Super-Resolution Imaging of Sub-diffraction-Limited Pattern with Superlens Based on Deep Learning

The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of precision engineering and manufacturing Vol. 25; no. 9; pp. 1783 - 1792
Main Authors Guan, Yizhao, Masui, Shuzo, Kadoya, Shotaro, Michihata, Masaki, Takahashi, Satoru
Format Journal Article
LanguageEnglish
Published Seoul Korean Society for Precision Engineering 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating the light wave in the near field. A superlens is a kind of metamaterial-based lens that can enhance the evanescent waves generated by nano-scale objects, utilizing the surface plasmon phenomenon. The superlens allows for the imaging of nano-scale objects that would otherwise be impossible to resolve using traditional lenses. Previous research has shown that nanostructures can be imaged using superlenses, but the exact shape of the superlens must be known in advance, and an analytical calculation is needed to reconstruct the image. Localized plasmon structured illumination microscopy is an approach to achieve super-resolution by imaging the superlens-enhanced evanescent wave with illumination shifts. This study proposes a new approach utilizing a conditional generative adversarial network to obtain super-resolution images of arbitrary nano-scale patterns. To test the efficacy of this approach, finite-difference time-domain simulation was utilized to obtain superlens imaging results. The data from the simulation were then used for deep learning to develop the model. With the help of deep learning, the inverse calculation of complex sub-diffraction-limited patterns can be achieved. The super-resolution feature of the superlens based on deep learning is investigated. The findings of this study have significant implications for the field of nano-scale imaging, where the ability to resolve arbitrary nano-scale patterns will be crucial for advances in nanotechnology and materials science.
AbstractList The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating the light wave in the near field. A superlens is a kind of metamaterial-based lens that can enhance the evanescent waves generated by nano-scale objects, utilizing the surface plasmon phenomenon. The superlens allows for the imaging of nano-scale objects that would otherwise be impossible to resolve using traditional lenses. Previous research has shown that nanostructures can be imaged using superlenses, but the exact shape of the superlens must be known in advance, and an analytical calculation is needed to reconstruct the image. Localized plasmon structured illumination microscopy is an approach to achieve super-resolution by imaging the superlens-enhanced evanescent wave with illumination shifts. This study proposes a new approach utilizing a conditional generative adversarial network to obtain super-resolution images of arbitrary nano-scale patterns. To test the efficacy of this approach, finite-difference time-domain simulation was utilized to obtain superlens imaging results. The data from the simulation were then used for deep learning to develop the model. With the help of deep learning, the inverse calculation of complex sub-diffraction-limited patterns can be achieved. The super-resolution feature of the superlens based on deep learning is investigated. The findings of this study have significant implications for the field of nano-scale imaging, where the ability to resolve arbitrary nano-scale patterns will be crucial for advances in nanotechnology and materials science.
Abstract The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the diffraction limit of traditional optical microscopes. Super-resolution superlenses have been proposed to solve this problem by manipulating the light wave in the near field. A superlens is a kind of metamaterial-based lens that can enhance the evanescent waves generated by nano-scale objects, utilizing the surface plasmon phenomenon. The superlens allows for the imaging of nano-scale objects that would otherwise be impossible to resolve using traditional lenses. Previous research has shown that nanostructures can be imaged using superlenses, but the exact shape of the superlens must be known in advance, and an analytical calculation is needed to reconstruct the image. Localized plasmon structured illumination microscopy is an approach to achieve super-resolution by imaging the superlens-enhanced evanescent wave with illumination shifts. This study proposes a new approach utilizing a conditional generative adversarial network to obtain super-resolution images of arbitrary nano-scale patterns. To test the efficacy of this approach, finite-difference time-domain simulation was utilized to obtain superlens imaging results. The data from the simulation were then used for deep learning to develop the model. With the help of deep learning, the inverse calculation of complex sub-diffraction-limited patterns can be achieved. The super-resolution feature of the superlens based on deep learning is investigated. The findings of this study have significant implications for the field of nano-scale imaging, where the ability to resolve arbitrary nano-scale patterns will be crucial for advances in nanotechnology and materials science.
Author Michihata, Masaki
Masui, Shuzo
Takahashi, Satoru
Guan, Yizhao
Kadoya, Shotaro
Author_xml – sequence: 1
  givenname: Yizhao
  surname: Guan
  fullname: Guan, Yizhao
  organization: Department of Precision Engineering, The University of Tokyo
– sequence: 2
  givenname: Shuzo
  surname: Masui
  fullname: Masui, Shuzo
  organization: Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
– sequence: 3
  givenname: Shotaro
  surname: Kadoya
  fullname: Kadoya, Shotaro
  organization: Department of Precision Engineering, The University of Tokyo
– sequence: 4
  givenname: Masaki
  surname: Michihata
  fullname: Michihata, Masaki
  organization: Department of Precision Engineering, The University of Tokyo
– sequence: 5
  givenname: Satoru
  orcidid: 0000-0002-6555-9409
  surname: Takahashi
  fullname: Takahashi, Satoru
  email: takahashi@nanolab.t.u-tokyo.ac.jp
  organization: Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
BookMark eNp9kE1Lw0AQhhepYK39A54CnldnP5J0j1q_CgHF6nnZJLM10m7iboLYX--2Fbx5moF532fgOSUj1zok5JzBJQPIrwLjqWQUuKQASjG6PSJjDpBSmQEfxZ0LSfNUiRMyDaEpQTCeiXSWjYlZDh16-oKhXQ9907pksTGrxq2S1ibLoaR1Y6031e5Ei2bT9Fgnz6bv0bvkq-nfkz1gjS4kNybEY0TcInZJgca7CDojx9asA05_54S83d-9zh9p8fSwmF8XtOJS9jRXosws2CyVnMmUcwnALasBraqwmpUiT0UuhSqBl0pwU9dZiRVXZoYGbCkm5OLA7Xz7OWDo9Uc7eBdfagFqluciYxBT_JCqfBuCR6s732yM_9YM9M6mPtjU0abe29TbWBKHUohht0L_h_6n9QM-g3oe
Cites_doi 10.1007/s12541-022-00647-w
10.1255/jsi.2021.a2
10.1364/oe.15.006947
10.3788/PI.2023.R01
10.1117/12.680804
10.1007/s40684-021-00351-6
10.1109/TIM.2022.3161721
10.1016/j.cpc.2009.11.008
10.1364/josab.23.002383
10.1364/oe.415210
10.1109/TPAMI.2022.3204461
10.1117/1.APN.2.4.044002
10.1002/cpcy.23
10.1109/JSTQE.2016.2521542
10.1002/jemt.23750
10.1021/nl0716449
10.1021/nl062635n
10.1038/s41467-022-29568-y
10.57062/ijpem-st.2023.0017
10.1038/s41377-023-01204-4
10.1145/3528233.3530757
10.1364/oe.26.019574
10.1038/ncomms2176
10.1109/ITOEC53115.2022.9734431
10.1109/CVPR.2017.632
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s12541-024-00991-z
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4602
EndPage 1792
ExternalDocumentID 10_1007_s12541_024_00991_z
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: JP22J22125
– fundername: The University of Tokyo
– fundername: Japan Science and Technology Corporation
  grantid: JPMJCR2232
  funderid: http://dx.doi.org/10.13039/501100001695
GroupedDBID -EM
.UV
06D
0R~
0VY
203
29J
29~
2JY
2KG
2VQ
30V
4.4
406
408
5GY
5VS
67Z
8TC
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BGNMA
C6C
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c244t-793b6f0f6542145224002f1d0ef9cec8b37537439b02b932add6bec29a8ea0fb3
IEDL.DBID U2A
ISSN 2234-7593
IngestDate Thu Oct 10 21:59:30 EDT 2024
Thu Sep 12 20:29:47 EDT 2024
Fri Aug 30 01:10:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Super-resolution
Nanostructures
Superlens
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-793b6f0f6542145224002f1d0ef9cec8b37537439b02b932add6bec29a8ea0fb3
ORCID 0000-0002-6555-9409
OpenAccessLink http://link.springer.com/10.1007/s12541-024-00991-z
PQID 3098773610
PQPubID 2043903
PageCount 10
ParticipantIDs proquest_journals_3098773610
crossref_primary_10_1007_s12541_024_00991_z
springer_journals_10_1007_s12541_024_00991_z
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle International journal of precision engineering and manufacturing
PublicationTitleAbbrev Int. J. Precis. Eng. Manuf
PublicationYear 2024
Publisher Korean Society for Precision Engineering
Springer Nature B.V
Publisher_xml – name: Korean Society for Precision Engineering
– name: Springer Nature B.V
References Wi, Kim, Lee, Choi, Kwak, Song, Lee, Ok (CR20) 2022; 9
Liu (CR22) 2007; 15
Adams, Sadatgol, Güney (CR1) 2016; 10
CR19
Murphy, Kerekes (CR25) 2021; 10
Xiong, Liu, Sun, Zhang (CR6) 2007; 7
Chen (CR5) 2023; 12
Saharia (CR23) 2022
Wu, Xu, Xi (CR3) 2021; 84
Chai, Chen, Liu, Lei (CR15) 2021; 29
Kim, Lee, Jeon (CR18) 2023; 1
Oskooi, Roundy, Ibanescu, Bermel, Joannopoulos, Johnson (CR26) 2010; 181
Liu (CR10) 2007; 7
Durant, Liu, Fang, Zhang (CR12) 2006; 6323
Nam, Kwon (CR17) 2022; 23
Lu, Liu (CR8) 2012; 3
Lal, Shan, Xi (CR7) 2016; 22
Li, Fu, Frenner, Osten (CR13) 2018; 26
Durant, Liu, Steele, Zhang (CR11) 2006; 23
CR24
Li, Chen, Xiao, Chen, Hu, Zhu (CR9) 2023; 2
Hu, Zhou, Wu, Peng (CR2) 2023; 2
Fan (CR14) 2022; 13
Xu, Ma, Liu (CR4) 2017; 81
Saharia, Ho, Chan, Salimans, Fleet, Norouzi (CR21) 2023; 45
Cheng, Li, Dai, Fu, Yang (CR16) 2022; 71
991_CR24
C Chai (991_CR15) 2021; 29
C Murphy (991_CR25) 2021; 10
I-S Kim (991_CR18) 2023; 1
X Hu (991_CR2) 2023; 2
S Durant (991_CR11) 2006; 23
Z Liu (991_CR10) 2007; 7
JS Wi (991_CR20) 2022; 9
AF Oskooi (991_CR26) 2010; 181
C Saharia (991_CR21) 2023; 45
Z Liu (991_CR22) 2007; 15
D Lu (991_CR8) 2012; 3
X Chen (991_CR5) 2023; 12
991_CR19
Z Wu (991_CR3) 2021; 84
Q Fan (991_CR14) 2022; 13
Y Xiong (991_CR6) 2007; 7
T Li (991_CR9) 2023; 2
X Cheng (991_CR16) 2022; 71
JS Nam (991_CR17) 2022; 23
A Lal (991_CR7) 2016; 22
H Li (991_CR13) 2018; 26
S Durant (991_CR12) 2006; 6323
J Xu (991_CR4) 2017; 81
W Adams (991_CR1) 2016; 10
C Saharia (991_CR23) 2022
References_xml – volume: 10
  start-page: 4964498
  issue: 1063/1
  year: 2016
  ident: CR1
  article-title: Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging
  publication-title: AIP Advances
  contributor:
    fullname: Güney
– volume: 23
  start-page: 667
  issue: 6
  year: 2022
  end-page: 675
  ident: CR17
  article-title: A study on tool breakage detection during milling process using LSTM-autoencoder and gaussian mixture model
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-022-00647-w
  contributor:
    fullname: Kwon
– volume: 10
  start-page: a2
  issue: 1
  year: 2021
  ident: CR25
  article-title: 1D conditional generative adversarial network for spectrum-to-spectrum translation of simulated chemical reflectance signatures
  publication-title: J. Spectr. Imaging
  doi: 10.1255/jsi.2021.a2
  contributor:
    fullname: Kerekes
– volume: 15
  start-page: 6947
  issue: 11
  year: 2007
  ident: CR22
  article-title: Experimental studies of far-field superlens for sub-diffractional optical imaging
  publication-title: Optics Express
  doi: 10.1364/oe.15.006947
  contributor:
    fullname: Liu
– volume: 2
  start-page: R01
  issue: 11
  year: 2023
  ident: CR9
  article-title: Revolutionary meta-imaging: From superlens to metalens
  publication-title: Photonics Insights
  doi: 10.3788/PI.2023.R01
  contributor:
    fullname: Zhu
– volume: 6323
  start-page: 63231H
  year: 2006
  ident: CR12
  article-title: Theory of optical imaging beyond the diffraction limit with a far-field superlens
  publication-title: Plasmonics: Metallic Nanostructures and Their Optical Properties
  doi: 10.1117/12.680804
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 421
  issue: 2
  year: 2022
  end-page: 429
  ident: CR20
  article-title: Inkjet printable nanoporous Ag disk arrays enabling coffee–ring effect–driven analyte enrichment towards practical SERS Applications
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-021-00351-6
  contributor:
    fullname: Ok
– volume: 71
  start-page: 1
  issue: 9
  year: 2022
  end-page: 9
  ident: CR16
  article-title: Fast and lightweight network for single frame structured illumination microscopy super-resolution
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2022.3161721
  contributor:
    fullname: Yang
– volume: 181
  start-page: 687
  issue: 3
  year: 2010
  end-page: 702
  ident: CR26
  article-title: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2009.11.008
  contributor:
    fullname: Johnson
– volume: 23
  start-page: 2383
  issue: 11
  year: 2006
  ident: CR11
  article-title: Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit
  publication-title: Journal of the Optical Society of America B: Optical Physics
  doi: 10.1364/josab.23.002383
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 4010
  issue: 3
  year: 2021
  ident: CR15
  article-title: Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement
  publication-title: Optics Express
  doi: 10.1364/oe.415210
  contributor:
    fullname: Lei
– volume: 45
  start-page: 4713
  issue: 4
  year: 2023
  end-page: 4726
  ident: CR21
  article-title: Image super-resolution via iterative refinement
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2022.3204461
  contributor:
    fullname: Norouzi
– ident: CR19
– volume: 2
  start-page: 44002
  issue: 4
  year: 2023
  ident: CR2
  article-title: Review on near-field detection technology in the biomedical field
  publication-title: Advanced Photonics Nexus
  doi: 10.1117/1.APN.2.4.044002
  contributor:
    fullname: Peng
– volume: 81
  start-page: 12
  issue: 1
  year: 2017
  end-page: 46
  ident: CR4
  article-title: Stochastic optical reconstruction microscopy (STORM)
  publication-title: Current Protocols in Cytometry
  doi: 10.1002/cpcy.23
  contributor:
    fullname: Liu
– volume: 22
  start-page: 50
  issue: 4
  year: 2016
  end-page: 63
  ident: CR7
  article-title: Structured illumination microscopy image reconstruction algorithm
  publication-title: IEEE Journal of Selected Topics in Quantum Electronics
  doi: 10.1109/JSTQE.2016.2521542
  contributor:
    fullname: Xi
– volume: 84
  start-page: 1947
  issue: 9
  year: 2021
  end-page: 1958
  ident: CR3
  article-title: Stimulated emission depletion microscopy for biological imaging in four dimensions: A review
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.23750
  contributor:
    fullname: Xi
– volume: 7
  start-page: 3360
  issue: 11
  year: 2007
  end-page: 3365
  ident: CR6
  article-title: Two-dimensional imaging by far-field superlens at visible wavelengths
  publication-title: Nano Letters
  doi: 10.1021/nl0716449
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 403
  issue: 2
  year: 2007
  end-page: 408
  ident: CR10
  article-title: Far-field optical superlens
  publication-title: Nano Letters
  doi: 10.1021/nl062635n
  contributor:
    fullname: Liu
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 10
  ident: CR14
  article-title: Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29568-y
  contributor:
    fullname: Fan
– volume: 1
  start-page: 219
  issue: 2
  year: 2023
  end-page: 226
  ident: CR18
  article-title: Review on machine learning based welding quality improvement
  publication-title: International Journal of Precision Engineering and Manufacturing Smart Technology
  doi: 10.57062/ijpem-st.2023.0017
  contributor:
    fullname: Jeon
– volume: 12
  start-page: 1
  issue: 1
  year: 2023
  end-page: 34
  ident: CR5
  article-title: Superresolution structured illumination microscopy reconstruction algorithms: A review
  publication-title: Light: Science & Applications
  doi: 10.1038/s41377-023-01204-4
  contributor:
    fullname: Chen
– year: 2022
  ident: CR23
  publication-title: Palette: Image-to-image diffusion models
  doi: 10.1145/3528233.3530757
  contributor:
    fullname: Saharia
– volume: 26
  start-page: 19574
  issue: 15
  year: 2018
  ident: CR13
  article-title: Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength
  publication-title: Optics Express
  doi: 10.1364/oe.26.019574
  contributor:
    fullname: Osten
– ident: CR24
– volume: 3
  start-page: 1
  year: 2012
  end-page: 9
  ident: CR8
  article-title: Hyperlenses and metalenses for far-field super-resolution imaging
  publication-title: Nature Communications
  doi: 10.1038/ncomms2176
  contributor:
    fullname: Liu
– volume: 2
  start-page: 44002
  issue: 4
  year: 2023
  ident: 991_CR2
  publication-title: Advanced Photonics Nexus
  doi: 10.1117/1.APN.2.4.044002
  contributor:
    fullname: X Hu
– volume: 7
  start-page: 3360
  issue: 11
  year: 2007
  ident: 991_CR6
  publication-title: Nano Letters
  doi: 10.1021/nl0716449
  contributor:
    fullname: Y Xiong
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 991_CR14
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29568-y
  contributor:
    fullname: Q Fan
– volume: 26
  start-page: 19574
  issue: 15
  year: 2018
  ident: 991_CR13
  publication-title: Optics Express
  doi: 10.1364/oe.26.019574
  contributor:
    fullname: H Li
– volume: 84
  start-page: 1947
  issue: 9
  year: 2021
  ident: 991_CR3
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.23750
  contributor:
    fullname: Z Wu
– volume-title: Palette: Image-to-image diffusion models
  year: 2022
  ident: 991_CR23
  doi: 10.1145/3528233.3530757
  contributor:
    fullname: C Saharia
– volume: 45
  start-page: 4713
  issue: 4
  year: 2023
  ident: 991_CR21
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2022.3204461
  contributor:
    fullname: C Saharia
– volume: 15
  start-page: 6947
  issue: 11
  year: 2007
  ident: 991_CR22
  publication-title: Optics Express
  doi: 10.1364/oe.15.006947
  contributor:
    fullname: Z Liu
– ident: 991_CR24
  doi: 10.1109/ITOEC53115.2022.9734431
– volume: 22
  start-page: 50
  issue: 4
  year: 2016
  ident: 991_CR7
  publication-title: IEEE Journal of Selected Topics in Quantum Electronics
  doi: 10.1109/JSTQE.2016.2521542
  contributor:
    fullname: A Lal
– volume: 1
  start-page: 219
  issue: 2
  year: 2023
  ident: 991_CR18
  publication-title: International Journal of Precision Engineering and Manufacturing Smart Technology
  doi: 10.57062/ijpem-st.2023.0017
  contributor:
    fullname: I-S Kim
– volume: 10
  start-page: a2
  issue: 1
  year: 2021
  ident: 991_CR25
  publication-title: J. Spectr. Imaging
  doi: 10.1255/jsi.2021.a2
  contributor:
    fullname: C Murphy
– volume: 29
  start-page: 4010
  issue: 3
  year: 2021
  ident: 991_CR15
  publication-title: Optics Express
  doi: 10.1364/oe.415210
  contributor:
    fullname: C Chai
– volume: 2
  start-page: R01
  issue: 11
  year: 2023
  ident: 991_CR9
  publication-title: Photonics Insights
  doi: 10.3788/PI.2023.R01
  contributor:
    fullname: T Li
– volume: 3
  start-page: 1
  year: 2012
  ident: 991_CR8
  publication-title: Nature Communications
  doi: 10.1038/ncomms2176
  contributor:
    fullname: D Lu
– volume: 9
  start-page: 421
  issue: 2
  year: 2022
  ident: 991_CR20
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-021-00351-6
  contributor:
    fullname: JS Wi
– volume: 10
  start-page: 4964498
  issue: 1063/1
  year: 2016
  ident: 991_CR1
  publication-title: AIP Advances
  contributor:
    fullname: W Adams
– volume: 81
  start-page: 12
  issue: 1
  year: 2017
  ident: 991_CR4
  publication-title: Current Protocols in Cytometry
  doi: 10.1002/cpcy.23
  contributor:
    fullname: J Xu
– volume: 181
  start-page: 687
  issue: 3
  year: 2010
  ident: 991_CR26
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2009.11.008
  contributor:
    fullname: AF Oskooi
– volume: 6323
  start-page: 63231H
  year: 2006
  ident: 991_CR12
  publication-title: Plasmonics: Metallic Nanostructures and Their Optical Properties
  doi: 10.1117/12.680804
  contributor:
    fullname: S Durant
– volume: 23
  start-page: 2383
  issue: 11
  year: 2006
  ident: 991_CR11
  publication-title: Journal of the Optical Society of America B: Optical Physics
  doi: 10.1364/josab.23.002383
  contributor:
    fullname: S Durant
– volume: 7
  start-page: 403
  issue: 2
  year: 2007
  ident: 991_CR10
  publication-title: Nano Letters
  doi: 10.1021/nl062635n
  contributor:
    fullname: Z Liu
– volume: 71
  start-page: 1
  issue: 9
  year: 2022
  ident: 991_CR16
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2022.3161721
  contributor:
    fullname: X Cheng
– volume: 12
  start-page: 1
  issue: 1
  year: 2023
  ident: 991_CR5
  publication-title: Light: Science & Applications
  doi: 10.1038/s41377-023-01204-4
  contributor:
    fullname: X Chen
– volume: 23
  start-page: 667
  issue: 6
  year: 2022
  ident: 991_CR17
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-022-00647-w
  contributor:
    fullname: JS Nam
– ident: 991_CR19
  doi: 10.1109/CVPR.2017.632
SSID ssib031263586
ssib036278122
ssib053376809
ssj0068040
Score 2.3890665
Snippet The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller than the...
Abstract The development of super-resolution imaging techniques has revolutionized our ability to study the nano-scale world, where objects are often smaller...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1783
SubjectTerms Deep learning
Diffraction patterns
Engineering
Evanescent waves
Finite difference time domain method
Generative adversarial networks
Illumination
Image enhancement
Image manipulation
Image reconstruction
Image resolution
Imaging techniques
Industrial and Production Engineering
Light diffraction
Materials Science
Metamaterials
Optical microscopes
Plasmons
Regular Paper
Wave diffraction
Title Super-Resolution Imaging of Sub-diffraction-Limited Pattern with Superlens Based on Deep Learning
URI https://link.springer.com/article/10.1007/s12541-024-00991-z
https://www.proquest.com/docview/3098773610
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUnlgA0uJ83AytqWlgKiQoFKZoti1mZpWfSz99ZydhACCgSmREjnS5Xzfd7bvO4CrIEI3iSNBNVfSLN1oGqWC03ga-TqUPFDcFAo_jcLh2H-YBJOqjtsedi93JG2grmrdMJXBzJf51LAal25r0EDy4JuMa8w6pRN5rpFXqTTRMEBzBLFPDEd6gwzbaFbl4RrvbdUkwqRPeRB7RWXN79_8jl4VJf2xi2rBaXAA-wWrJJ3cDQ5hR2VHsPdFa_AY0pfNQi2pWa7PnY3cz2yHIjLXBMMHNa1SlnmZAy3KnsizVd_MiFmtJXYABKkV6SL0TQkOcavUghQSre8nMB70X3tDWvRXoBJBfU1xaopQO9r0rHKNsjrOZ6bdqaN0LJWMhIe5jElYhMME8jwMhSH-chankUodLbxTqGfzTJ0BCWUQOzrgIrASgkJIxpwQ2YGWKfeYbsJ1abdkkctoJJVgsrFyglZOrJWTbRNapWmTYkqtEs-JI849pHtNuCnNXT3-e7Tz_71-AbvM_nFzjqwF9fVyoy6ReKxFGxqdQbc7Mte7t8d-G2q9sNe27vcBSznOOw
link.rule.ids 315,783,787,27937,27938,41094,41133,41536,42163,42202,42605,51589,52124,52247
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh7YwFLqPJyM5VG10FZItFI3K3ZtJtKqj6W_nrOTEEAwsEVK5Ejn833f2b7vAK7DGN0kiSU1XCu7dWNonEpOk0kcmEjxUHNbKNwfRJ1R8DQOx0VR2KK87V4eSbpIXRW7YS6DqS8LqKU1TbrehC2rr24v8o1Yq_Qiv2n1VSpRNIzQHFHsE8SR3yDFtqJVebzGZ1c2iTgZUB4mflFa8_s_v8NXxUl_HKM6dGrvw15BK0kr94MD2NDZIex-ERs8gvR1NdNzavfrc28j3XfXoohMDcH4QW2vlHle50CLuify4uQ3M2K3a4kbAFFqQe4Q-yYEh3jQekYKjda3Yxi1H4f3HVo0WKAKUX1JcW3KyHjGNq1qWml1XNDMNCeeNonSKpY-JjM2Y5Eek0j0MBZGOOcsSWOdekb6J1DLppk-BRKpMPFMyGXoNASlVIx5EdIDo1LuM1OHm9JuYpbraIhKMdlaWaCVhbOyWNehUZpWFGtqIXwviTn3ke_V4bY0d_X679HO_vf5FWx3hv2e6HUHz-eww9zs20tlDagt5yt9gSxkKS-d030Al2DNqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRAMvBGFAh7YwCVvJyOPlkcBIUGlMkWxazMg0qqkS389ZychpYIBsUVK5Cjny913tr_vAI78EN0kCjlVTAq9dKNomHBGo37oqUAwXzJNFL5_CK673m3P702x-M1p93JLMuc0aJWmNDsd9tVpRXzDugbLYMejGuLYdDIPC56NpUoNFs6uXjqt0qdcW6utVBJpGK8Z5rSvlI5oBwG3lrDKozdeGxIlZk2PMj9yC6LNz2_9nswqhDqzqWpyVXsVkvIr8yMqb81xxptiMiMA-R8zrMFKAWTJWe556zAn0w1YnpI33ITkaTyUI6p3CHL_JjfvpikSGSiCEYvq7iyjnFlBC6YVeTSCnynRC8TEDIB58YOcY7btExziUsohKVRhX7eg2249X1zToqUDFYgjMorRgAfKUrpNlq3F3DGEOMruW1JFQoqQu1g-6RqJWw5HaInRN0Avc6IklImluLsNtXSQyh0ggfAjS_mM-0a1kHPhOFaAgESJhLmOqsNxOTfxMFfuiCuNZm24GA0XG8PFkzo0yumLi7_4I3atKGTMRYRZh5NyNqrbv4-2-7fHD2Hx8bId3908dPZgyTHzqU-xNaCWjcZyH2FPxg8Kz_4EQoLzxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-Resolution+Imaging+of+Sub-diffraction-Limited+Pattern+with+Superlens+Based+on+Deep+Learning&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Guan%2C+Yizhao&rft.au=Masui%2C+Shuzo&rft.au=Kadoya%2C+Shotaro&rft.au=Michihata%2C+Masaki&rft.date=2024-09-01&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=25&rft.issue=9&rft.spage=1783&rft.epage=1792&rft_id=info:doi/10.1007%2Fs12541-024-00991-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12541_024_00991_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon