Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages

The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 12; no. 1; pp. 198 - 214
Main Authors Song, Fazhi, Cui, Ning, Chen, Shuaiqi, Zhang, Kai, Liu, Yang, Chen, Xinkai, Tan, Jiubin
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control (ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer (ESO) based adaptive ILC approach is proposed in the frequency domain. Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method.
AbstractList The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control (ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer (ESO) based adaptive ILC approach is proposed in the frequency domain. Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method.
Author Tan, Jiubin
Cui, Ning
Chen, Xinkai
Song, Fazhi
Liu, Yang
Chen, Shuaiqi
Zhang, Kai
Author_xml – sequence: 1
  givenname: Fazhi
  orcidid: 0000-0003-1561-2328
  surname: Song
  fullname: Song, Fazhi
  email: fazsong@hit.edu.cn
  organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080
– sequence: 2
  givenname: Ning
  orcidid: 0009-0005-2422-0272
  surname: Cui
  fullname: Cui, Ning
  email: 23BG36309@stu.hit.edu.cn
  organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080
– sequence: 3
  givenname: Shuaiqi
  orcidid: 0009-0009-5830-8407
  surname: Chen
  fullname: Chen, Shuaiqi
  email: 20b904024@stu.hit.edu.cn
  organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080
– sequence: 4
  givenname: Kai
  orcidid: 0000-0001-7902-0570
  surname: Zhang
  fullname: Zhang, Kai
  email: kaizhang0116@hit.edu.cn
  organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080
– sequence: 5
  givenname: Yang
  orcidid: 0000-0002-9562-0506
  surname: Liu
  fullname: Liu, Yang
  email: hitlg@hit.edu.cn
  organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080
– sequence: 6
  givenname: Xinkai
  orcidid: 0000-0001-7381-9760
  surname: Chen
  fullname: Chen, Xinkai
  email: chen@sic.shibaura-it.ac.jp
  organization: Shibaura Institute of Technology,Department of Electronic and Information Systems,Tokyo,Japan,3378570
– sequence: 7
  givenname: Jiubin
  orcidid: 0000-0002-0941-7932
  surname: Tan
  fullname: Tan, Jiubin
  email: jbtan@hit.edu.cn
  organization: Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology,Harbin,150080
BookMark eNpNkD1PwzAQhi1UJErpzMJgiTmt7Th2whYK5UMVIJWKMXKdS0nV2sV2hy78dhwVIaa7k5737vSco56xBhC6pGREKSnGz-V8xAjjI8p4IfIT1GcpK5KCSd7764U4Q0Pv14QQyjIpCt5H37dwsKbGb-Aa67bKaMC2wTNQzrRmhSfWBGc3eL5frkEHHCxeRMYF1ZrQgscqhl9s6-EGl3jq4GsPRh-SO7uNBC53O2eV_uyaTQt1l_9QDTg8D2oF_gKdNmrjYfhbB2gxvX-fPCaz14enSTlLNOM8JBklKQXN0joTmi-VYlKJrBaEiZxrQXlRcKJrSuOYSymALGVBuVZpo7kEkg7Q9XFvfCd-6EO1tntn4skqpVnOokOWR2p8pLSz3jtoqp1rt8odKkqqznMVPVed5-roOSaujokWAP7RMqMyy9MfUhx6LQ
CODEN IJASJC
Cites_doi 10.1109/TMECH.2012.2212912
10.1109/ACC.2003.1242516
10.1109/AIM.2017.8014207
10.1109/TAC.2022.3159489
10.1109/TIE.2019.2946554
10.1155/2018/5406035
10.1016/j.ins.2012.07.014
10.1109/CDC.2015.7403175
10.1002/rnc.3861
10.1109/TSMC.2019.2907379
10.1109/TMECH.2008.2007302
10.1109/TCST.2017.2772807
10.1109/TIE.2019.2960717
10.1109/TCST.2019.2952327
10.1109/TCST.2017.2692729
10.23919/ACC45564.2020.9147464
10.1109/TPEL.2024.3395691
10.1109/TCST.2018.2877680
10.1109/TIM.2024.3413202
10.1109/TEC.2022.3159834
10.1016/j.automatica.2019.05.062
10.1109/TMECH.2008.2004627
10.1109/TNNLS.2020.3042975
10.1109/TAC.2002.804478
10.1016/j.ifacol.2017.08.2135
10.1109/TAC.2022.3154347
10.1109/TMECH.2019.2931407
10.1016/j.mechatronics.2017.09.010
10.1002/9781118287422
10.1007/978-1-4471-0965-5
10.1109/TCST.2005.854334
10.1109/TIE.2020.3022503
10.1137/0803045
10.1016/j.ifacol.2016.07.918
10.1109/TCST.2022.3168496
10.1115/1.4037271
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/JAS.2024.124968
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 214
ExternalDocumentID 10_1109_JAS_2024_124968
10751758
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52375530,52075132
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M651278,2020T130155
  funderid: 10.13039/501100002858
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: YQ2022E025
  funderid: 10.13039/501100005046
– fundername: Fundamental Research Funds for the Central Universities
  grantid: HIT.OCEF.2024034
  funderid: 10.13039/501100012226
– fundername: Heilongjiang Province Postdoctoral Science Foundation
  grantid: LBH-Z19066
  funderid: 10.13039/501100010009
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-51031ec23d56c4baa27a65d602684c6149940cd116848776e0b7914ca3fc47e03
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Thu Aug 28 08:29:53 EDT 2025
Sun Jul 06 05:03:04 EDT 2025
Wed Aug 27 01:53:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-51031ec23d56c4baa27a65d602684c6149940cd116848776e0b7914ca3fc47e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7902-0570
0000-0003-1561-2328
0009-0009-5830-8407
0009-0005-2422-0272
0000-0002-9562-0506
0000-0002-0941-7932
0000-0001-7381-9760
PQID 3158210928
PQPubID 2040495
PageCount 17
ParticipantIDs proquest_journals_3158210928
ieee_primary_10751758
crossref_primary_10_1109_JAS_2024_124968
PublicationCentury 2000
PublicationDate 2025-January
2025-1-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-January
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationYear 2025
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Seron (ref2) 1997
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/TMECH.2012.2212912
– ident: ref34
  doi: 10.1109/ACC.2003.1242516
– ident: ref27
  doi: 10.1109/AIM.2017.8014207
– ident: ref21
  doi: 10.1109/TAC.2022.3159489
– ident: ref31
  doi: 10.1109/TIE.2019.2946554
– ident: ref10
  doi: 10.1155/2018/5406035
– ident: ref11
  doi: 10.1016/j.ins.2012.07.014
– ident: ref17
  doi: 10.1109/CDC.2015.7403175
– ident: ref22
  doi: 10.1002/rnc.3861
– ident: ref29
  doi: 10.1109/TSMC.2019.2907379
– ident: ref9
  doi: 10.1109/TMECH.2008.2007302
– ident: ref26
  doi: 10.1109/TCST.2017.2772807
– ident: ref5
  doi: 10.1109/TIE.2019.2960717
– ident: ref18
  doi: 10.1109/TCST.2019.2952327
– ident: ref15
  doi: 10.1109/TCST.2017.2692729
– ident: ref1
  doi: 10.23919/ACC45564.2020.9147464
– ident: ref30
  doi: 10.1109/TPEL.2024.3395691
– ident: ref32
  doi: 10.1109/TCST.2018.2877680
– ident: ref3
  doi: 10.1109/TIM.2024.3413202
– ident: ref28
  doi: 10.1109/TEC.2022.3159834
– ident: ref24
  doi: 10.1016/j.automatica.2019.05.062
– ident: ref16
  doi: 10.1109/TMECH.2008.2004627
– ident: ref36
  doi: 10.1109/TNNLS.2020.3042975
– ident: ref6
  doi: 10.1109/TAC.2002.804478
– ident: ref7
  doi: 10.1016/j.ifacol.2017.08.2135
– ident: ref12
  doi: 10.1109/TAC.2022.3154347
– ident: ref33
  doi: 10.1109/TMECH.2019.2931407
– ident: ref4
  doi: 10.1016/j.mechatronics.2017.09.010
– ident: ref20
  doi: 10.1002/9781118287422
– volume-title: Fundamental Limitations in Filtering and Control
  year: 1997
  ident: ref2
  doi: 10.1007/978-1-4471-0965-5
– ident: ref14
  doi: 10.1109/TCST.2005.854334
– ident: ref19
  doi: 10.1109/TIE.2020.3022503
– ident: ref35
  doi: 10.1137/0803045
– ident: ref8
  doi: 10.1016/j.ifacol.2016.07.918
– ident: ref25
  doi: 10.1109/TCST.2022.3168496
– ident: ref13
  doi: 10.1115/1.4037271
SSID ssj0001257694
Score 2.317099
Snippet The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 198
SubjectTerms Accuracy
Adaptation models
Adaptive learning
Convergence
Data models
Extended state observer
Feedforward systems
Frequency domain analysis
Integrated circuit modeling
Integrated circuits
Learning
learning control
model uncertainties
motion control
Noise
Noise control
Noise measurement
Semiconductor device modeling
State observers
stochastic noise
Stochastic processes
Uncertainty
Title Beyond Performance of Learning Control Subject to Uncertainties and Noise: A Frequency-Domain Approach Applied to Wafer Stages
URI https://ieeexplore.ieee.org/document/10751758
https://www.proquest.com/docview/3158210928
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78OXE6JQcPXjrbNG0ab0MdIjgEHXorafI6RFxl6w568G_3JelwKIK3FhIIfUne917f9z1CTmJLCM2ECRQrVcAlg0BmGLiC0JqVEUtLZVMDt8P0esRvnpKnhqzuuDAA4IrPoGcf3b98U-m5TZXhCRcJurtslaxi5ObJWksJFYTOrvEhggQZSPQ8jZRPFMqzm_49BoOM92yzZauruuSFXFuVX3exczCDTTJcLM3Xlbz05nXR0x8_VBv_vfYtstFATdr3e2ObrMBkh6wvCRDukk9PYKF33_QBWpW0EV0d0wtfyE7xerH5GlpXdIRjXBWBVWKlCicPq-cZnNM-HUx9XfZ7cFm94gjabwTLaYN17fxHVcKUIsYdw6xNRoOrh4vroOnIEGiEAXVg5fci0Cw2Sap5oRQTKk2MbWOVcY2eXkoeahNF-JoJkUJYCBlxreJScwFhvEdak2oC-4SWaCxhisTiS14anRUSII01hmPMGFF0yOnCQvmbF97IXcASyhyNmVtj5t6YHdK233tpmP_UHdJdmDRvTuYsjyNLDQ4lyw7-mHZI1pht8uvyLF3SqqdzOELkURfHbsd9AXyO1F4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOlI9WLBTwASQuWRLHieNKPaxaVtuvFRJd0Vtw7EmFEBu0mxUqB_5J_0p_W8d2FlYgjpW4JZKdg_3seTOZeQPwKnUFoYW0kea1joTiGKmCHFeUxvA64XmtXWjgZJyPJuLwLDtbg8tftTCI6JPPsO8e_b9825iFC5XRCZcZmbuiy6E8wovv5KHNdw_2aTtfcz58d7o3iromApEhy9VGTjEuQcNTm-VGVFpzqfPMus5LhTBknJQSsbFJQq-FlDnGlVSJMDqtjZAYp_TdW3CbiEbGQ3nYSgiHyLpvtUi0REWKbF0nHpTE6u3h4AO5n1z0XXtnp-S6Yvd8I5e_bn9v0oYbcLVcjJDJ8qW_aKu--fGHTuR_u1oP4H5HptkgoP8hrOH0EdxbkVh8DD9DiQ57_7tAgjU162Rlz9leSNVndIG6iBRrGzahMT5PwmnNMk2Tx83nOe6wARvOQub5RbTffKURbNBJsrOOzbv5H3WNM0Ys_hznmzC5kQXYgvVpM8UnwGoCh7RV5hi0qK0pKoWYp4YcTm6trHrwZomI8luQFim9SxarksBTOvCUATw92HT7uzIsbG0PtpcQKru7Z16miSt-jhUvnv5j2ku4Mzo9OS6PD8ZHz-Audy2NfVRpG9bb2QKfE89qqxce7Qw-3TRgrgEKXC6k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Performance+of+Learning+Control+Subject+to+Uncertainties+and+Noise%3A+A+Frequency-Domain+Approach+Applied+to+Wafer+Stages&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Song%2C+Fazhi&rft.au=Cui%2C+Ning&rft.au=Chen%2C+Shuaiqi&rft.au=Zhang%2C+Kai&rft.date=2025-01-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=12&rft.issue=1&rft.spage=198&rft.epage=214&rft_id=info:doi/10.1109%2FJAS.2024.124968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2024_124968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon