A robust conductive covalent organic framework for ultra-stable potassium storage
Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithi...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 45; pp. 24661 - 24666 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K
+
/e
−
) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g
−1
over more than 800 cycles at a current density of 1C (0.3 A g
−1
). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage.
A conductive and redox-active COF (Ni-TTF) have been synthesized and applied as an promising anode for KIBs, exhibiting remarkable stability with no capacity loss after 2500 cycles at 2C, making it one of the best organic anode materials for KIBs. |
---|---|
AbstractList | Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K
+
/e
−
) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g
−1
over more than 800 cycles at a current density of 1C (0.3 A g
−1
). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage.
A conductive and redox-active COF (Ni-TTF) have been synthesized and applied as an promising anode for KIBs, exhibiting remarkable stability with no capacity loss after 2500 cycles at 2C, making it one of the best organic anode materials for KIBs. Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K+/e−) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g−1 over more than 800 cycles at a current density of 1C (0.3 A g−1). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage. Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly hampered by their low electronic conductivity and insufficient cyclability owing to the large size of K-ions. Herein, we report a Ni-bis(dithiolene) and tetrathiafulvalene-based COF (Ni-TTF) with promising electronic conductivity and exceptional stability for high-performance KIB anodes. The redox-active units of Ni-bis(dithiolene) and tetrathiafulvalene (TTF) provide accessible sites for K-ion storage. The one-dimensional tunnel structure and good conductivity of Ni-TTF enabled fast charge (K + /e − ) transfer. The reticular network structure maintained its stability in organic electrolyte and ensured a resilient electrode to sustain repeated K-ion intercalation/deintercalation. As a result, Ni-TTF delivered a high reversible capacity of 223 mA h g −1 over more than 800 cycles at a current density of 1C (0.3 A g −1 ). Moreover, Ni-TTF achieved ultrastable cyclability, without discernible capacity fading after 2500 cycles at 2C, ranking it among the best organic anode materials for KIBs. This contribution opened a new avenue in the design of robust COFs with promising redox activity and improved conductivity for ultrastable K-ion storage. |
Author | Bin, De-Shan Li, Yu-Yang Zuo, Jing-lin Yuan, Shuai Xiao, Ji-Miao Chen, Yan-Fei Xie, Mo Wu, Lei-Feng |
AuthorAffiliation | Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications State Key Laboratory of Coordination Chemistry Jinan University Nanjing University School of Chemistry and Chemical Engineering College of Chemistry and Materials Science |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Coordination Chemistry – sequence: 0 name: Nanjing University – sequence: 0 name: College of Chemistry and Materials Science – sequence: 0 name: Jinan University – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications |
Author_xml | – sequence: 1 givenname: Yu-Yang surname: Li fullname: Li, Yu-Yang – sequence: 2 givenname: Ji-Miao surname: Xiao fullname: Xiao, Ji-Miao – sequence: 3 givenname: Mo surname: Xie fullname: Xie, Mo – sequence: 4 givenname: Lei-Feng surname: Wu fullname: Wu, Lei-Feng – sequence: 5 givenname: Yan-Fei surname: Chen fullname: Chen, Yan-Fei – sequence: 6 givenname: Shuai surname: Yuan fullname: Yuan, Shuai – sequence: 7 givenname: De-Shan surname: Bin fullname: Bin, De-Shan – sequence: 8 givenname: Jing-lin surname: Zuo fullname: Zuo, Jing-lin |
BookMark | eNptkUFLAzEQhYMoWGsv3oWAN2F1tkl2k2OpVoWCCPW8zGazJXW7qUm24r93a6WCOJd5h-_NMG_OyHHrWkPIRQo3KTB1W7GIIJRQ9REZjEFAknOVHR-0lKdkFMIK-pIAmVID8jKh3pVdiFS7tup0tFvTyy02po3U-SW2VtPa49p8OP9Ga-dp10SPSYhYNoZuXMQQbLemITqPS3NOTmpsghn99CF5nd0vpo_J_PnhaTqZJ3rMeUxQsVwzmXEJwghWSoFMoWYZoKgAasx5WRkDdWpKVQmuTApZXlUce5hnjA3J1X7uxrv3zoRYrFzn235lMZaKKSmY2lGwp7R3IXhTF9pGjNa1_Q22KVIodtkVd2wx-c5u1luu_1g23q7Rf_4PX-5hH_SB-30E-wLPoXuB |
CitedBy_id | crossref_primary_10_1002_smll_202410973 crossref_primary_10_1039_D4TA02504K crossref_primary_10_1016_j_cej_2024_154743 crossref_primary_10_1021_acs_accounts_4c00228 crossref_primary_10_1016_j_jcis_2024_03_167 crossref_primary_10_1016_j_est_2025_116269 crossref_primary_10_1039_D4NR01092B |
Cites_doi | 10.1038/s41467-019-13739-5 10.1002/anie.201913174 10.1016/j.elecom.2016.12.005 10.1002/anie.202110373 10.1016/j.jcis.2023.04.107 10.1038/s41467-018-02889-7 10.1002/chem.202301048 10.1039/D3EE00073G 10.1002/smll.201903194 10.1016/j.matt.2019.12.018 10.1126/sciadv.aav7412 10.1002/anie.202103052 10.1002/anie.201805540 10.1002/anie.201906890 10.1073/pnas.1717892115 10.1126/science.1212741 10.1021/jacs.6b12185 10.1038/nenergy.2017.74 10.1021/acsami.7b15314 10.1021/acs.chemrev.9b00535 10.1002/adma.201903176 10.1002/smll.201801806 10.1021/jacs.8b02178 10.1016/j.mattod.2022.02.013 10.1021/acs.chemrev.0c00767 10.1021/acs.jpcc.7b03837 10.1021/ja512437u 10.1016/j.matlet.2018.08.126 10.1002/adfm.201705553 10.1021/acs.chemrev.9b00618 10.1016/j.scib.2022.07.002 10.1016/j.jcis.2023.07.007 10.1039/C4SC02593H 10.1016/j.elecom.2015.09.002 10.1021/acsami.9b16280 10.1016/j.electacta.2018.10.040 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta05959f |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 24666 |
ExternalDocumentID | 10_1039_D3TA05959F d3ta05959f |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c244t-a937c3864805e53b85a39ac360a5d00fa74bdee0f1eb9d549e1067dd4a53b4633 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:59:42 EDT 2025 Tue Jul 01 01:13:47 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Dec 17 20:58:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c244t-a937c3864805e53b85a39ac360a5d00fa74bdee0f1eb9d549e1067dd4a53b4633 |
Notes | https://doi.org/10.1039/d3ta05959f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6721-3711 0000-0003-3329-0481 0000-0003-1219-8926 |
PQID | 2893985393 |
PQPubID | 2047523 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1039_D3TA05959F rsc_primary_d3ta05959f proquest_journals_2893985393 crossref_citationtrail_10_1039_D3TA05959F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-21 |
PublicationDateYYYYMMDD | 2023-11-21 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kim (D3TA05959F/cit35/1) 2020; 120 Ma (D3TA05959F/cit32/1) 2019; 293 Zhang (D3TA05959F/cit21/1) 2019; 11 Zhang (D3TA05959F/cit6/1) 2022; 54 Yan (D3TA05959F/cit36/1) 2021; 60 Song (D3TA05959F/cit4/1) 2021; 17 Su (D3TA05959F/cit25/1) 2020; 2 Fan (D3TA05959F/cit2/1) 2020; 120 Cai (D3TA05959F/cit28/1) 2014; 5 Dunn (D3TA05959F/cit3/1) 2011; 334 Park (D3TA05959F/cit26/1) 2015; 137 Li (D3TA05959F/cit29/1) 2023; 29 Liang (D3TA05959F/cit11/1) 2022; 67 Wang (D3TA05959F/cit15/1) 2017; 121 Luo (D3TA05959F/cit24/1) 2018; 57 Shi (D3TA05959F/cit22/1) 2020; 11 Sun (D3TA05959F/cit30/1) 2019; 31 Tian (D3TA05959F/cit1/1) 2021; 121 Komaba (D3TA05959F/cit10/1) 2015; 60 Deng (D3TA05959F/cit18/1) 2017; 75 Luo (D3TA05959F/cit19/1) 2018; 115 Yang (D3TA05959F/cit31/1) 2023; 16 Lin (D3TA05959F/cit13/1) 2023; 645 Zhang (D3TA05959F/cit7/1) 2017; 139 Bin (D3TA05959F/cit12/1) 2018; 140 Lu (D3TA05959F/cit27/1) 2019; 58 Lu (D3TA05959F/cit9/1) 2018; 232 Wang (D3TA05959F/cit14/1) 2023; 650 Fan (D3TA05959F/cit33/1) 2018; 14 Lei (D3TA05959F/cit23/1) 2018; 9 Zhang (D3TA05959F/cit5/1) 2019; 5 Lohse (D3TA05959F/cit20/1) 2018; 28 Liu (D3TA05959F/cit34/1) 2020; 59 Dong (D3TA05959F/cit8/1) 2018; 10 Pan (D3TA05959F/cit16/1) 2021; 60 Peng (D3TA05959F/cit17/1) 2017; 2 |
References_xml | – volume: 11 start-page: 178 year: 2020 ident: D3TA05959F/cit22/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13739-5 – volume: 59 start-page: 3638 year: 2020 ident: D3TA05959F/cit34/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913174 – volume: 75 start-page: 29 year: 2017 ident: D3TA05959F/cit18/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.12.005 – volume: 60 start-page: 24467 year: 2021 ident: D3TA05959F/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110373 – volume: 645 start-page: 654 year: 2023 ident: D3TA05959F/cit13/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.04.107 – volume: 9 start-page: 576 year: 2018 ident: D3TA05959F/cit23/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02889-7 – volume: 29 start-page: e202301048 year: 2023 ident: D3TA05959F/cit29/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202301048 – volume: 16 start-page: 1540 year: 2023 ident: D3TA05959F/cit31/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00073G – volume: 17 start-page: e1903194 year: 2021 ident: D3TA05959F/cit4/1 publication-title: Small doi: 10.1002/smll.201903194 – volume: 2 start-page: 711 year: 2020 ident: D3TA05959F/cit25/1 publication-title: Matter doi: 10.1016/j.matt.2019.12.018 – volume: 5 start-page: eaav7412 year: 2019 ident: D3TA05959F/cit5/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 60 start-page: 11835 year: 2021 ident: D3TA05959F/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103052 – volume: 57 start-page: 9443 year: 2018 ident: D3TA05959F/cit24/1 publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201805540 – volume: 58 start-page: 12392 year: 2019 ident: D3TA05959F/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906890 – volume: 115 start-page: 2004 year: 2018 ident: D3TA05959F/cit19/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1717892115 – volume: 334 start-page: 928 year: 2011 ident: D3TA05959F/cit3/1 publication-title: Science doi: 10.1126/science.1212741 – volume: 139 start-page: 3316 year: 2017 ident: D3TA05959F/cit7/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12185 – volume: 2 start-page: 17074 year: 2017 ident: D3TA05959F/cit17/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.74 – volume: 10 start-page: 15542 year: 2018 ident: D3TA05959F/cit8/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15314 – volume: 120 start-page: 7020 year: 2020 ident: D3TA05959F/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00535 – volume: 31 start-page: e1903176 year: 2019 ident: D3TA05959F/cit30/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903176 – volume: 14 start-page: e1801806 year: 2018 ident: D3TA05959F/cit33/1 publication-title: Small doi: 10.1002/smll.201801806 – volume: 140 start-page: 7127 year: 2018 ident: D3TA05959F/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02178 – volume: 54 start-page: 189 year: 2022 ident: D3TA05959F/cit6/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2022.02.013 – volume: 121 start-page: 1623 year: 2021 ident: D3TA05959F/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00767 – volume: 121 start-page: 12652 year: 2017 ident: D3TA05959F/cit15/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03837 – volume: 137 start-page: 1774 year: 2015 ident: D3TA05959F/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512437u – volume: 232 start-page: 224 year: 2018 ident: D3TA05959F/cit9/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.08.126 – volume: 28 start-page: 1705553 year: 2018 ident: D3TA05959F/cit20/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705553 – volume: 120 start-page: 6934 year: 2020 ident: D3TA05959F/cit35/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00618 – volume: 67 start-page: 1581 year: 2022 ident: D3TA05959F/cit11/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.07.002 – volume: 650 start-page: 446 year: 2023 ident: D3TA05959F/cit14/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.07.007 – volume: 5 start-page: 4693 year: 2014 ident: D3TA05959F/cit28/1 publication-title: Chem. Sci. doi: 10.1039/C4SC02593H – volume: 60 start-page: 172 year: 2015 ident: D3TA05959F/cit10/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.09.002 – volume: 11 start-page: 44352 year: 2019 ident: D3TA05959F/cit21/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16280 – volume: 293 start-page: 191 year: 2019 ident: D3TA05959F/cit32/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.040 |
SSID | ssj0000800699 |
Score | 2.444007 |
Snippet | Redox-active covalent organic frameworks (COFs) have garnered significant attention in the field of K-ion batteries (KIBs), but their applications are mainly... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 24661 |
SubjectTerms | Anodes Charge transfer Conductivity Electrode materials Ion storage Nonaqueous electrolytes Robustness |
Title | A robust conductive covalent organic framework for ultra-stable potassium storage |
URI | https://www.proquest.com/docview/2893985393 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxNdE2UCW4IIijzQvTptjBJsG2pCQOtGdIie2p0qjnbrkwnX_OM927ARUJOASpc9u0vr9Yv_88j4IeVsZZz8AzhJc7FmaQcJyPVVM6kRyDTqJtdkoXnzJzi7Tz0u-HI3uB15LbVMd1z92xpX8j1ZRhno1UbL_oNlwURTgOeoXj6hhPP6Vjotou6nau8b4jpu8rcYLqN7gHewLfhtlWUfau19Zj8L2ptkKhpTQREzdbhrkzqv2e2R8JMVvbkE9VUVW6_5OVPv6cMdR4UJ9fItNHe4CCa0t3gdmGd_bYLY_t74DVy27Et2KicLlSrjXPyt2gae92BnNg-Bba40IasVQCddDc0UCJm7PxUC7WS2JeWwSmLpJVw1lrrRtmJanA_ilfDjJpplL4N6t2OZztnM5iMFkU5XQCGSRPNf9ohdcEfvGPbKf4F4jGZP94mTx6TyY6gypzmwl0vDjfaJbyN_3F_iV2vT7lb2tLyZjScviMXnUqZAWDjpPyEitn5KHgxyUz8jXgjoQ0R5E1IOIdiCiAUQU9UyHIKIBRLQD0XNyeXqy-HDGujobrEZy1zCBFLWGeZbOY644VHMuIBc1ZLHgMo61mKWVVAqfWlXlkqe5MnkHpUwFdsbHGw7IeL1ZqxeEIhuUoGo509okeqyQ7M5BTTXOVyBmoCbknR-isu6S0JtaKDeldYaAvPwIi8IO5-mEvAl9b13qlZ29jvxIl92jeVcmyMJzJKI5TMgBjn74fq-sl39qOCQPetwekXGzbdUrJJ5N9boDxk_N6YZg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+conductive+covalent+organic+framework+for+ultra-stable+potassium+storage&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Yu-Yang&rft.au=Xiao%2C+Ji-Miao&rft.au=Xie%2C+Mo&rft.au=Wu%2C+Lei-Feng&rft.date=2023-11-21&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=45&rft.spage=24661&rft.epage=24666&rft_id=info:doi/10.1039%2Fd3ta05959f&rft.externalDocID=d3ta05959f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |