Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages
The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread...
Saved in:
Published in | IEEE/CAA journal of automatica sinica Vol. 12; no. 1; pp. 198 - 214 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Chinese Association of Automation (CAA)
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control (ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer (ESO) based adaptive ILC approach is proposed in the frequency domain. Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method. |
---|---|
AbstractList | The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control (ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer (ESO) based adaptive ILC approach is proposed in the frequency domain. Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method. |
Author | Tan, Jiubin Cui, Ning Chen, Xinkai Song, Fazhi Liu, Yang Chen, Shuaiqi Zhang, Kai |
Author_xml | – sequence: 1 givenname: Fazhi orcidid: 0000-0003-1561-2328 surname: Song fullname: Song, Fazhi email: fazsong@hit.edu.cn organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080 – sequence: 2 givenname: Ning orcidid: 0009-0005-2422-0272 surname: Cui fullname: Cui, Ning email: 23BG36309@stu.hit.edu.cn organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080 – sequence: 3 givenname: Shuaiqi orcidid: 0009-0009-5830-8407 surname: Chen fullname: Chen, Shuaiqi email: 20b904024@stu.hit.edu.cn organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080 – sequence: 4 givenname: Kai orcidid: 0000-0001-7902-0570 surname: Zhang fullname: Zhang, Kai email: kaizhang0116@hit.edu.cn organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080 – sequence: 5 givenname: Yang orcidid: 0000-0002-9562-0506 surname: Liu fullname: Liu, Yang email: hitlg@hit.edu.cn organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080 – sequence: 6 givenname: Xinkai orcidid: 0000-0001-7381-9760 surname: Chen fullname: Chen, Xinkai email: chen@sic.shibaura-it.ac.jp organization: Shibaura Institute of Technology,Department of Electronic and Information Systems,Tokyo,Japan,3378570 – sequence: 7 givenname: Jiubin orcidid: 0000-0002-0941-7932 surname: Tan fullname: Tan, Jiubin email: jbtan@hit.edu.cn organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080 |
BookMark | eNpNkD1PwzAQhi1UJErpzMJgiTmt7Th2whYK5UMVIJWKMXKdS0nV2sV2hy78dhwVIaa7k5737vSco56xBhC6pGREKSnGz-V8xAjjI8p4IfIT1GcpK5KCSd7764U4Q0Pv14QQyjIpCt5H37dwsKbGb-Aa67bKaMC2wTNQzrRmhSfWBGc3eL5frkEHHCxeRMYF1ZrQgscqhl9s6-EGl3jq4GsPRh-SO7uNBC53O2eV_uyaTQt1l_9QDTg8D2oF_gKdNmrjYfhbB2gxvX-fPCaz14enSTlLNOM8JBklKQXN0joTmi-VYlKJrBaEiZxrQXlRcKJrSuOYSymALGVBuVZpo7kEkg7Q9XFvfCd-6EO1tntn4skqpVnOokOWR2p8pLSz3jtoqp1rt8odKkqqznMVPVed5-roOSaujokWAP7RMqMyy9MfUhx6LQ |
CODEN | IJASJC |
Cites_doi | 10.1109/TMECH.2012.2212912 10.1109/ACC.2003.1242516 10.1109/AIM.2017.8014207 10.1109/TAC.2022.3159489 10.1109/TIE.2019.2946554 10.1155/2018/5406035 10.1016/j.ins.2012.07.014 10.1109/CDC.2015.7403175 10.1002/rnc.3861 10.1109/TSMC.2019.2907379 10.1109/TMECH.2008.2007302 10.1109/TCST.2017.2772807 10.1109/TIE.2019.2960717 10.1109/TCST.2019.2952327 10.1109/TCST.2017.2692729 10.23919/ACC45564.2020.9147464 10.1109/TPEL.2024.3395691 10.1109/TCST.2018.2877680 10.1109/TIM.2024.3413202 10.1109/TEC.2022.3159834 10.1016/j.automatica.2019.05.062 10.1109/TMECH.2008.2004627 10.1109/TNNLS.2020.3042975 10.1109/TAC.2002.804478 10.1016/j.ifacol.2017.08.2135 10.1109/TAC.2022.3154347 10.1109/TMECH.2019.2931407 10.1016/j.mechatronics.2017.09.010 10.1002/9781118287422 10.1007/978-1-4471-0965-5 10.1109/TCST.2005.854334 10.1109/TIE.2020.3022503 10.1137/0803045 10.1016/j.ifacol.2016.07.918 10.1109/TCST.2022.3168496 10.1115/1.4037271 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/JAS.2024.124968 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9274 |
EndPage | 214 |
ExternalDocumentID | 10_1109_JAS_2024_124968 10751758 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52375530,52075132 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2019M651278,2020T130155 funderid: 10.13039/501100002858 – fundername: Natural Science Foundation of Heilongjiang Province grantid: YQ2022E025 funderid: 10.13039/501100005046 – fundername: Fundamental Research Funds for the Central Universities grantid: HIT.OCEF.2024034 funderid: 10.13039/501100012226 – fundername: Heilongjiang Province Postdoctoral Science Foundation grantid: LBH-Z19066 funderid: 10.13039/501100010009 |
GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c244t-51031ec23d56c4baa27a65d602684c6149940cd116848776e0b7914ca3fc47e03 |
IEDL.DBID | RIE |
ISSN | 2329-9266 |
IngestDate | Thu Aug 28 08:29:53 EDT 2025 Sun Jul 06 05:03:04 EDT 2025 Wed Aug 27 01:53:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-51031ec23d56c4baa27a65d602684c6149940cd116848776e0b7914ca3fc47e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7902-0570 0000-0003-1561-2328 0009-0009-5830-8407 0009-0005-2422-0272 0000-0002-9562-0506 0000-0002-0941-7932 0000-0001-7381-9760 |
PQID | 3158210928 |
PQPubID | 2040495 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3158210928 ieee_primary_10751758 crossref_primary_10_1109_JAS_2024_124968 |
PublicationCentury | 2000 |
PublicationDate | 2025-January 2025-1-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-January |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/CAA journal of automatica sinica |
PublicationTitleAbbrev | JAS |
PublicationYear | 2025 |
Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Seron (ref2) 1997 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1109/TMECH.2012.2212912 – ident: ref34 doi: 10.1109/ACC.2003.1242516 – ident: ref27 doi: 10.1109/AIM.2017.8014207 – ident: ref21 doi: 10.1109/TAC.2022.3159489 – ident: ref31 doi: 10.1109/TIE.2019.2946554 – ident: ref10 doi: 10.1155/2018/5406035 – ident: ref11 doi: 10.1016/j.ins.2012.07.014 – ident: ref17 doi: 10.1109/CDC.2015.7403175 – ident: ref22 doi: 10.1002/rnc.3861 – ident: ref29 doi: 10.1109/TSMC.2019.2907379 – ident: ref9 doi: 10.1109/TMECH.2008.2007302 – ident: ref26 doi: 10.1109/TCST.2017.2772807 – ident: ref5 doi: 10.1109/TIE.2019.2960717 – ident: ref18 doi: 10.1109/TCST.2019.2952327 – ident: ref15 doi: 10.1109/TCST.2017.2692729 – ident: ref1 doi: 10.23919/ACC45564.2020.9147464 – ident: ref30 doi: 10.1109/TPEL.2024.3395691 – ident: ref32 doi: 10.1109/TCST.2018.2877680 – ident: ref3 doi: 10.1109/TIM.2024.3413202 – ident: ref28 doi: 10.1109/TEC.2022.3159834 – ident: ref24 doi: 10.1016/j.automatica.2019.05.062 – ident: ref16 doi: 10.1109/TMECH.2008.2004627 – ident: ref36 doi: 10.1109/TNNLS.2020.3042975 – ident: ref6 doi: 10.1109/TAC.2002.804478 – ident: ref7 doi: 10.1016/j.ifacol.2017.08.2135 – ident: ref12 doi: 10.1109/TAC.2022.3154347 – ident: ref33 doi: 10.1109/TMECH.2019.2931407 – ident: ref4 doi: 10.1016/j.mechatronics.2017.09.010 – ident: ref20 doi: 10.1002/9781118287422 – volume-title: Fundamental Limitations in Filtering and Control year: 1997 ident: ref2 doi: 10.1007/978-1-4471-0965-5 – ident: ref14 doi: 10.1109/TCST.2005.854334 – ident: ref19 doi: 10.1109/TIE.2020.3022503 – ident: ref35 doi: 10.1137/0803045 – ident: ref8 doi: 10.1016/j.ifacol.2016.07.918 – ident: ref25 doi: 10.1109/TCST.2022.3168496 – ident: ref13 doi: 10.1115/1.4037271 |
SSID | ssj0001257694 |
Score | 2.317099 |
Snippet | The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 198 |
SubjectTerms | Accuracy Adaptation models Adaptive learning Convergence Data models Extended state observer Feedforward systems Frequency domain analysis Integrated circuit modeling Integrated circuits Learning learning control model uncertainties motion control Noise Noise control Noise measurement Semiconductor device modeling State observers stochastic noise Stochastic processes Uncertainty |
Title | Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages |
URI | https://ieeexplore.ieee.org/document/10751758 https://www.proquest.com/docview/3158210928 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78OXE6JQcPXjrbNG0ab0MdIjgEHXorafI6RFxl6w568G_3JelwKIK3FhIIfUne917f9z1CTmJLCM2ECRQrVcAlg0BmGLiC0JqVEUtLZVMDt8P0esRvnpKnhqzuuDAA4IrPoGcf3b98U-m5TZXhCRcJurtslaxi5ObJWksJFYTOrvEhggQZSPQ8jZRPFMqzm_49BoOM92yzZauruuSFXFuVX3exczCDTTJcLM3Xlbz05nXR0x8_VBv_vfYtstFATdr3e2ObrMBkh6wvCRDukk9PYKF33_QBWpW0EV0d0wtfyE7xerH5GlpXdIRjXBWBVWKlCicPq-cZnNM-HUx9XfZ7cFm94gjabwTLaYN17fxHVcKUIsYdw6xNRoOrh4vroOnIEGiEAXVg5fci0Cw2Sap5oRQTKk2MbWOVcY2eXkoeahNF-JoJkUJYCBlxreJScwFhvEdak2oC-4SWaCxhisTiS14anRUSII01hmPMGFF0yOnCQvmbF97IXcASyhyNmVtj5t6YHdK233tpmP_UHdJdmDRvTuYsjyNLDQ4lyw7-mHZI1pht8uvyLF3SqqdzOELkURfHbsd9AXyO1F4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOlI9WLBTwASQuWRLHieNKPaxaVtuvFRJd0Vtw7EmFEBu0mxUqB_5J_0p_W8d2FlYgjpW4JZKdg_3seTOZeQPwKnUFoYW0kea1joTiGKmCHFeUxvA64XmtXWjgZJyPJuLwLDtbg8tftTCI6JPPsO8e_b9825iFC5XRCZcZmbuiy6E8wovv5KHNdw_2aTtfcz58d7o3iromApEhy9VGTjEuQcNTm-VGVFpzqfPMus5LhTBknJQSsbFJQq-FlDnGlVSJMDqtjZAYp_TdW3CbiEbGQ3nYSgiHyLpvtUi0REWKbF0nHpTE6u3h4AO5n1z0XXtnp-S6Yvd8I5e_bn9v0oYbcLVcjJDJ8qW_aKu--fGHTuR_u1oP4H5HptkgoP8hrOH0EdxbkVh8DD9DiQ57_7tAgjU162Rlz9leSNVndIG6iBRrGzahMT5PwmnNMk2Tx83nOe6wARvOQub5RbTffKURbNBJsrOOzbv5H3WNM0Ys_hznmzC5kQXYgvVpM8UnwGoCh7RV5hi0qK0pKoWYp4YcTm6trHrwZomI8luQFim9SxarksBTOvCUATw92HT7uzIsbG0PtpcQKru7Z16miSt-jhUvnv5j2ku4Mzo9OS6PD8ZHz-Audy2NfVRpG9bb2QKfE89qqxce7Qw-3TRgrgEKXC6k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Performance+of+Learning+Control+Subject+to+Uncertainties+and+Noise%3A+A+Frequency-Domain+Approach+Applied+to+Wafer+Stages&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Song%2C+Fazhi&rft.au=Cui%2C+Ning&rft.au=Chen%2C+Shuaiqi&rft.au=Zhang%2C+Kai&rft.date=2025-01-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=12&rft.issue=1&rft.spage=198&rft.epage=214&rft_id=info:doi/10.1109%2FJAS.2024.124968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2024_124968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon |