Super-Resolution Imaging of Sub-diffraction-Limited Pattern with Superlens Based on Deep Learning
The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating th...
Saved in:
Published in | International journal of precision engineering and manufacturing Vol. 25; no. 9; pp. 1783 - 1792 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society for Precision Engineering
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating the light wave in the near field. A superlens is a kind of metamaterial-based lens that can enhance the evanescent waves generated by nano-scale objects, utilizing the surface plasmon phenomenon. The superlens allows for the imaging of nano-scale objects that would otherwise be impossible to resolve using traditional lenses. Previous research has shown that nanostructures can be imaged using superlenses, but the exact shape of the superlens must be known in advance, and an analytical calculation is needed to reconstruct the image. Localized plasmon structured illumination microscopy is an approach to achieve super-resolution by imaging the superlens-enhanced evanescent wave with illumination shifts. This study proposes a new approach utilizing a conditional generative adversarial network to obtain super-resolution images of arbitrary nano-scale patterns. To test the efficacy of this approach, finite-difference time-domain simulation was utilized to obtain superlens imaging results. The data from the simulation were then used for deep learning to develop the model. With the help of deep learning, the inverse calculation of complex sub-diffraction-limited patterns can be achieved. The super-resolution feature of the superlens based on deep learning is investigated. The findings of this study have significant implications for the field of nano-scale imaging, where the ability to resolve arbitrary nano-scale patterns will be crucial for advances in nanotechnology and materials science. |
---|---|
AbstractList | The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating the light wave in the near field. A superlens is a kind of metamaterial-based lens that can enhance the evanescent waves generated by nano-scale objects, utilizing the surface plasmon phenomenon. The superlens allows for the imaging of nano-scale objects that would otherwise be impossible to resolve using traditional lenses. Previous research has shown that nanostructures can be imaged using superlenses, but the exact shape of the superlens must be known in advance, and an analytical calculation is needed to reconstruct the image. Localized plasmon structured illumination microscopy is an approach to achieve super-resolution by imaging the superlens-enhanced evanescent wave with illumination shifts. This study proposes a new approach utilizing a conditional generative adversarial network to obtain super-resolution images of arbitrary nano-scale patterns. To test the efficacy of this approach, finite-difference time-domain simulation was utilized to obtain superlens imaging results. The data from the simulation were then used for deep learning to develop the model. With the help of deep learning, the inverse calculation of complex sub-diffraction-limited patterns can be achieved. The super-resolution feature of the superlens based on deep learning is investigated. The findings of this study have significant implications for the field of nano-scale imaging, where the ability to resolve arbitrary nano-scale patterns will be crucial for advances in nanotechnology and materials science. Abstract The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating the light wave in the near field. A superlens is a kind of metamaterial-based lens that can enhance the evanescent waves generated by nano-scale objects, utilizing the surface plasmon phenomenon. The superlens allows for the imaging of nano-scale objects that would otherwise be impossible to resolve using traditional lenses. Previous research has shown that nanostructures can be imaged using superlenses, but the exact shape of the superlens must be known in advance, and an analytical calculation is needed to reconstruct the image. Localized plasmon structured illumination microscopy is an approach to achieve super-resolution by imaging the superlens-enhanced evanescent wave with illumination shifts. This study proposes a new approach utilizing a conditional generative adversarial network to obtain super-resolution images of arbitrary nano-scale patterns. To test the efficacy of this approach, finite-difference time-domain simulation was utilized to obtain superlens imaging results. The data from the simulation were then used for deep learning to develop the model. With the help of deep learning, the inverse calculation of complex sub-diffraction-limited patterns can be achieved. The super-resolution feature of the superlens based on deep learning is investigated. The findings of this study have significant implications for the field of nano-scale imaging, where the ability to resolve arbitrary nano-scale patterns will be crucial for advances in nanotechnology and materials science. |
Author | Michihata, Masaki Masui, Shuzo Takahashi, Satoru Guan, Yizhao Kadoya, Shotaro |
Author_xml | – sequence: 1 givenname: Yizhao surname: Guan fullname: Guan, Yizhao organization: Department of Precision Engineering, The University of Tokyo – sequence: 2 givenname: Shuzo surname: Masui fullname: Masui, Shuzo organization: Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology – sequence: 3 givenname: Shotaro surname: Kadoya fullname: Kadoya, Shotaro organization: Department of Precision Engineering, The University of Tokyo – sequence: 4 givenname: Masaki surname: Michihata fullname: Michihata, Masaki organization: Department of Precision Engineering, The University of Tokyo – sequence: 5 givenname: Satoru orcidid: 0000-0002-6555-9409 surname: Takahashi fullname: Takahashi, Satoru email: takahashi@nanolab.t.u-tokyo.ac.jp organization: Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology |
BookMark | eNp9kE1Lw0AQhhepYK39A54CnldnP5J0j1q_CgHF6nnZJLM10m7iboLYX--2Fbx5moF532fgOSUj1zok5JzBJQPIrwLjqWQUuKQASjG6PSJjDpBSmQEfxZ0LSfNUiRMyDaEpQTCeiXSWjYlZDh16-oKhXQ9907pksTGrxq2S1ibLoaR1Y6031e5Ei2bT9Fgnz6bv0bvkq-nfkz1gjS4kNybEY0TcInZJgca7CDojx9asA05_54S83d-9zh9p8fSwmF8XtOJS9jRXosws2CyVnMmUcwnALasBraqwmpUiT0UuhSqBl0pwU9dZiRVXZoYGbCkm5OLA7Xz7OWDo9Uc7eBdfagFqluciYxBT_JCqfBuCR6s732yM_9YM9M6mPtjU0abe29TbWBKHUohht0L_h_6n9QM-g3oe |
Cites_doi | 10.1007/s12541-022-00647-w 10.1255/jsi.2021.a2 10.1364/oe.15.006947 10.3788/PI.2023.R01 10.1117/12.680804 10.1007/s40684-021-00351-6 10.1109/TIM.2022.3161721 10.1016/j.cpc.2009.11.008 10.1364/josab.23.002383 10.1364/oe.415210 10.1109/TPAMI.2022.3204461 10.1117/1.APN.2.4.044002 10.1002/cpcy.23 10.1109/JSTQE.2016.2521542 10.1002/jemt.23750 10.1021/nl0716449 10.1021/nl062635n 10.1038/s41467-022-29568-y 10.57062/ijpem-st.2023.0017 10.1038/s41377-023-01204-4 10.1145/3528233.3530757 10.1364/oe.26.019574 10.1038/ncomms2176 10.1109/ITOEC53115.2022.9734431 10.1109/CVPR.2017.632 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s12541-024-00991-z |
DatabaseName | SpringerOpen CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4602 |
EndPage | 1792 |
ExternalDocumentID | 10_1007_s12541_024_00991_z |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: JP22J22125 – fundername: The University of Tokyo – fundername: Japan Science and Technology Corporation grantid: JPMJCR2232 funderid: http://dx.doi.org/10.13039/501100001695 |
GroupedDBID | -EM .UV 06D 0R~ 0VY 203 29J 29~ 2JY 2KG 2VQ 30V 4.4 406 408 5GY 5VS 67Z 8TC 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFGW ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACREN ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BGNMA C6C CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAYXX CITATION |
ID | FETCH-LOGICAL-c244t-793b6f0f6542145224002f1d0ef9cec8b37537439b02b932add6bec29a8ea0fb3 |
IEDL.DBID | U2A |
ISSN | 2234-7593 |
IngestDate | Thu Oct 10 21:59:30 EDT 2024 Thu Sep 12 20:29:47 EDT 2024 Fri Aug 30 01:10:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep learning Super-resolution Nanostructures Superlens |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-793b6f0f6542145224002f1d0ef9cec8b37537439b02b932add6bec29a8ea0fb3 |
ORCID | 0000-0002-6555-9409 |
OpenAccessLink | http://link.springer.com/10.1007/s12541-024-00991-z |
PQID | 3098773610 |
PQPubID | 2043903 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3098773610 crossref_primary_10_1007_s12541_024_00991_z springer_journals_10_1007_s12541_024_00991_z |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | International journal of precision engineering and manufacturing |
PublicationTitleAbbrev | Int. J. Precis. Eng. Manuf |
PublicationYear | 2024 |
Publisher | Korean Society for Precision Engineering Springer Nature B.V |
Publisher_xml | – name: Korean Society for Precision Engineering – name: Springer Nature B.V |
References | Wi, Kim, Lee, Choi, Kwak, Song, Lee, Ok (CR20) 2022; 9 Liu (CR22) 2007; 15 Adams, Sadatgol, Güney (CR1) 2016; 10 CR19 Murphy, Kerekes (CR25) 2021; 10 Xiong, Liu, Sun, Zhang (CR6) 2007; 7 Chen (CR5) 2023; 12 Saharia (CR23) 2022 Wu, Xu, Xi (CR3) 2021; 84 Chai, Chen, Liu, Lei (CR15) 2021; 29 Kim, Lee, Jeon (CR18) 2023; 1 Oskooi, Roundy, Ibanescu, Bermel, Joannopoulos, Johnson (CR26) 2010; 181 Liu (CR10) 2007; 7 Durant, Liu, Fang, Zhang (CR12) 2006; 6323 Nam, Kwon (CR17) 2022; 23 Lu, Liu (CR8) 2012; 3 Lal, Shan, Xi (CR7) 2016; 22 Li, Fu, Frenner, Osten (CR13) 2018; 26 Durant, Liu, Steele, Zhang (CR11) 2006; 23 CR24 Li, Chen, Xiao, Chen, Hu, Zhu (CR9) 2023; 2 Hu, Zhou, Wu, Peng (CR2) 2023; 2 Fan (CR14) 2022; 13 Xu, Ma, Liu (CR4) 2017; 81 Saharia, Ho, Chan, Salimans, Fleet, Norouzi (CR21) 2023; 45 Cheng, Li, Dai, Fu, Yang (CR16) 2022; 71 991_CR24 C Chai (991_CR15) 2021; 29 C Murphy (991_CR25) 2021; 10 I-S Kim (991_CR18) 2023; 1 X Hu (991_CR2) 2023; 2 S Durant (991_CR11) 2006; 23 Z Liu (991_CR10) 2007; 7 JS Wi (991_CR20) 2022; 9 AF Oskooi (991_CR26) 2010; 181 C Saharia (991_CR21) 2023; 45 Z Liu (991_CR22) 2007; 15 D Lu (991_CR8) 2012; 3 X Chen (991_CR5) 2023; 12 991_CR19 Z Wu (991_CR3) 2021; 84 Q Fan (991_CR14) 2022; 13 Y Xiong (991_CR6) 2007; 7 T Li (991_CR9) 2023; 2 X Cheng (991_CR16) 2022; 71 JS Nam (991_CR17) 2022; 23 A Lal (991_CR7) 2016; 22 H Li (991_CR13) 2018; 26 S Durant (991_CR12) 2006; 6323 J Xu (991_CR4) 2017; 81 W Adams (991_CR1) 2016; 10 C Saharia (991_CR23) 2022 |
References_xml | – volume: 10 start-page: 4964498 issue: 1063/1 year: 2016 ident: CR1 article-title: Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging publication-title: AIP Advances contributor: fullname: Güney – volume: 23 start-page: 667 issue: 6 year: 2022 end-page: 675 ident: CR17 article-title: A study on tool breakage detection during milling process using LSTM-autoencoder and gaussian mixture model publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-022-00647-w contributor: fullname: Kwon – volume: 10 start-page: a2 issue: 1 year: 2021 ident: CR25 article-title: 1D conditional generative adversarial network for spectrum-to-spectrum translation of simulated chemical reflectance signatures publication-title: J. Spectr. Imaging doi: 10.1255/jsi.2021.a2 contributor: fullname: Kerekes – volume: 15 start-page: 6947 issue: 11 year: 2007 ident: CR22 article-title: Experimental studies of far-field superlens for sub-diffractional optical imaging publication-title: Optics Express doi: 10.1364/oe.15.006947 contributor: fullname: Liu – volume: 2 start-page: R01 issue: 11 year: 2023 ident: CR9 article-title: Revolutionary meta-imaging: From superlens to metalens publication-title: Photonics Insights doi: 10.3788/PI.2023.R01 contributor: fullname: Zhu – volume: 6323 start-page: 63231H year: 2006 ident: CR12 article-title: Theory of optical imaging beyond the diffraction limit with a far-field superlens publication-title: Plasmonics: Metallic Nanostructures and Their Optical Properties doi: 10.1117/12.680804 contributor: fullname: Zhang – volume: 9 start-page: 421 issue: 2 year: 2022 end-page: 429 ident: CR20 article-title: Inkjet printable nanoporous Ag disk arrays enabling coffee–ring effect–driven analyte enrichment towards practical SERS Applications publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-021-00351-6 contributor: fullname: Ok – volume: 71 start-page: 1 issue: 9 year: 2022 end-page: 9 ident: CR16 article-title: Fast and lightweight network for single frame structured illumination microscopy super-resolution publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3161721 contributor: fullname: Yang – volume: 181 start-page: 687 issue: 3 year: 2010 end-page: 702 ident: CR26 article-title: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2009.11.008 contributor: fullname: Johnson – volume: 23 start-page: 2383 issue: 11 year: 2006 ident: CR11 article-title: Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit publication-title: Journal of the Optical Society of America B: Optical Physics doi: 10.1364/josab.23.002383 contributor: fullname: Zhang – volume: 29 start-page: 4010 issue: 3 year: 2021 ident: CR15 article-title: Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement publication-title: Optics Express doi: 10.1364/oe.415210 contributor: fullname: Lei – volume: 45 start-page: 4713 issue: 4 year: 2023 end-page: 4726 ident: CR21 article-title: Image super-resolution via iterative refinement publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2022.3204461 contributor: fullname: Norouzi – ident: CR19 – volume: 2 start-page: 44002 issue: 4 year: 2023 ident: CR2 article-title: Review on near-field detection technology in the biomedical field publication-title: Advanced Photonics Nexus doi: 10.1117/1.APN.2.4.044002 contributor: fullname: Peng – volume: 81 start-page: 12 issue: 1 year: 2017 end-page: 46 ident: CR4 article-title: Stochastic optical reconstruction microscopy (STORM) publication-title: Current Protocols in Cytometry doi: 10.1002/cpcy.23 contributor: fullname: Liu – volume: 22 start-page: 50 issue: 4 year: 2016 end-page: 63 ident: CR7 article-title: Structured illumination microscopy image reconstruction algorithm publication-title: IEEE Journal of Selected Topics in Quantum Electronics doi: 10.1109/JSTQE.2016.2521542 contributor: fullname: Xi – volume: 84 start-page: 1947 issue: 9 year: 2021 end-page: 1958 ident: CR3 article-title: Stimulated emission depletion microscopy for biological imaging in four dimensions: A review publication-title: Microscopy Research and Technique doi: 10.1002/jemt.23750 contributor: fullname: Xi – volume: 7 start-page: 3360 issue: 11 year: 2007 end-page: 3365 ident: CR6 article-title: Two-dimensional imaging by far-field superlens at visible wavelengths publication-title: Nano Letters doi: 10.1021/nl0716449 contributor: fullname: Zhang – volume: 7 start-page: 403 issue: 2 year: 2007 end-page: 408 ident: CR10 article-title: Far-field optical superlens publication-title: Nano Letters doi: 10.1021/nl062635n contributor: fullname: Liu – volume: 13 start-page: 1 issue: 1 year: 2022 end-page: 10 ident: CR14 article-title: Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field publication-title: Nature Communications doi: 10.1038/s41467-022-29568-y contributor: fullname: Fan – volume: 1 start-page: 219 issue: 2 year: 2023 end-page: 226 ident: CR18 article-title: Review on machine learning based welding quality improvement publication-title: International Journal of Precision Engineering and Manufacturing Smart Technology doi: 10.57062/ijpem-st.2023.0017 contributor: fullname: Jeon – volume: 12 start-page: 1 issue: 1 year: 2023 end-page: 34 ident: CR5 article-title: Superresolution structured illumination microscopy reconstruction algorithms: A review publication-title: Light: Science & Applications doi: 10.1038/s41377-023-01204-4 contributor: fullname: Chen – year: 2022 ident: CR23 publication-title: Palette: Image-to-image diffusion models doi: 10.1145/3528233.3530757 contributor: fullname: Saharia – volume: 26 start-page: 19574 issue: 15 year: 2018 ident: CR13 article-title: Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength publication-title: Optics Express doi: 10.1364/oe.26.019574 contributor: fullname: Osten – ident: CR24 – volume: 3 start-page: 1 year: 2012 end-page: 9 ident: CR8 article-title: Hyperlenses and metalenses for far-field super-resolution imaging publication-title: Nature Communications doi: 10.1038/ncomms2176 contributor: fullname: Liu – volume: 2 start-page: 44002 issue: 4 year: 2023 ident: 991_CR2 publication-title: Advanced Photonics Nexus doi: 10.1117/1.APN.2.4.044002 contributor: fullname: X Hu – volume: 7 start-page: 3360 issue: 11 year: 2007 ident: 991_CR6 publication-title: Nano Letters doi: 10.1021/nl0716449 contributor: fullname: Y Xiong – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 991_CR14 publication-title: Nature Communications doi: 10.1038/s41467-022-29568-y contributor: fullname: Q Fan – volume: 26 start-page: 19574 issue: 15 year: 2018 ident: 991_CR13 publication-title: Optics Express doi: 10.1364/oe.26.019574 contributor: fullname: H Li – volume: 84 start-page: 1947 issue: 9 year: 2021 ident: 991_CR3 publication-title: Microscopy Research and Technique doi: 10.1002/jemt.23750 contributor: fullname: Z Wu – volume-title: Palette: Image-to-image diffusion models year: 2022 ident: 991_CR23 doi: 10.1145/3528233.3530757 contributor: fullname: C Saharia – volume: 45 start-page: 4713 issue: 4 year: 2023 ident: 991_CR21 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2022.3204461 contributor: fullname: C Saharia – volume: 15 start-page: 6947 issue: 11 year: 2007 ident: 991_CR22 publication-title: Optics Express doi: 10.1364/oe.15.006947 contributor: fullname: Z Liu – ident: 991_CR24 doi: 10.1109/ITOEC53115.2022.9734431 – volume: 22 start-page: 50 issue: 4 year: 2016 ident: 991_CR7 publication-title: IEEE Journal of Selected Topics in Quantum Electronics doi: 10.1109/JSTQE.2016.2521542 contributor: fullname: A Lal – volume: 1 start-page: 219 issue: 2 year: 2023 ident: 991_CR18 publication-title: International Journal of Precision Engineering and Manufacturing Smart Technology doi: 10.57062/ijpem-st.2023.0017 contributor: fullname: I-S Kim – volume: 10 start-page: a2 issue: 1 year: 2021 ident: 991_CR25 publication-title: J. Spectr. Imaging doi: 10.1255/jsi.2021.a2 contributor: fullname: C Murphy – volume: 29 start-page: 4010 issue: 3 year: 2021 ident: 991_CR15 publication-title: Optics Express doi: 10.1364/oe.415210 contributor: fullname: C Chai – volume: 2 start-page: R01 issue: 11 year: 2023 ident: 991_CR9 publication-title: Photonics Insights doi: 10.3788/PI.2023.R01 contributor: fullname: T Li – volume: 3 start-page: 1 year: 2012 ident: 991_CR8 publication-title: Nature Communications doi: 10.1038/ncomms2176 contributor: fullname: D Lu – volume: 9 start-page: 421 issue: 2 year: 2022 ident: 991_CR20 publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-021-00351-6 contributor: fullname: JS Wi – volume: 10 start-page: 4964498 issue: 1063/1 year: 2016 ident: 991_CR1 publication-title: AIP Advances contributor: fullname: W Adams – volume: 81 start-page: 12 issue: 1 year: 2017 ident: 991_CR4 publication-title: Current Protocols in Cytometry doi: 10.1002/cpcy.23 contributor: fullname: J Xu – volume: 181 start-page: 687 issue: 3 year: 2010 ident: 991_CR26 publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2009.11.008 contributor: fullname: AF Oskooi – volume: 6323 start-page: 63231H year: 2006 ident: 991_CR12 publication-title: Plasmonics: Metallic Nanostructures and Their Optical Properties doi: 10.1117/12.680804 contributor: fullname: S Durant – volume: 23 start-page: 2383 issue: 11 year: 2006 ident: 991_CR11 publication-title: Journal of the Optical Society of America B: Optical Physics doi: 10.1364/josab.23.002383 contributor: fullname: S Durant – volume: 7 start-page: 403 issue: 2 year: 2007 ident: 991_CR10 publication-title: Nano Letters doi: 10.1021/nl062635n contributor: fullname: Z Liu – volume: 71 start-page: 1 issue: 9 year: 2022 ident: 991_CR16 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3161721 contributor: fullname: X Cheng – volume: 12 start-page: 1 issue: 1 year: 2023 ident: 991_CR5 publication-title: Light: Science & Applications doi: 10.1038/s41377-023-01204-4 contributor: fullname: X Chen – volume: 23 start-page: 667 issue: 6 year: 2022 ident: 991_CR17 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-022-00647-w contributor: fullname: JS Nam – ident: 991_CR19 doi: 10.1109/CVPR.2017.632 |
SSID | ssib031263586 ssib036278122 ssib053376809 ssj0068040 |
Score | 2.3890665 |
Snippet | The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the... Abstract The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1783 |
SubjectTerms | Deep learning Diffraction patterns Engineering Evanescent waves Finite difference time domain method Generative adversarial networks Illumination Image enhancement Image manipulation Image reconstruction Image resolution Imaging techniques Industrial and Production Engineering Light diffraction Materials Science Metamaterials Optical microscopes Plasmons Regular Paper Wave diffraction |
Title | Super-Resolution Imaging of Sub-diffraction-Limited Pattern with Superlens Based on Deep Learning |
URI | https://link.springer.com/article/10.1007/s12541-024-00991-z https://www.proquest.com/docview/3098773610 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUnlgA0uJ83AytqWlgKiQoFKZoti1mZpWfSz99ZydhACCgSmREjnS5Xzfd7bvO4CrIEI3iSNBNVfSLN1oGqWC03ga-TqUPFDcFAo_jcLh2H-YBJOqjtsedi93JG2grmrdMJXBzJf51LAal25r0EDy4JuMa8w6pRN5rpFXqTTRMEBzBLFPDEd6gwzbaFbl4RrvbdUkwqRPeRB7RWXN79_8jl4VJf2xi2rBaXAA-wWrJJ3cDQ5hR2VHsPdFa_AY0pfNQi2pWa7PnY3cz2yHIjLXBMMHNa1SlnmZAy3KnsizVd_MiFmtJXYABKkV6SL0TQkOcavUghQSre8nMB70X3tDWvRXoBJBfU1xaopQO9r0rHKNsjrOZ6bdqaN0LJWMhIe5jElYhMME8jwMhSH-chankUodLbxTqGfzTJ0BCWUQOzrgIrASgkJIxpwQ2YGWKfeYbsJ1abdkkctoJJVgsrFyglZOrJWTbRNapWmTYkqtEs-JI849pHtNuCnNXT3-e7Tz_71-AbvM_nFzjqwF9fVyoy6ReKxFGxqdQbc7Mte7t8d-G2q9sNe27vcBSznOOw |
link.rule.ids | 315,783,787,27937,27938,41094,41133,41536,42163,42202,42605,51589,52124,52247 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh7YwFLqPJyM5VG10FZItFI3K3ZtJtKqj6W_nrOTEEAwsEVK5Ejn833f2b7vAK7DGN0kiSU1XCu7dWNonEpOk0kcmEjxUHNbKNwfRJ1R8DQOx0VR2KK87V4eSbpIXRW7YS6DqS8LqKU1TbrehC2rr24v8o1Yq_Qiv2n1VSpRNIzQHFHsE8SR3yDFtqJVebzGZ1c2iTgZUB4mflFa8_s_v8NXxUl_HKM6dGrvw15BK0kr94MD2NDZIex-ERs8gvR1NdNzavfrc28j3XfXoohMDcH4QW2vlHle50CLuify4uQ3M2K3a4kbAFFqQe4Q-yYEh3jQekYKjda3Yxi1H4f3HVo0WKAKUX1JcW3KyHjGNq1qWml1XNDMNCeeNonSKpY-JjM2Y5Eek0j0MBZGOOcsSWOdekb6J1DLppk-BRKpMPFMyGXoNASlVIx5EdIDo1LuM1OHm9JuYpbraIhKMdlaWaCVhbOyWNehUZpWFGtqIXwviTn3ke_V4bY0d_X679HO_vf5FWx3hv2e6HUHz-eww9zs20tlDagt5yt9gSxkKS-d030Al2DNqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRAMvBGFAh7YwCVvJyOPlkcBIUGlMkWxazMg0qqkS389ZychpYIBsUVK5Cjny913tr_vAI78EN0kCjlVTAq9dKNomHBGo37oqUAwXzJNFL5_CK673m3P702x-M1p93JLMuc0aJWmNDsd9tVpRXzDugbLYMejGuLYdDIPC56NpUoNFs6uXjqt0qdcW6utVBJpGK8Z5rSvlI5oBwG3lrDKozdeGxIlZk2PMj9yC6LNz2_9nswqhDqzqWpyVXsVkvIr8yMqb81xxptiMiMA-R8zrMFKAWTJWe556zAn0w1YnpI33ITkaTyUI6p3CHL_JjfvpikSGSiCEYvq7iyjnFlBC6YVeTSCnynRC8TEDIB58YOcY7btExziUsohKVRhX7eg2249X1zToqUDFYgjMorRgAfKUrpNlq3F3DGEOMruW1JFQoqQu1g-6RqJWw5HaInRN0Avc6IklImluLsNtXSQyh0ggfAjS_mM-0a1kHPhOFaAgESJhLmOqsNxOTfxMFfuiCuNZm24GA0XG8PFkzo0yumLi7_4I3atKGTMRYRZh5NyNqrbv4-2-7fHD2Hx8bId3908dPZgyTHzqU-xNaCWjcZyH2FPxg8Kz_4EQoLzxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-Resolution+Imaging+of+Sub-diffraction-Limited+Pattern+with+Superlens+Based+on+Deep+Learning&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Guan%2C+Yizhao&rft.au=Masui%2C+Shuzo&rft.au=Kadoya%2C+Shotaro&rft.au=Michihata%2C+Masaki&rft.date=2024-09-01&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=25&rft.issue=9&rft.spage=1783&rft.epage=1792&rft_id=info:doi/10.1007%2Fs12541-024-00991-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12541_024_00991_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon |