Nonlinear Relations of Viscous Stress and Strain Rate in Nonlinear Viscoelasticity
We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015 ), existence of weak solutions is shown by means of a...
Saved in:
Published in | Journal of elasticity Vol. 157; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0374-3535 1573-2681 |
DOI | 10.1007/s10659-025-10118-8 |
Cover
Abstract | We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by
Ciarlet and Mardare
(J. Math. Pures Appl. 104:1119–1134,
2015
), existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows (Ambrosio et al. in Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel,
2005
). |
---|---|
AbstractList | We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015), existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows (Ambrosio et al. in Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005). We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015 ), existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows (Ambrosio et al. in Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005 ). |
ArticleNumber | 26 |
Author | Machill, Lennart |
Author_xml | – sequence: 1 givenname: Lennart orcidid: 0000-0002-6477-1467 surname: Machill fullname: Machill, Lennart email: lmachill@uni-bonn.de organization: Institute for Applied Mathematics, University of Bonn |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDrqM3z0mWUnxBUaiPbUinGUmpSU3SRf-9qSN05-rcxfedC2eCRiEGh9AlgWsC0N5kAlJoDFRgAoQorE7QmIiWYSoVGaExsJZjJpg4Q5Oc1wCgFYcxWjzHsPHB2dQs3MYWH0NuYt98-NzFXW5eS3I5NzasDqf1oVnY4pqaR_GXrXIuvvNlf45Oe7vJ7uIvp-j9_u5t9ojnLw9Ps9s57ijnBYt2JZdSAROCayE5h84qplUnpVg6uuK9BWCU0972kkqtNFs6Vw0urFKUsym6Gnq3KX7vXC5mHXcp1JeGESmYboUmlaID1aWYc3K92Sb_ZdPeEDCH7cywnanbmd_tjKoSG6Rc4fDp0rH6H-sHKP1yfA |
Cites_doi | 10.4171/JEMS/1353 10.1007/BF00253945 10.1007/BF00040904 10.1007/s00526-023-02648-7 10.1007/s00205-020-01537-z 10.1007/s00033-023-02175-7 10.1007/s10884-014-9410-1 10.1051/cocv:2008050 10.1016/0022-0396(82)90019-5 10.1007/s10659-020-09801-9 10.1007/s00205-020-01547-x 10.1007/s00526-023-02525-3 10.1007/s00205-022-01834-9 10.1002/cpa.10048 10.1137/22M1474229 10.3934/eect.2012.1.17 10.1016/j.matpur.2015.07.007 10.1007/s002050000115 10.1177/10812865241263788 10.4171/em/257 10.3934/eect.2013.2.337 10.1007/BF00253224 10.1007/s00033-022-01686-z 10.1007/s00030-021-00745-0 10.1142/S0218202516500512 10.1007/BF00280640 10.1137/130927632 10.1007/s00021-023-00817-4 10.1007/s00526-024-02793-7 10.1007/BF00253050 10.1016/0022-1236(81)90085-9 10.1007/s00205-007-0109-x 10.1002/zamm.202300486 10.1007/s000330050134 10.1142/S0218202524500581 10.1137/17M1131428 10.2298/TAM0229261P 10.1098/rspa.2020.0715 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | C6C AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s10659-025-10118-8 |
DatabaseName | SpringerOpen Journals CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-2681 |
ExternalDocumentID | 10_1007_s10659_025_10118_8 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: FR 4083/5-1 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Rheinische Friedrich-Wilhelms-Universität Bonn (1040) – fundername: DAAD grantid: DAAD project 57600633 / DAAD-22-03 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy " Mathematics Münster: Dynamics–Geometry–Structure" grantid: EXC 2044 -39068558 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7S Z7Y Z7Z Z86 Z8N Z8S Z8T ZMTXR ZY4 ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c244t-57d6b6803554956440ca8398c665be2d4fa003242faf6269893beeb6845a88243 |
IEDL.DBID | AGYKE |
ISSN | 0374-3535 |
IngestDate | Fri Jul 25 12:29:10 EDT 2025 Tue Aug 05 11:58:35 EDT 2025 Fri Feb 21 04:10:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Viscoelasticity Metric gradient flows 35A15 74G22 Minimizing movements Curves of maximal slope 74D10 35Q74 Dissipative distance 74A30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-57d6b6803554956440ca8398c665be2d4fa003242faf6269893beeb6845a88243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6477-1467 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10659-025-10118-8 |
PQID | 3165397591 |
PQPubID | 326256 |
ParticipantIDs | proquest_journals_3165397591 crossref_primary_10_1007_s10659_025_10118_8 springer_journals_10_1007_s10659_025_10118_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Groningen |
PublicationSubtitle | The Physical and Mathematical Science of Solids |
PublicationTitle | Journal of elasticity |
PublicationTitleAbbrev | J Elast |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | G. Friesecke (10118_CR24) 2002; 55 R.A. Toupin (10118_CR43) 1962; 11 10118_CR8 S.S. Antman (10118_CR6) 2005 R. Badal (10118_CR9) 2024; 34 10118_CR19 P. Podio-Guidugli (10118_CR33) 2002; 28–29 M. Potier-Ferry (10118_CR36) 1982; 78 R.A. Toupin (10118_CR44) 1964; 17 M. Bulíček (10118_CR14) 2012; 1 B. Benešová (10118_CR13) 2023 G. Andrews (10118_CR4) 1982; 44 R.C. Batra (10118_CR12) 1976; 6 T. Roubíček (10118_CR39) 2024; 75 B. Tvedt (10118_CR45) 2008; 189 T. Roubíček (10118_CR37) 2022; 73 R. Badal (10118_CR7) 2023; 247 M. Friedrich (10118_CR21) 2020; 238 A. Chiesa (10118_CR16) 2024 M. Lewicka (10118_CR29) 2013; 2 P.G. Ciarlet (10118_CR17) 2015; 104 S.S. Antman (10118_CR5) 1998; 49 M. Friedrich (10118_CR20) 2018; 50 M. Potier-Ferry (10118_CR35) 1981; 77 W.J.M. van Oosterhout (10118_CR47) 2024; 104 A. Mielke (10118_CR31) 2020; 238 Y. Şengül (10118_CR41) 2021; 477 M. Friedrich (10118_CR23) 2023; 62 M. Gahn (10118_CR25) 2024; 63 J.M. Ball (10118_CR11) 1981; 41 S. Krömer (10118_CR28) 2020; 142 A. Mielke (10118_CR32) 2014; 46 W. Pompe (10118_CR34) 2003; 44 S. Demoulini (10118_CR18) 2000; 155 A. Češík (10118_CR15) 2024; 63 M. Friedrich (10118_CR22) 2022; 29 Y. Şengül (10118_CR42) 2024; 382 10118_CR46 G. Jameson (10118_CR27) 2014; 69 T. Roubíček (10118_CR40) 2023; 55 L. Ambrosio (10118_CR3) 2005 T.J. Healey (10118_CR26) 2009; 15 T. Roubíček (10118_CR38) 2023; 25 A. Mielke (10118_CR30) 2016; 26 J.M. Ball (10118_CR10) 2015; 27 10118_CR2 R.A. Adams (10118_CR1) 2003 |
References_xml | – year: 2023 ident: 10118_CR13 publication-title: J. Eur. Math. Soc. doi: 10.4171/JEMS/1353 – volume: 11 start-page: 385 year: 1962 ident: 10118_CR43 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253945 – volume: 6 start-page: 451 year: 1976 ident: 10118_CR12 publication-title: J. Elast. doi: 10.1007/BF00040904 – volume: 63 year: 2024 ident: 10118_CR15 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-023-02648-7 – volume: 382 year: 2024 ident: 10118_CR42 publication-title: Philos. Trans. R. Soc. Lond. A – volume: 238 start-page: 1 issue: 1 year: 2020 ident: 10118_CR31 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-020-01537-z – ident: 10118_CR19 – volume: 75 year: 2024 ident: 10118_CR39 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-023-02175-7 – volume-title: Sobolev Spaces year: 2003 ident: 10118_CR1 – volume: 27 start-page: 405 year: 2015 ident: 10118_CR10 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-014-9410-1 – volume: 15 start-page: 863 issue: 4 year: 2009 ident: 10118_CR26 publication-title: ESAIM Control Optim. Calc. Var. doi: 10.1051/cocv:2008050 – volume: 44 start-page: 306 year: 1982 ident: 10118_CR4 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(82)90019-5 – volume: 44 start-page: 57 year: 2003 ident: 10118_CR34 publication-title: Comment. Math. Univ. Carol. – volume: 142 start-page: 433 year: 2020 ident: 10118_CR28 publication-title: J. Elast. doi: 10.1007/s10659-020-09801-9 – volume: 238 start-page: 489 issue: 1 year: 2020 ident: 10118_CR21 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-020-01547-x – volume: 62 issue: 7 year: 2023 ident: 10118_CR23 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-023-02525-3 – volume: 247 issue: 1 year: 2023 ident: 10118_CR7 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-022-01834-9 – volume: 55 start-page: 1461 issue: 11 year: 2002 ident: 10118_CR24 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.10048 – volume: 55 start-page: 2677 issue: 4 year: 2023 ident: 10118_CR40 publication-title: SIAM J. Math. Anal. doi: 10.1137/22M1474229 – volume: 1 start-page: 17 year: 2012 ident: 10118_CR14 publication-title: Evol. Equ. Control Theory doi: 10.3934/eect.2012.1.17 – volume: 104 start-page: 1119 year: 2015 ident: 10118_CR17 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2015.07.007 – volume: 155 start-page: 299 year: 2000 ident: 10118_CR18 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050000115 – ident: 10118_CR8 – volume: 104 issue: 5 year: 2024 ident: 10118_CR47 publication-title: Z. Angew. Math. Mech. – year: 2024 ident: 10118_CR16 publication-title: Math. Mech. Solids doi: 10.1177/10812865241263788 – volume-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures year: 2005 ident: 10118_CR3 – volume: 69 start-page: 156 year: 2014 ident: 10118_CR27 publication-title: Elem. Math. doi: 10.4171/em/257 – volume: 2 start-page: 337 issue: 2 year: 2013 ident: 10118_CR29 publication-title: Evol. Equ. Control Theory doi: 10.3934/eect.2013.2.337 – ident: 10118_CR2 – volume: 78 start-page: 55 year: 1982 ident: 10118_CR36 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253224 – volume: 73 year: 2022 ident: 10118_CR37 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-022-01686-z – volume-title: Nonlinear Problems of Elasticity year: 2005 ident: 10118_CR6 – volume: 29 year: 2022 ident: 10118_CR22 publication-title: NoDEA Nonlinear Differ. Equ. Appl. doi: 10.1007/s00030-021-00745-0 – volume: 26 start-page: 2203 issue: 12 year: 2016 ident: 10118_CR30 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202516500512 – volume: 77 start-page: 301 year: 1981 ident: 10118_CR35 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00280640 – volume: 46 start-page: 1317 year: 2014 ident: 10118_CR32 publication-title: SIAM J. Math. Anal. doi: 10.1137/130927632 – volume: 25 year: 2023 ident: 10118_CR38 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-023-00817-4 – volume: 63 year: 2024 ident: 10118_CR25 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-024-02793-7 – volume: 17 start-page: 85 year: 1964 ident: 10118_CR44 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253050 – volume: 41 start-page: 135 issue: 2 year: 1981 ident: 10118_CR11 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(81)90085-9 – volume: 189 start-page: 237 year: 2008 ident: 10118_CR45 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-007-0109-x – ident: 10118_CR46 doi: 10.1002/zamm.202300486 – volume: 49 start-page: 980 year: 1998 ident: 10118_CR5 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s000330050134 – volume: 34 start-page: 2749 issue: 14 year: 2024 ident: 10118_CR9 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202524500581 – volume: 50 start-page: 4426 issue: 4 year: 2018 ident: 10118_CR20 publication-title: SIAM J. Math. Anal. doi: 10.1137/17M1131428 – volume: 28–29 start-page: 261 year: 2002 ident: 10118_CR33 publication-title: Theor. Appl. Mech. doi: 10.2298/TAM0229261P – volume: 477 year: 2021 ident: 10118_CR41 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2020.0715 |
SSID | ssj0009840 |
Score | 2.384427 |
Snippet | We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Biomechanics Classical and Continuum Physics Classical Mechanics Engineering Gradient flow Materials Science Mathematical Applications in the Physical Sciences Metric space Polynomials Strain rate Stress tensors Tensors Theoretical and Applied Mechanics Viscoelasticity |
Title | Nonlinear Relations of Viscous Stress and Strain Rate in Nonlinear Viscoelasticity |
URI | https://link.springer.com/article/10.1007/s10659-025-10118-8 https://www.proquest.com/docview/3165397591 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWCgUEAUSuWBDYzysB1nLBUFgehQKIIpchxHqpBS1LQLv55zmpCCYOiSRInPcu78-E6--wxwbhIhder61AjlURaygKrYU9RlgdYy1cYpgjEfh-JuzO5f-WuZFJZX0e7VlmQxU68kuwkeUnv8qmvTJanchC3uylA2YKt3-_ZwU5PtyiIR0lKrUJ_7vEyW-buWnwtSjTJ_bYwW682gCeOqpcswk_erxTy-0p-_SBzX_ZU92C0BKOkte8w-bJisBc0SjJJyqOct2FlhKjyA0XBJqaFm5Dt8jkxT8jLJ9XSRk6ci5YSoLLGPapKREYJYgvdasCiLwpYZGrH_IYwHN8_9O1oex0A1YoA55UEiYiEdi1DQq2LM0QrhldRC8Nh4CUsVThG45KcqRTcpRCQUG4MSjCvE8cw_gkY2zcwxEIFeVuIkDnprMQuYUELFMsF3TPuBYUkbLiqbRB9L1o2o5le2yotQeVGhvEi2oVOZLSpHYB75riXdDXjotuGyskL9-f_aTtYrfgrbnjVkEcjdgcZ8tjBniFPmcRe75eD6etgtu2cXNvuij9ex1_sCl6zfjA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1jKh-O4Y4WoCrQdSou6WY7jSF1S1JT_z9lNSEEwMCVKfB5efLl38t0zwK1JudCZH1LDVUBZh8VUJYGiPou1Fpk2nivGHI54f8qeZ9GsbAorqmr3akvS_ak3mt141KH2-FXftktSsQ07SAaEPbdgGnRrqV3h2iCtsAoNozAqW2V-n-N7OKo55o9tURdtekdwUNJE0l1_12PYMnkTDkvKSEqHLJqwv6EneALj0Vr4Qi3JV5EbWWTkbV5ozPDJq2sMISpP7a2a52SMVJPgtTZ0Y9HY6jcjQz-Fae9x8tCn5aEJVGOkXtEoTnnChWd5BOY-jHlaIQkSmvMoMUHKMoWOjIE5UxkmMx3kK4kxaMEihWybhWfQyBe5OQfCMRdKvdTDnCphMeOKq0Sk-IzpMDYsbcFdhZ18X2tjyFoF2SItEWnpkJaiBe0KXln6SSFD30rjxlHHb8F9BXn9-u_ZLv43_AZ2-5PhQA6eRi-XsBfYFeBKr9vQWC0_zBUyi1Vy7RbSJ4FWwjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAMfBQQhQIe2MBq0jhOMqJCVb4qVCjqFjm2I3VJqzb8f85OQgqCgSlR4vNw9uneyfeeAS614qFMXY9qLrqURSygIukK6rJAyjCV2rHNmM9DPhizh4k_WWHx22736kiy4DQYlaYs78xV2lkhvnE_ouYqVtdQJ2m4DhvMpD5zXMt7texuaCmRRmSFer7nl7SZ3-f4nppqvPnjiNRmnv4e7JSQkdwUa7wPazprwm4JH0kZnMsmbK9oCx7AaFiIYIgF-Wp4I7OUvE-XEqt98mpJIkRkyryKaUZGCDsJPmtDOxaNjZYzovVDGPfv3noDWl6gQCVm7Zz6geIJDx2DKbAOYsyRAgFRKDn3E91VLBUY1JikU5FiYRMhdkm0RgvmC0TezDuCRjbL9DEQjnWRcpSD9VXCAsYFF0mo8BuTXqCZasFV5bt4XuhkxLUisvF0jJ6OrafjsAXtyr1xGTPL2HONTG7gR24LriuX17__nu3kf8MvYPPlth8_3Q8fT2GrazaA7cJuQyNffOgzBBl5cm730ScInMZW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Relations+of+Viscous+Stress+and+Strain+Rate+in+Nonlinear+Viscoelasticity&rft.jtitle=Journal+of+elasticity&rft.au=Machill%2C+Lennart&rft.date=2025-02-01&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=1&rft_id=info:doi/10.1007%2Fs10659-025-10118-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10659_025_10118_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon |