Ensuring Bidirectional Privacy on Wireless Split Inference Systems

With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile inference paradigm. Split inference is essential to accelerate large-scale deep neural network (DNN) inference on resource-limited edge devices throu...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications Vol. 31; no. 5; pp. 134 - 141
Main Authors Sa, Chia-Che, Cheng, Li-Chen, Chung, Hsing-Huan, Chiu, Te-Chuan, Wang, Chih-Yu, Pang, Ai-Chun, Chen, Shang-Tse
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile inference paradigm. Split inference is essential to accelerate large-scale deep neural network (DNN) inference on resource-limited edge devices through partitioning a DNN between the edge device and the cloud server with advanced wireless communications such as B5G/6G and WiFi 6. We investigate the U-shape partitioning inference system, where both the input raw data and output inference results are kept on the edge device. We use image semantic segmentation as an exemplary application in our experiments. The experiment results showed that an honest-but-curious (HbC) server can launch the bidirectional privacy attack to reconstruct the raw data and steal the inference results, even when only the middle-end partition of the model is visible. To ensure bidirectional privacy and user experience on the U-shape partitioning inference system, a privacy and latency-aware partitioning strategy is needed to balance the trade-off between service latency and data privacy. We compared our proposed framework to other inference paradigms, including conventional split inference and inferencing entirely on the edge device or the server. We analyzed their inference latencies in various wireless technologies and quantitatively measured their level of privacy protection. The experiment results show that the U-shape partitioning inference system is advantageous over inference entirely on the edge device or the server.
AbstractList With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile inference paradigm. Split inference is essential to accelerate large-scale deep neural network (DNN) inference on resource-limited edge devices through partitioning a DNN between the edge device and the cloud server with advanced wireless communications such as B5G/6G and WiFi 6. We investigate the U-shape partitioning inference system, where both the input raw data and output inference results are kept on the edge device. We use image semantic segmentation as an exemplary application in our experiments. The experiment results showed that an honest-but-curious (HbC) server can launch the bidirectional privacy attack to reconstruct the raw data and steal the inference results, even when only the middle-end partition of the model is visible. To ensure bidirectional privacy and user experience on the U-shape partitioning inference system, a privacy and latency-aware partitioning strategy is needed to balance the trade-off between service latency and data privacy. We compared our proposed framework to other inference paradigms, including conventional split inference and inferencing entirely on the edge device or the server. We analyzed their inference latencies in various wireless technologies and quantitatively measured their level of privacy protection. The experiment results show that the U-shape partitioning inference system is advantageous over inference entirely on the edge device or the server.
Author Pang, Ai-Chun
Cheng, Li-Chen
Chen, Shang-Tse
Wang, Chih-Yu
Chung, Hsing-Huan
Sa, Chia-Che
Chiu, Te-Chuan
Author_xml – sequence: 1
  givenname: Chia-Che
  surname: Sa
  fullname: Sa, Chia-Che
  organization: National Taiwan University,Taiwan
– sequence: 2
  givenname: Li-Chen
  surname: Cheng
  fullname: Cheng, Li-Chen
  organization: National Taiwan University,Taiwan
– sequence: 3
  givenname: Hsing-Huan
  surname: Chung
  fullname: Chung, Hsing-Huan
  organization: National Taiwan University,Taiwan
– sequence: 4
  givenname: Te-Chuan
  surname: Chiu
  fullname: Chiu, Te-Chuan
  organization: National Tsing Hua University,Taiwan
– sequence: 5
  givenname: Chih-Yu
  surname: Wang
  fullname: Wang, Chih-Yu
  organization: Academia Sinica,Taiwan
– sequence: 6
  givenname: Ai-Chun
  surname: Pang
  fullname: Pang, Ai-Chun
  organization: National Taiwan University,Taiwan
– sequence: 7
  givenname: Shang-Tse
  surname: Chen
  fullname: Chen, Shang-Tse
  organization: National Taiwan University,Taiwan
BookMark eNpNkM1LAzEQxYNUsK2evXgIeN528rUfR1uqFioKVXoMS3YiKdtsTbZC_3tT2oNzmeHx3vD4jcjAdx4JuWcwYQyq6dtmPgEmJ1wASIArMmRKlRnkZTE43SLPGC_lDRnFuAVgRa7yIZktfDwE57_pzDUuoOld5-uWfgT3W5sj7TzdJLnFGOl637qeLr3FgN4gXR9jj7t4S65t3Ua8u-wx-XpefM5fs9X7y3L-tMoMl7LPapVLJoRhsuZcqaoxtmhYUUqVqgEglsyywqA11hrVyApMWatGlRwayyEXY_J4_rsP3c8BY6-33SGkslELxngaIWRyTc8uE7oYA1q9D25Xh6NmoE-gdAKlEyh9AZUSD-eEQ8R_blVUSkrxB80aZRA
CODEN IWCEAS
Cites_doi 10.1109/CVPR.2017.660
10.1145/3559613.3563201
10.1109/CVPR.2016.90
10.1109/SP.2017.41
10.1109/CVPR.2016.350
10.1109/globecom38437.2019.9013742
10.1145/3359789.3359824
10.1109/JIOT.2020.3022358
10.1109/TIP.2003.819861
10.1109/JPROC.2020.2976475
10.1109/CVPR.2009.5206848
10.1145/3093337.3037698
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/MWC.014.2300400
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0687
EndPage 141
ExternalDocumentID 10_1109_MWC_014_2300400
10579544
Genre orig-research
GrantInformation_xml – fundername: National Taiwan University
  grantid: 113L900903
  funderid: 10.13039/501100006477
– fundername: National Science and Technology Council
  grantid: 110-2221-E-002-071-MY3,112-2221-E-002-158-MY3
  funderid: 10.13039/100020595
GroupedDBID -~X
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c244t-a564133c14a22559dcf7d1784553600ee81f17cefcffc5d490c8a5d5820df2063
IEDL.DBID RIE
ISSN 1536-1284
IngestDate Mon Jun 30 10:17:59 EDT 2025
Tue Jul 01 01:51:13 EDT 2025
Wed Aug 27 02:19:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-a564133c14a22559dcf7d1784553600ee81f17cefcffc5d490c8a5d5820df2063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3112222334
PQPubID 75748
PageCount 8
ParticipantIDs ieee_primary_10579544
proquest_journals_3112222334
crossref_primary_10_1109_MWC_014_2300400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE wireless communications
PublicationTitleAbbrev WC-M
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
Gilad-Bachrach (ref1) 2016
Vepakomma (ref8) 2019
ref7
Tramèr (ref15)
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/CVPR.2017.660
– ident: ref7
  doi: 10.1145/3559613.3563201
– ident: ref13
  doi: 10.1109/CVPR.2016.90
– ident: ref14
  doi: 10.1109/SP.2017.41
– start-page: 601
  volume-title: Proc. 25th USENIX Security Symp.
  ident: ref15
  article-title: Stealing Machine Learning Models via Prediction APIs
– ident: ref10
  doi: 10.1109/CVPR.2016.350
– ident: ref4
  doi: 10.1109/globecom38437.2019.9013742
– ident: ref5
  doi: 10.1145/3359789.3359824
– ident: ref6
  doi: 10.1109/JIOT.2020.3022358
– ident: ref9
  doi: 10.1109/TIP.2003.819861
– ident: ref2
  doi: 10.1109/JPROC.2020.2976475
– year: 2019
  ident: ref8
  article-title: Reducing Leakage in Distributed Deep Learning for Sensitive Health Data
  publication-title: arXiv preprint
– start-page: 201
  volume-title: Proc. Intl. Conf. Machine Learning
  year: 2016
  ident: ref1
  article-title: Cryptonets: Applying Neural Networks to Encrypted Data With High Throughput and Accuracy
– ident: ref12
  doi: 10.1109/CVPR.2009.5206848
– ident: ref3
  doi: 10.1145/3093337.3037698
SSID ssj0017656
Score 2.4396892
Snippet With the advances of machine learning, edge computing, and wireless communications, split inference has tracked more and more attention as a versatile...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 134
SubjectTerms Artificial neural networks
Cloud computing
Computational modeling
Containers
Data models
Data privacy
Edge computing
Image segmentation
Inference
Machine learning
Network latency
Partitioning
Privacy
Semantic segmentation
Servers
User experience
Wireless communication
Wireless communications
Title Ensuring Bidirectional Privacy on Wireless Split Inference Systems
URI https://ieeexplore.ieee.org/document/10579544
https://www.proquest.com/docview/3112222334
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTg58TplBw8eGnXj2Rpj042prAh6HC3kiYpDKWTrRP0r_clbWUqgrcc0jS895L3e3lfAJdcKjQqhHH9M-7QCEdCCe7wXhpzFSDblXnQH096oym9m7FZlaxuc2G01jb4TLtmaH35aiHX5qmsa3rSxozSBjTQciuTtb5cBrxnW7XiCTaNZSJa1fHxvbg7frpx0RQwQc9GZr-pINtT5ddFbLXLcA8m9b7KoJJnd12krvz4UbLx3xvfh90KZ5LrUjAOYEvnh7CzUX3wCPqDfGWTFEl_Xmo2-yxI7pfzNyHfySInJjb2Be9C8oBYtSC3dXYgqQqdt2A6HDzejJyqpYIjUY8XjmA91Fqh9KkIjDGhZMaVzyPKkGyep3XkZz6XOpNZJpmisScjwRRDnKCyAOHMMTTzRa5PgDCJk6gUnkoDivZ5RHFVxQWL8AehTNtwVVM5eS0rZyTW4vDiBBmSIEOSiiFtaBmabUwrydWGTs2WpDpaqyREhGhATUhP__jsDLYDhB5lyF0HmsVyrc8ROhTphRWZT1kNv0s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BGYCBN6I8PYDEktIkdp0MDDzVQlshAYItOLYjIVCKaAoq_4W_wm_j7KRVATEisXlwHMXf5e47-x4A21wqdCqEufpn3KEBjoQS3OG1OOTKQ9iVOdBvtWv1a3p2y27H4H2YC6O1tsFnumKG9i5fdWTPHJXtmZ60IaO0iKE81_1X9NC6-41jhHPH805Pro7qTtFEwJFouTJHsBrqaV-6VHiGPiuZcOXygDLmo7HXOnATl0udyCSRTNGwKgPBFEPLqBIPDTiuOw4TSDSYl6eHDS8peM02h0WdYVrZBLSoHORWw73WzVEFnQ8TZm3-ki9Gz3Zx-aH6rT07nYWPwU7kYSwPlV4WV-TbtyKR_3ar5mCmYNLkIBf9eRjT6QJMj9RXXITDk7Rr0zDJ4X1uu-3BJ7l4vn8Rsk86KTHRv4-o7cklsvGMNAb5j6Qo5b4E13_yEctQSjupXgHCJE6iUlRV7FEdI8K4quKCBfgCX8Zl2B2gGj3ltUEi61NVwwgFIEIBiAoBKMOSwWhkWg5PGdYHYhAVyqMb-ciBDW3z6eovj23BZP2q1Yyajfb5Gkx5SLTyAMN1KGXPPb2BRCmLN624Erj7a9A_AXSfG-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+Bidirectional+Privacy+on+Wireless+Split+Inference+Systems&rft.jtitle=IEEE+wireless+communications&rft.au=Chia-Che+Sa&rft.au=Li-Chen%2C+Cheng&rft.au=Hsing-Huan+Chung&rft.au=Te-Chuan+Chiu&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1284&rft.eissn=1558-0687&rft.volume=31&rft.issue=5&rft.spage=134&rft_id=info:doi/10.1109%2FMWC.014.2300400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon