN 2050-7488
IngestDate Mon Jun 30 11:59:42 EDT 2025
Tue Jul 01 01:13:47 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Dec 17 20:58:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c244t-a937c3864805e53b85a39ac360a5d00fa74bdee0f1eb9d549e1067dd4a53b4633
Notes https://doi.org/10.1039/d3ta05959f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6721-3711
0000-0003-3329-0481
0000-0003-1219-8926
PQID 2893985393
PQPubID 2047523
PageCount 6
ParticipantIDs crossref_primary_10_1039_D3TA05959F
rsc_primary_d3ta05959f
proquest_journals_2893985393
crossref_citationtrail_10_1039_D3TA05959F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-21
PublicationDateYYYYMMDD 2023-11-21
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kim (D3TA05959F/cit35/1) 2020; 120
Ma (D3TA05959F/cit32/1) 2019; 293
Zhang (D3TA05959F/cit21/1) 2019; 11
Zhang (D3TA05959F/cit6/1) 2022; 54
Yan (D3TA05959F/cit36/1) 2021; 60
Song (D3TA05959F/cit4/1) 2021; 17
Su (D3TA05959F/cit25/1) 2020; 2
Fan (D3TA05959F/cit2/1) 2020; 120
Cai (D3TA05959F/cit28/1) 2014; 5
Dunn (D3TA05959F/cit3/1) 2011; 334
Park (D3TA05959F/cit26/1) 2015; 137
Li (D3TA05959F/cit29/1) 2023; 29
Liang (D3TA05959F/cit11/1) 2022; 67
Wang (D3TA05959F/cit15/1) 2017; 121
Luo (D3TA05959F/cit24/1) 2018; 57
Shi (D3TA05959F/cit22/1) 2020; 11
Sun (D3TA05959F/cit30/1) 2019; 31
Tian (D3TA05959F/cit1/1) 2021; 121
Komaba (D3TA05959F/cit10/1) 2015; 60
Deng (D3TA05959F/cit18/1) 2017; 75
Luo (D3TA05959F/cit19/1) 2018; 115
Yang (D3TA05959F/cit31/1) 2023; 16
Lin (D3TA05959F/cit13/1) 2023; 645
Zhang (D3TA05959F/cit7/1) 2017; 139
Bin (D3TA05959F/cit12/1) 2018; 140
Lu (D3TA05959F/cit27/1) 2019; 58
Lu (D3TA05959F/cit9/1) 2018; 232
Wang (D3TA05959F/cit14/1) 2023; 650
Fan (D3TA05959F/cit33/1) 2018; 14
Lei (D3TA05959F/cit23/1) 2018; 9
Zhang (D3TA05959F/cit5/1) 2019; 5
Lohse (D3TA05959F/cit20/1) 2018; 28
Liu (D3TA05959F/cit34/1) 2020; 59
Dong (D3TA05959F/cit8/1) 2018; 10
Pan (D3TA05959F/cit16/1) 2021; 60
Peng (D3TA05959F/cit17/1) 2017; 2
References_xml – volume: 11
  start-page: 178
  year: 2020
  ident: D3TA05959F/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13739-5
– volume: 59
  start-page: 3638
  year: 2020
  ident: D3TA05959F/cit34/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913174
– volume: 75
  start-page: 29
  year: 2017
  ident: D3TA05959F/cit18/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.12.005
– volume: 60
  start-page: 24467
  year: 2021
  ident: D3TA05959F/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110373
– volume: 645
  start-page: 654
  year: 2023
  ident: D3TA05959F/cit13/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.04.107
– volume: 9
  start-page: 576
  year: 2018
  ident: D3TA05959F/cit23/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02889-7
– volume: 29
  start-page: e202301048
  year: 2023
  ident: D3TA05959F/cit29/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202301048
– volume: 16
  start-page: 1540
  year: 2023
  ident: D3TA05959F/cit31/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00073G
– volume: 17
  start-page: e1903194
  year: 2021
  ident: D3TA05959F/cit4/1
  publication-title: Small
  doi: 10.1002/smll.201903194
– volume: 2
  start-page: 711
  year: 2020
  ident: D3TA05959F/cit25/1
  publication-title: Matter
  doi: 10.1016/j.matt.2019.12.018
– volume: 5
  start-page: eaav7412
  year: 2019
  ident: D3TA05959F/cit5/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 60
  start-page: 11835
  year: 2021
  ident: D3TA05959F/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103052
– volume: 57
  start-page: 9443
  year: 2018
  ident: D3TA05959F/cit24/1
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201805540
– volume: 58
  start-page: 12392
  year: 2019
  ident: D3TA05959F/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906890
– volume: 115
  start-page: 2004
  year: 2018
  ident: D3TA05959F/cit19/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1717892115
– volume: 334
  start-page: 928
  year: 2011
  ident: D3TA05959F/cit3/1
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 139
  start-page: 3316
  year: 2017
  ident: D3TA05959F/cit7/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12185
– volume: 2
  start-page: 17074
  year: 2017
  ident: D3TA05959F/cit17/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.74
– volume: 10
  start-page: 15542
  year: 2018
  ident: D3TA05959F/cit8/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15314
– volume: 120
  start-page: 7020
  year: 2020
  ident: D3TA05959F/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00535
– volume: 31
  start-page: e1903176
  year: 2019
  ident: D3TA05959F/cit30/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903176
– volume: 14
  start-page: e1801806
  year: 2018
  ident: D3TA05959F/cit33/1
  publication-title: Small
  doi: 10.1002/smll.201801806
– volume: 140
  start-page: 7127
  year: 2018
  ident: D3TA05959F/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02178
– volume: 54
  start-page: 189
  year: 2022
  ident: D3TA05959F/cit6/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2022.02.013
– volume: 121
  start-page: 1623
  year: 2021
  ident: D3TA05959F/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00767
– volume: 121
  start-page: 12652
  year: 2017
  ident: D3TA05959F/cit15/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03837
– volume: 137
  start-page: 1774
  year: 2015
  ident: D3TA05959F/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512437u
– volume: 232
  start-page: 224
  year: 2018
  ident: D3TA05959F/cit9/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.08.126
– volume: 28
  start-page: 1705553
  year: 2018
  ident: D3TA05959F/cit20/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705553
– volume: 120
  start-page: 6934
  year: 2020
  ident: D3TA05959F/cit35/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00618
– volume: 67
  start-page: 1581
  year: 2022
  ident: D3TA05959F/cit11/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.07.002
– volume: 650
  start-page: 446
  year: 2023
  ident: D3TA05959F/cit14/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.07.007
– volume: 5
  start-page: 4693
  year: 2014
  ident: D3TA05959F/cit28/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02593H
– volume: 60
  start-page: 172
  year: 2015
  ident: D3TA05959F/cit10/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.09.002
– volume: 11
  start-page: 44352
  year: 2019
  ident: D3TA05959F/cit21/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16280
– volume: 293
  start-page: 191
  year: 2019
  ident: D3TA05959F/cit32/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.040
SSID ssj0000800699
Score 2.444007
Snippet Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24661
SubjectTerms Anodes
Charge transfer
Conductivity
Electrode materials
Ion storage
Nonaqueous electrolytes
Robustness
Title A robust conductive covalent organic framework for ultra-stable potassium storage
URI https://www.proquest.com/docview/2893985393
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxNdE2UCW4IIijzQvTptjBJsG2pCQOtGdIie2p0qjnbrkwnX_OM927ARUJOASpc9u0vr9Yv_88j4IeVsZZz8AzhJc7FmaQcJyPVVM6kRyDTqJtdkoXnzJzi7Tz0u-HI3uB15LbVMd1z92xpX8j1ZRhno1UbL_oNlwURTgOeoXj6hhPP6Vjotou6nau8b4jpu8rcYLqN7gHewLfhtlWUfau19Zj8L2ptkKhpTQREzdbhrkzqv2e2R8JMVvbkE9VUVW6_5OVPv6cMdR4UJ9fItNHe4CCa0t3gdmGd_bYLY_t74DVy27Et2KicLlSrjXPyt2gae92BnNg-Bba40IasVQCddDc0UCJm7PxUC7WS2JeWwSmLpJVw1lrrRtmJanA_ilfDjJpplL4N6t2OZztnM5iMFkU5XQCGSRPNf9ohdcEfvGPbKf4F4jGZP94mTx6TyY6gypzmwl0vDjfaJbyN_3F_iV2vT7lb2tLyZjScviMXnUqZAWDjpPyEitn5KHgxyUz8jXgjoQ0R5E1IOIdiCiAUQU9UyHIKIBRLQD0XNyeXqy-HDGujobrEZy1zCBFLWGeZbOY644VHMuIBc1ZLHgMo61mKWVVAqfWlXlkqe5MnkHpUwFdsbHGw7IeL1ZqxeEIhuUoGo509okeqyQ7M5BTTXOVyBmoCbknR-isu6S0JtaKDeldYaAvPwIi8IO5-mEvAl9b13qlZ29jvxIl92jeVcmyMJzJKI5TMgBjn74fq-sl39qOCQPetwekXGzbdUrJJ5N9boDxk_N6YZg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+conductive+covalent+organic+framework+for+ultra-stable+potassium+storage&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Yu-Yang&rft.au=Xiao%2C+Ji-Miao&rft.au=Xie%2C+Mo&rft.au=Wu%2C+Lei-Feng&rft.date=2023-11-21&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=45&rft.spage=24661&rft.epage=24666&rft_id=info:doi/10.1039%2Fd3ta05959f&rft.externalDocID=d3ta05959f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon