Nonlinear Relations of Viscous Stress and Strain Rate in Nonlinear Viscoelasticity

We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015 ), existence of weak solutions is shown by means of a...

Full description

Saved in:
Bibliographic Details
Published inJournal of elasticity Vol. 157; no. 1
Main Author Machill, Lennart
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0374-3535
1573-2681
DOI10.1007/s10659-025-10118-8

Cover

Abstract We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015 ), existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows (Ambrosio et al. in Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005 ).
AbstractList We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015), existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows (Ambrosio et al. in Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005).
We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference. Using a rigidity estimate by Ciarlet and Mardare (J. Math. Pures Appl. 104:1119–1134, 2015 ), existence of weak solutions is shown by means of a frame-indifferent time-discretization scheme. Further, the result includes viscous stress tensors which can be calculated by nonquadratic polynomial densities. Afterwards, we investigate the long-time behavior of solutions in the case of small external loading and initial data. Our main tool is the abstract theory of metric gradient flows (Ambrosio et al. in Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005 ).
ArticleNumber 26
Author Machill, Lennart
Author_xml – sequence: 1
  givenname: Lennart
  orcidid: 0000-0002-6477-1467
  surname: Machill
  fullname: Machill, Lennart
  email: lmachill@uni-bonn.de
  organization: Institute for Applied Mathematics, University of Bonn
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqM3z0mWUnxBUaiPbUinGUmpSU3SRf-9qSN05-rcxfedC2eCRiEGh9AlgWsC0N5kAlJoDFRgAoQorE7QmIiWYSoVGaExsJZjJpg4Q5Oc1wCgFYcxWjzHsPHB2dQs3MYWH0NuYt98-NzFXW5eS3I5NzasDqf1oVnY4pqaR_GXrXIuvvNlf45Oe7vJ7uIvp-j9_u5t9ojnLw9Ps9s57ijnBYt2JZdSAROCayE5h84qplUnpVg6uuK9BWCU0972kkqtNFs6Vw0urFKUsym6Gnq3KX7vXC5mHXcp1JeGESmYboUmlaID1aWYc3K92Sb_ZdPeEDCH7cywnanbmd_tjKoSG6Rc4fDp0rH6H-sHKP1yfA
Cites_doi 10.4171/JEMS/1353
10.1007/BF00253945
10.1007/BF00040904
10.1007/s00526-023-02648-7
10.1007/s00205-020-01537-z
10.1007/s00033-023-02175-7
10.1007/s10884-014-9410-1
10.1051/cocv:2008050
10.1016/0022-0396(82)90019-5
10.1007/s10659-020-09801-9
10.1007/s00205-020-01547-x
10.1007/s00526-023-02525-3
10.1007/s00205-022-01834-9
10.1002/cpa.10048
10.1137/22M1474229
10.3934/eect.2012.1.17
10.1016/j.matpur.2015.07.007
10.1007/s002050000115
10.1177/10812865241263788
10.4171/em/257
10.3934/eect.2013.2.337
10.1007/BF00253224
10.1007/s00033-022-01686-z
10.1007/s00030-021-00745-0
10.1142/S0218202516500512
10.1007/BF00280640
10.1137/130927632
10.1007/s00021-023-00817-4
10.1007/s00526-024-02793-7
10.1007/BF00253050
10.1016/0022-1236(81)90085-9
10.1007/s00205-007-0109-x
10.1002/zamm.202300486
10.1007/s000330050134
10.1142/S0218202524500581
10.1137/17M1131428
10.2298/TAM0229261P
10.1098/rspa.2020.0715
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. 2025
DBID C6C
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s10659-025-10118-8
DatabaseName SpringerOpen Journals
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-2681
ExternalDocumentID 10_1007_s10659_025_10118_8
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: FR 4083/5-1
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
– fundername: DAAD
  grantid: DAAD project 57600633 / DAAD-22-03
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy " Mathematics Münster: Dynamics–Geometry–Structure"
  grantid: EXC 2044 -39068558
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7Y
Z7Z
Z86
Z8N
Z8S
Z8T
ZMTXR
ZY4
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c244t-57d6b6803554956440ca8398c665be2d4fa003242faf6269893beeb6845a88243
IEDL.DBID AGYKE
ISSN 0374-3535
IngestDate Fri Jul 25 12:29:10 EDT 2025
Tue Aug 05 11:58:35 EDT 2025
Fri Feb 21 04:10:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Viscoelasticity
Metric gradient flows
35A15
74G22
Minimizing movements
Curves of maximal slope
74D10
35Q74
Dissipative distance
74A30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-57d6b6803554956440ca8398c665be2d4fa003242faf6269893beeb6845a88243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6477-1467
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10659-025-10118-8
PQID 3165397591
PQPubID 326256
ParticipantIDs proquest_journals_3165397591
crossref_primary_10_1007_s10659_025_10118_8
springer_journals_10_1007_s10659_025_10118_8
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Groningen
PublicationSubtitle The Physical and Mathematical Science of Solids
PublicationTitle Journal of elasticity
PublicationTitleAbbrev J Elast
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References G. Friesecke (10118_CR24) 2002; 55
R.A. Toupin (10118_CR43) 1962; 11
10118_CR8
S.S. Antman (10118_CR6) 2005
R. Badal (10118_CR9) 2024; 34
10118_CR19
P. Podio-Guidugli (10118_CR33) 2002; 28–29
M. Potier-Ferry (10118_CR36) 1982; 78
R.A. Toupin (10118_CR44) 1964; 17
M. Bulíček (10118_CR14) 2012; 1
B. Benešová (10118_CR13) 2023
G. Andrews (10118_CR4) 1982; 44
R.C. Batra (10118_CR12) 1976; 6
T. Roubíček (10118_CR39) 2024; 75
B. Tvedt (10118_CR45) 2008; 189
T. Roubíček (10118_CR37) 2022; 73
R. Badal (10118_CR7) 2023; 247
M. Friedrich (10118_CR21) 2020; 238
A. Chiesa (10118_CR16) 2024
M. Lewicka (10118_CR29) 2013; 2
P.G. Ciarlet (10118_CR17) 2015; 104
S.S. Antman (10118_CR5) 1998; 49
M. Friedrich (10118_CR20) 2018; 50
M. Potier-Ferry (10118_CR35) 1981; 77
W.J.M. van Oosterhout (10118_CR47) 2024; 104
A. Mielke (10118_CR31) 2020; 238
Y. Şengül (10118_CR41) 2021; 477
M. Friedrich (10118_CR23) 2023; 62
M. Gahn (10118_CR25) 2024; 63
J.M. Ball (10118_CR11) 1981; 41
S. Krömer (10118_CR28) 2020; 142
A. Mielke (10118_CR32) 2014; 46
W. Pompe (10118_CR34) 2003; 44
S. Demoulini (10118_CR18) 2000; 155
A. Češík (10118_CR15) 2024; 63
M. Friedrich (10118_CR22) 2022; 29
Y. Şengül (10118_CR42) 2024; 382
10118_CR46
G. Jameson (10118_CR27) 2014; 69
T. Roubíček (10118_CR40) 2023; 55
L. Ambrosio (10118_CR3) 2005
T.J. Healey (10118_CR26) 2009; 15
T. Roubíček (10118_CR38) 2023; 25
A. Mielke (10118_CR30) 2016; 26
J.M. Ball (10118_CR10) 2015; 27
10118_CR2
R.A. Adams (10118_CR1) 2003
References_xml – year: 2023
  ident: 10118_CR13
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/1353
– volume: 11
  start-page: 385
  year: 1962
  ident: 10118_CR43
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253945
– volume: 6
  start-page: 451
  year: 1976
  ident: 10118_CR12
  publication-title: J. Elast.
  doi: 10.1007/BF00040904
– volume: 63
  year: 2024
  ident: 10118_CR15
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-023-02648-7
– volume: 382
  year: 2024
  ident: 10118_CR42
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 238
  start-page: 1
  issue: 1
  year: 2020
  ident: 10118_CR31
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-020-01537-z
– ident: 10118_CR19
– volume: 75
  year: 2024
  ident: 10118_CR39
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-023-02175-7
– volume-title: Sobolev Spaces
  year: 2003
  ident: 10118_CR1
– volume: 27
  start-page: 405
  year: 2015
  ident: 10118_CR10
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-014-9410-1
– volume: 15
  start-page: 863
  issue: 4
  year: 2009
  ident: 10118_CR26
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv:2008050
– volume: 44
  start-page: 306
  year: 1982
  ident: 10118_CR4
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(82)90019-5
– volume: 44
  start-page: 57
  year: 2003
  ident: 10118_CR34
  publication-title: Comment. Math. Univ. Carol.
– volume: 142
  start-page: 433
  year: 2020
  ident: 10118_CR28
  publication-title: J. Elast.
  doi: 10.1007/s10659-020-09801-9
– volume: 238
  start-page: 489
  issue: 1
  year: 2020
  ident: 10118_CR21
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-020-01547-x
– volume: 62
  issue: 7
  year: 2023
  ident: 10118_CR23
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-023-02525-3
– volume: 247
  issue: 1
  year: 2023
  ident: 10118_CR7
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-022-01834-9
– volume: 55
  start-page: 1461
  issue: 11
  year: 2002
  ident: 10118_CR24
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.10048
– volume: 55
  start-page: 2677
  issue: 4
  year: 2023
  ident: 10118_CR40
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/22M1474229
– volume: 1
  start-page: 17
  year: 2012
  ident: 10118_CR14
  publication-title: Evol. Equ. Control Theory
  doi: 10.3934/eect.2012.1.17
– volume: 104
  start-page: 1119
  year: 2015
  ident: 10118_CR17
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2015.07.007
– volume: 155
  start-page: 299
  year: 2000
  ident: 10118_CR18
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050000115
– ident: 10118_CR8
– volume: 104
  issue: 5
  year: 2024
  ident: 10118_CR47
  publication-title: Z. Angew. Math. Mech.
– year: 2024
  ident: 10118_CR16
  publication-title: Math. Mech. Solids
  doi: 10.1177/10812865241263788
– volume-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures
  year: 2005
  ident: 10118_CR3
– volume: 69
  start-page: 156
  year: 2014
  ident: 10118_CR27
  publication-title: Elem. Math.
  doi: 10.4171/em/257
– volume: 2
  start-page: 337
  issue: 2
  year: 2013
  ident: 10118_CR29
  publication-title: Evol. Equ. Control Theory
  doi: 10.3934/eect.2013.2.337
– ident: 10118_CR2
– volume: 78
  start-page: 55
  year: 1982
  ident: 10118_CR36
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253224
– volume: 73
  year: 2022
  ident: 10118_CR37
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-022-01686-z
– volume-title: Nonlinear Problems of Elasticity
  year: 2005
  ident: 10118_CR6
– volume: 29
  year: 2022
  ident: 10118_CR22
  publication-title: NoDEA Nonlinear Differ. Equ. Appl.
  doi: 10.1007/s00030-021-00745-0
– volume: 26
  start-page: 2203
  issue: 12
  year: 2016
  ident: 10118_CR30
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202516500512
– volume: 77
  start-page: 301
  year: 1981
  ident: 10118_CR35
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00280640
– volume: 46
  start-page: 1317
  year: 2014
  ident: 10118_CR32
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/130927632
– volume: 25
  year: 2023
  ident: 10118_CR38
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-023-00817-4
– volume: 63
  year: 2024
  ident: 10118_CR25
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-024-02793-7
– volume: 17
  start-page: 85
  year: 1964
  ident: 10118_CR44
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253050
– volume: 41
  start-page: 135
  issue: 2
  year: 1981
  ident: 10118_CR11
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(81)90085-9
– volume: 189
  start-page: 237
  year: 2008
  ident: 10118_CR45
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-007-0109-x
– ident: 10118_CR46
  doi: 10.1002/zamm.202300486
– volume: 49
  start-page: 980
  year: 1998
  ident: 10118_CR5
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s000330050134
– volume: 34
  start-page: 2749
  issue: 14
  year: 2024
  ident: 10118_CR9
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202524500581
– volume: 50
  start-page: 4426
  issue: 4
  year: 2018
  ident: 10118_CR20
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1131428
– volume: 28–29
  start-page: 261
  year: 2002
  ident: 10118_CR33
  publication-title: Theor. Appl. Mech.
  doi: 10.2298/TAM0229261P
– volume: 477
  year: 2021
  ident: 10118_CR41
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2020.0715
SSID ssj0009840
Score 2.384427
Snippet We consider a Kelvin–Voigt model for viscoelastic second-grade materials, where the elastic and the viscous stress tensor both satisfy frame-indifference....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Biomechanics
Classical and Continuum Physics
Classical Mechanics
Engineering
Gradient flow
Materials Science
Mathematical Applications in the Physical Sciences
Metric space
Polynomials
Strain rate
Stress tensors
Tensors
Theoretical and Applied Mechanics
Viscoelasticity
Title Nonlinear Relations of Viscous Stress and Strain Rate in Nonlinear Viscoelasticity
URI https://link.springer.com/article/10.1007/s10659-025-10118-8
https://www.proquest.com/docview/3165397591
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWCgUEAUSuWBDYzysB1nLBUFgehQKIIpchxHqpBS1LQLv55zmpCCYOiSRInPcu78-E6--wxwbhIhder61AjlURaygKrYU9RlgdYy1cYpgjEfh-JuzO5f-WuZFJZX0e7VlmQxU68kuwkeUnv8qmvTJanchC3uylA2YKt3-_ZwU5PtyiIR0lKrUJ_7vEyW-buWnwtSjTJ_bYwW682gCeOqpcswk_erxTy-0p-_SBzX_ZU92C0BKOkte8w-bJisBc0SjJJyqOct2FlhKjyA0XBJqaFm5Dt8jkxT8jLJ9XSRk6ci5YSoLLGPapKREYJYgvdasCiLwpYZGrH_IYwHN8_9O1oex0A1YoA55UEiYiEdi1DQq2LM0QrhldRC8Nh4CUsVThG45KcqRTcpRCQUG4MSjCvE8cw_gkY2zcwxEIFeVuIkDnprMQuYUELFMsF3TPuBYUkbLiqbRB9L1o2o5le2yotQeVGhvEi2oVOZLSpHYB75riXdDXjotuGyskL9-f_aTtYrfgrbnjVkEcjdgcZ8tjBniFPmcRe75eD6etgtu2cXNvuij9ex1_sCl6zfjA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1jKh-O4Y4WoCrQdSou6WY7jSF1S1JT_z9lNSEEwMCVKfB5efLl38t0zwK1JudCZH1LDVUBZh8VUJYGiPou1Fpk2nivGHI54f8qeZ9GsbAorqmr3akvS_ak3mt141KH2-FXftktSsQ07SAaEPbdgGnRrqV3h2iCtsAoNozAqW2V-n-N7OKo55o9tURdtekdwUNJE0l1_12PYMnkTDkvKSEqHLJqwv6EneALj0Vr4Qi3JV5EbWWTkbV5ozPDJq2sMISpP7a2a52SMVJPgtTZ0Y9HY6jcjQz-Fae9x8tCn5aEJVGOkXtEoTnnChWd5BOY-jHlaIQkSmvMoMUHKMoWOjIE5UxkmMx3kK4kxaMEihWybhWfQyBe5OQfCMRdKvdTDnCphMeOKq0Sk-IzpMDYsbcFdhZ18X2tjyFoF2SItEWnpkJaiBe0KXln6SSFD30rjxlHHb8F9BXn9-u_ZLv43_AZ2-5PhQA6eRi-XsBfYFeBKr9vQWC0_zBUyi1Vy7RbSJ4FWwjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAMfBQQhQIe2MBq0jhOMqJCVb4qVCjqFjm2I3VJqzb8f85OQgqCgSlR4vNw9uneyfeeAS614qFMXY9qLrqURSygIukK6rJAyjCV2rHNmM9DPhizh4k_WWHx22736kiy4DQYlaYs78xV2lkhvnE_ouYqVtdQJ2m4DhvMpD5zXMt7texuaCmRRmSFer7nl7SZ3-f4nppqvPnjiNRmnv4e7JSQkdwUa7wPazprwm4JH0kZnMsmbK9oCx7AaFiIYIgF-Wp4I7OUvE-XEqt98mpJIkRkyryKaUZGCDsJPmtDOxaNjZYzovVDGPfv3noDWl6gQCVm7Zz6geIJDx2DKbAOYsyRAgFRKDn3E91VLBUY1JikU5FiYRMhdkm0RgvmC0TezDuCRjbL9DEQjnWRcpSD9VXCAsYFF0mo8BuTXqCZasFV5bt4XuhkxLUisvF0jJ6OrafjsAXtyr1xGTPL2HONTG7gR24LriuX17__nu3kf8MvYPPlth8_3Q8fT2GrazaA7cJuQyNffOgzBBl5cm730ScInMZW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Relations+of+Viscous+Stress+and+Strain+Rate+in+Nonlinear+Viscoelasticity&rft.jtitle=Journal+of+elasticity&rft.au=Machill%2C+Lennart&rft.date=2025-02-01&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=1&rft_id=info:doi/10.1007%2Fs10659-025-10118-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10659_025_10118_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon