Variants of application of the least squares method in Szyszkowski and Rosin–Rammler approximations

Relevance. Caused by the need to develop and optimize the mathematical apparatus for processing the results of laboratory experiments and increasing the adequacy of the results obtained. Aim. To create alternative methods for finding the parameters of the Szyszkowski and Rosin–Rammler dependencies,...

Full description

Saved in:
Bibliographic Details
Published inIzvestiâ Tomskogo politehničeskogo universiteta. Inžiniring georesursov Vol. 335; no. 1; pp. 128 - 139
Main Authors Galkin, Vladislav M., Volkov, Yuriy S., Chekantseva, Liliya V., Ivanov, Vladimir A.
Format Journal Article
LanguageEnglish
Published Tomsk Polytechnic University 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relevance. Caused by the need to develop and optimize the mathematical apparatus for processing the results of laboratory experiments and increasing the adequacy of the results obtained. Aim. To create alternative methods for finding the parameters of the Szyszkowski and Rosin–Rammler dependencies, which are subject to surfactant adsorption from an aqueous solution on solid adsorbents and deposition of suspended particles in sedimentation analysis. Methods. The main method for determining the parameters of two-parameter dependencies is the least squares method. The standard approach is based on finding the minimum of a function of two variables by computational methods of nonlinear programming. The equations, obtained by equating the derivatives of the objective function for each of the parameters to zero, are used as necessary conditions for the minimum of the objective function. The paper considers alternative approaches to obtaining explicit formulas and reduction to the solution of the transcendental equation. Results. For the two-parameter dependencies of Szyszkowski and Rosin–Rammler, the alternative approaches for determining unknown parameters are proposed. In the standard approach, solving the problem is based on numerical minimization of a function of two variables by nonlinear programming methods. The authors propose the approach, in which the Szyszkowski and Rosin–Rammler equations are subjected to some equivalent transformations so that the use of the necessary minimum conditions makes it possible to obtain a linear equation with respect to at least one of the required parameters. This leads to simplification of calculations, it is required to solve one transcendental equation numerically, the second parameter is then determined by an explicit formula. And for the Rosin–Rammler dependence, in one of the proposed variants, it was possible to obtain explicit formulas for finding both parameters.
AbstractList Relevance. Caused by the need to develop and optimize the mathematical apparatus for processing the results of laboratory experiments and increasing the adequacy of the results obtained. Aim. To create alternative methods for finding the parameters of the Szyszkowski and Rosin–Rammler dependencies, which are subject to surfactant adsorption from an aqueous solution on solid adsorbents and deposition of suspended particles in sedimentation analysis. Methods. The main method for determining the parameters of two-parameter dependencies is the least squares method. The standard approach is based on finding the minimum of a function of two variables by computational methods of nonlinear programming. The equations, obtained by equating the derivatives of the objective function for each of the parameters to zero, are used as necessary conditions for the minimum of the objective function. The paper considers alternative approaches to obtaining explicit formulas and reduction to the solution of the transcendental equation. Results. For the two-parameter dependencies of Szyszkowski and Rosin–Rammler, the alternative approaches for determining unknown parameters are proposed. In the standard approach, solving the problem is based on numerical minimization of a function of two variables by nonlinear programming methods. The authors propose the approach, in which the Szyszkowski and Rosin–Rammler equations are subjected to some equivalent transformations so that the use of the necessary minimum conditions makes it possible to obtain a linear equation with respect to at least one of the required parameters. This leads to simplification of calculations, it is required to solve one transcendental equation numerically, the second parameter is then determined by an explicit formula. And for the Rosin–Rammler dependence, in one of the proposed variants, it was possible to obtain explicit formulas for finding both parameters.
Author Volkov, Yuriy S.
Chekantseva, Liliya V.
Galkin, Vladislav M.
Ivanov, Vladimir A.
Author_xml – sequence: 1
  givenname: Vladislav M.
  surname: Galkin
  fullname: Galkin, Vladislav M.
– sequence: 2
  givenname: Yuriy S.
  surname: Volkov
  fullname: Volkov, Yuriy S.
– sequence: 3
  givenname: Liliya V.
  surname: Chekantseva
  fullname: Chekantseva, Liliya V.
– sequence: 4
  givenname: Vladimir A.
  surname: Ivanov
  fullname: Ivanov, Vladimir A.
BookMark eNo9kM1O3DAUha1qKnWgPAKSXyAdX__E8bIaUYqEhMTf1rqxHXDJxIMdRGHVd-gb9kmazACre-5ZfEf6DshiSEMg5BjYN2i0MSsuQUAj2IozLlewkhLkJ7Kc62ruF1NWjFXAwHwhR6XElokpS83MkoRbzBGHsdDUUdxu--hwjGmY3_E-0D5gGWl5fMIcCt2E8T55Ggd69fpSXh_Sc3mIFAdPL1OJw78_fy9xs-lDnlE5_Y6bHax8JZ877Es4eruH5ObHyfX6Z3V-cXq2_n5eOS7lWBkUogu1Flwbj-C8Vy1AqzqulQMtBKt9wxVgJ7UPKoi6rZUPtRSu5qBQHJKzPdcn_GW3edrPLzZhtLsi5TuLeYyuD9Z7hnUDxslJRXDMdK1hGrlmtWFGNBNL7Vkup1Jy6D54wOxOvX1Xb2f1FuysXvwHXCp6Sw
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18799/24131830/2024/1/4414
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2413-1830
EndPage 139
ExternalDocumentID oai_doaj_org_article_dd0a6819c4194ec09fb907a270690938
10_18799_24131830_2024_1_4414
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c244t-9a33fe673279da1cdd5b11b5f275c173306d8251af47de5e36b65de643c6215a3
IEDL.DBID DOA
ISSN 2500-1019
IngestDate Wed Aug 27 01:10:48 EDT 2025
Tue Jul 01 00:39:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-9a33fe673279da1cdd5b11b5f275c173306d8251af47de5e36b65de643c6215a3
OpenAccessLink https://doaj.org/article/dd0a6819c4194ec09fb907a270690938
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_dd0a6819c4194ec09fb907a270690938
crossref_primary_10_18799_24131830_2024_1_4414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Izvestiâ Tomskogo politehničeskogo universiteta. Inžiniring georesursov
PublicationYear 2024
Publisher Tomsk Polytechnic University
Publisher_xml – name: Tomsk Polytechnic University
SSID ssib030194709
ssj0002874178
ssib044742522
Score 2.243065
Snippet Relevance. Caused by the need to develop and optimize the mathematical apparatus for processing the results of laboratory experiments and increasing the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 128
SubjectTerms adsorption
experimental data processing
least squares method
sedimentation analysis
surfactants
Szyszkowski dependence
Title Variants of application of the least squares method in Szyszkowski and Rosin–Rammler approximations
URI https://doaj.org/article/dd0a6819c4194ec09fb907a270690938
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1EENyIT6wvZuE2tpPMJJmlirUIuqhWuguTeUB9JNq0aLvyH_xDv8R7k1Tiyo2QTcIQhstlzjkzc88l5NiqWAEscC-WQns8SIWXCl97xsTYPo5xleKJ7vVN2Bvwq6EYNlp94Z2wyh64ClzbmI4KAbY0B7ltdUe6FPSc8iO02JVBWeYLmNcQU5BJkLWSN4zJOAcFKGqjuodySwmQtFymgQJ0YC1isi7viSMp23jYBLnewa0B3mZt4Az8F3A1_P1LIOquk7WaQdLTauYbZGk83SQrl2WH3tkWsfegfvFyC80dbRxP4yuQPfqEzXpo8TrFwiNaNZCmo4zezmfF_DF_Kx5HVGWG9vNilH19fPbV8_OTHdPSfPx9VFU6Fttk0L24O-95dS8FTwOATzypgsDZMAr8SBrFtDEiZSwVzo-EZlEAysFgFatyPDJW2CBMQ2Es8BUdAitQwQ5ZzvLM7hLqQss0PMI5wHfDFFZvgZTzw4gLZ-MWOVkEKnmpLDMSlBoY2WQR2QQjm7AEI9siZxjOn8HoeF1-gDxI6jxI_sqDvf_4yT5ZxXlVWywHZHkyntpDIB2T9KjMr29-z8zA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variants+of+application+of+the+least+squares+method+in+Szyszkowski+and+Rosin%E2%80%93Rammler+approximations&rft.jtitle=Izvesti%C3%A2+Tomskogo+politehni%C4%8Deskogo+universiteta.+In%C5%BEiniring+georesursov&rft.au=Vladislav+M.+Galkin&rft.au=Yuriy+S.+Volkov&rft.au=Liliya+V.+Chekantseva&rft.au=Vladimir+A.+Ivanov&rft.date=2024-01-01&rft.pub=Tomsk+Polytechnic+University&rft.issn=2500-1019&rft.eissn=2413-1830&rft.volume=335&rft.issue=1&rft_id=info:doi/10.18799%2F24131830%2F2024%2F1%2F4414&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd0a6819c4194ec09fb907a270690938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2500-1019&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2500-1019&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2500-1019&client=summon