Ensuring Bidirectional Privacy on Wireless Split Inference Systems
With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile inference paradigm. Split inference is essential to accelerate large-scale deep neural network (DNN) inference on resource-limited edge devices throu...
Saved in:
Published in | IEEE wireless communications Vol. 31; no. 5; pp. 134 - 141 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile inference paradigm. Split inference is essential to accelerate large-scale deep neural network (DNN) inference on resource-limited edge devices through partitioning a DNN between the edge device and the cloud server with advanced wireless communications such as B5G/6G and WiFi 6. We investigate the U-shape partitioning inference system, where both the input raw data and output inference results are kept on the edge device. We use image semantic segmentation as an exemplary application in our experiments. The experiment results showed that an honest-but-curious (HbC) server can launch the bidirectional privacy attack to reconstruct the raw data and steal the inference results, even when only the middle-end partition of the model is visible. To ensure bidirectional privacy and user experience on the U-shape partitioning inference system, a privacy and latency-aware partitioning strategy is needed to balance the trade-off between service latency and data privacy. We compared our proposed framework to other inference paradigms, including conventional split inference and inferencing entirely on the edge device or the server. We analyzed their inference latencies in various wireless technologies and quantitatively measured their level of privacy protection. The experiment results show that the U-shape partitioning inference system is advantageous over inference entirely on the edge device or the server. |
---|---|
AbstractList | With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile inference paradigm. Split inference is essential to accelerate large-scale deep neural network (DNN) inference on resource-limited edge devices through partitioning a DNN between the edge device and the cloud server with advanced wireless communications such as B5G/6G and WiFi 6. We investigate the U-shape partitioning inference system, where both the input raw data and output inference results are kept on the edge device. We use image semantic segmentation as an exemplary application in our experiments. The experiment results showed that an honest-but-curious (HbC) server can launch the bidirectional privacy attack to reconstruct the raw data and steal the inference results, even when only the middle-end partition of the model is visible. To ensure bidirectional privacy and user experience on the U-shape partitioning inference system, a privacy and latency-aware partitioning strategy is needed to balance the trade-off between service latency and data privacy. We compared our proposed framework to other inference paradigms, including conventional split inference and inferencing entirely on the edge device or the server. We analyzed their inference latencies in various wireless technologies and quantitatively measured their level of privacy protection. The experiment results show that the U-shape partitioning inference system is advantageous over inference entirely on the edge device or the server. |
Author | Pang, Ai-Chun Cheng, Li-Chen Chen, Shang-Tse Wang, Chih-Yu Chung, Hsing-Huan Sa, Chia-Che Chiu, Te-Chuan |
Author_xml | – sequence: 1 givenname: Chia-Che surname: Sa fullname: Sa, Chia-Che organization: National Taiwan University,Taiwan – sequence: 2 givenname: Li-Chen surname: Cheng fullname: Cheng, Li-Chen organization: National Taiwan University,Taiwan – sequence: 3 givenname: Hsing-Huan surname: Chung fullname: Chung, Hsing-Huan organization: National Taiwan University,Taiwan – sequence: 4 givenname: Te-Chuan surname: Chiu fullname: Chiu, Te-Chuan organization: National Tsing Hua University,Taiwan – sequence: 5 givenname: Chih-Yu surname: Wang fullname: Wang, Chih-Yu organization: Academia Sinica,Taiwan – sequence: 6 givenname: Ai-Chun surname: Pang fullname: Pang, Ai-Chun organization: National Taiwan University,Taiwan – sequence: 7 givenname: Shang-Tse surname: Chen fullname: Chen, Shang-Tse organization: National Taiwan University,Taiwan |
BookMark | eNpNkM1LAzEQxYNUsK2evXgIeN528rUfR1uqFioKVXoMS3YiKdtsTbZC_3tT2oNzmeHx3vD4jcjAdx4JuWcwYQyq6dtmPgEmJ1wASIArMmRKlRnkZTE43SLPGC_lDRnFuAVgRa7yIZktfDwE57_pzDUuoOld5-uWfgT3W5sj7TzdJLnFGOl637qeLr3FgN4gXR9jj7t4S65t3Ua8u-wx-XpefM5fs9X7y3L-tMoMl7LPapVLJoRhsuZcqaoxtmhYUUqVqgEglsyywqA11hrVyApMWatGlRwayyEXY_J4_rsP3c8BY6-33SGkslELxngaIWRyTc8uE7oYA1q9D25Xh6NmoE-gdAKlEyh9AZUSD-eEQ8R_blVUSkrxB80aZRA |
CODEN | IWCEAS |
Cites_doi | 10.1109/CVPR.2017.660 10.1145/3559613.3563201 10.1109/CVPR.2016.90 10.1109/SP.2017.41 10.1109/CVPR.2016.350 10.1109/globecom38437.2019.9013742 10.1145/3359789.3359824 10.1109/JIOT.2020.3022358 10.1109/TIP.2003.819861 10.1109/JPROC.2020.2976475 10.1109/CVPR.2009.5206848 10.1145/3093337.3037698 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1109/MWC.014.2300400 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0687 |
EndPage | 141 |
ExternalDocumentID | 10_1109_MWC_014_2300400 10579544 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Taiwan University grantid: 113L900903 funderid: 10.13039/501100006477 – fundername: National Science and Technology Council grantid: 110-2221-E-002-071-MY3,112-2221-E-002-158-MY3 funderid: 10.13039/100020595 |
GroupedDBID | -~X 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS TN5 AAYOK AAYXX CITATION RIG 7SP 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c244t-a564133c14a22559dcf7d1784553600ee81f17cefcffc5d490c8a5d5820df2063 |
IEDL.DBID | RIE |
ISSN | 1536-1284 |
IngestDate | Mon Jun 30 10:17:59 EDT 2025 Tue Jul 01 01:51:13 EDT 2025 Wed Aug 27 02:19:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-a564133c14a22559dcf7d1784553600ee81f17cefcffc5d490c8a5d5820df2063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3112222334 |
PQPubID | 75748 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10579544 proquest_journals_3112222334 crossref_primary_10_1109_MWC_014_2300400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE wireless communications |
PublicationTitleAbbrev | WC-M |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref2 Gilad-Bachrach (ref1) 2016 Vepakomma (ref8) 2019 ref7 Tramèr (ref15) ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref11 doi: 10.1109/CVPR.2017.660 – ident: ref7 doi: 10.1145/3559613.3563201 – ident: ref13 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1109/SP.2017.41 – start-page: 601 volume-title: Proc. 25th USENIX Security Symp. ident: ref15 article-title: Stealing Machine Learning Models via Prediction APIs – ident: ref10 doi: 10.1109/CVPR.2016.350 – ident: ref4 doi: 10.1109/globecom38437.2019.9013742 – ident: ref5 doi: 10.1145/3359789.3359824 – ident: ref6 doi: 10.1109/JIOT.2020.3022358 – ident: ref9 doi: 10.1109/TIP.2003.819861 – ident: ref2 doi: 10.1109/JPROC.2020.2976475 – year: 2019 ident: ref8 article-title: Reducing Leakage in Distributed Deep Learning for Sensitive Health Data publication-title: arXiv preprint – start-page: 201 volume-title: Proc. Intl. Conf. Machine Learning year: 2016 ident: ref1 article-title: Cryptonets: Applying Neural Networks to Encrypted Data With High Throughput and Accuracy – ident: ref12 doi: 10.1109/CVPR.2009.5206848 – ident: ref3 doi: 10.1145/3093337.3037698 |
SSID | ssj0017656 |
Score | 2.4396892 |
Snippet | With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 134 |
SubjectTerms | Artificial neural networks Cloud computing Computational modeling Containers Data models Data privacy Edge computing Image segmentation Inference Machine learning Network latency Partitioning Privacy Semantic segmentation Servers User experience Wireless communication Wireless communications |
Title | Ensuring Bidirectional Privacy on Wireless Split Inference Systems |
URI | https://ieeexplore.ieee.org/document/10579544 https://www.proquest.com/docview/3112222334 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTg58TplBw8eGnXj2Rpj042prAh6HC3kiYpDKWTrRP0r_clbWUqgrcc0jS895L3e3lfAJdcKjQqhHH9M-7QCEdCCe7wXhpzFSDblXnQH096oym9m7FZlaxuc2G01jb4TLtmaH35aiHX5qmsa3rSxozSBjTQciuTtb5cBrxnW7XiCTaNZSJa1fHxvbg7frpx0RQwQc9GZr-pINtT5ddFbLXLcA8m9b7KoJJnd12krvz4UbLx3xvfh90KZ5LrUjAOYEvnh7CzUX3wCPqDfGWTFEl_Xmo2-yxI7pfzNyHfySInJjb2Be9C8oBYtSC3dXYgqQqdt2A6HDzejJyqpYIjUY8XjmA91Fqh9KkIjDGhZMaVzyPKkGyep3XkZz6XOpNZJpmisScjwRRDnKCyAOHMMTTzRa5PgDCJk6gUnkoDivZ5RHFVxQWL8AehTNtwVVM5eS0rZyTW4vDiBBmSIEOSiiFtaBmabUwrydWGTs2WpDpaqyREhGhATUhP__jsDLYDhB5lyF0HmsVyrc8ROhTphRWZT1kNv0s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BGYCBN6I8PYDEktIkdp0MDDzVQlshAYItOLYjIVCKaAoq_4W_wm_j7KRVATEisXlwHMXf5e47-x4A21wqdCqEufpn3KEBjoQS3OG1OOTKQ9iVOdBvtWv1a3p2y27H4H2YC6O1tsFnumKG9i5fdWTPHJXtmZ60IaO0iKE81_1X9NC6-41jhHPH805Pro7qTtFEwJFouTJHsBrqaV-6VHiGPiuZcOXygDLmo7HXOnATl0udyCSRTNGwKgPBFEPLqBIPDTiuOw4TSDSYl6eHDS8peM02h0WdYVrZBLSoHORWw73WzVEFnQ8TZm3-ki9Gz3Zx-aH6rT07nYWPwU7kYSwPlV4WV-TbtyKR_3ar5mCmYNLkIBf9eRjT6QJMj9RXXITDk7Rr0zDJ4X1uu-3BJ7l4vn8Rsk86KTHRv4-o7cklsvGMNAb5j6Qo5b4E13_yEctQSjupXgHCJE6iUlRV7FEdI8K4quKCBfgCX8Zl2B2gGj3ltUEi61NVwwgFIEIBiAoBKMOSwWhkWg5PGdYHYhAVyqMb-ciBDW3z6eovj23BZP2q1Yyajfb5Gkx5SLTyAMN1KGXPPb2BRCmLN624Erj7a9A_AXSfG-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+Bidirectional+Privacy+on+Wireless+Split+Inference+Systems&rft.jtitle=IEEE+wireless+communications&rft.au=Chia-Che+Sa&rft.au=Li-Chen%2C+Cheng&rft.au=Hsing-Huan+Chung&rft.au=Te-Chuan+Chiu&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1284&rft.eissn=1558-0687&rft.volume=31&rft.issue=5&rft.spage=134&rft_id=info:doi/10.1109%2FMWC.014.2300400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon |