Correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition in a Kondo simulator
The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine mol...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 34; pp. 24 - 249 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
31.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy
D
z
. For negative
D
z
, the ground state is dominated by a parallel configuration of the
z
component of local spins, whereas it turns to be an antiparallel one when
D
z
becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz-Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of
D
z
, and then it contributes significantly to the Zeeman effect for positive
D
z
, accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative
D
z
, only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction.
Insights into the correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition, by modeling an FePc molecule adsorbed on the Au(111) surface with an Anderson model. |
---|---|
AbstractList | The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy
D
z
. For negative
D
z
, the ground state is dominated by a parallel configuration of the
z
component of local spins, whereas it turns to be an antiparallel one when
D
z
becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz-Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of
D
z
, and then it contributes significantly to the Zeeman effect for positive
D
z
, accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative
D
z
, only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction.
Insights into the correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition, by modeling an FePc molecule adsorbed on the Au(111) surface with an Anderson model. The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy D z . For negative D z , the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when D z becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz–Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of D z , and then it contributes significantly to the Zeeman effect for positive D z , accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative D z , only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction. The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy Dz. For negative Dz, the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when Dz becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz–Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of Dz, and then it contributes significantly to the Zeeman effect for positive Dz, accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative Dz, only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction. |
Author | Wu, Yun-Pei Nan, Nan Li, Wei Xiong, Yong-Chen Zhou, Wang-Huai He, Ze-Dong Zhu, Zhan-Wu Zhang, Jun |
AuthorAffiliation | Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology |
AuthorAffiliation_xml | – name: Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering – name: School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology |
Author_xml | – sequence: 1 givenname: Wang-Huai surname: Zhou fullname: Zhou, Wang-Huai – sequence: 2 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 3 givenname: Nan surname: Nan fullname: Nan, Nan – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei – sequence: 5 givenname: Ze-Dong surname: He fullname: He, Ze-Dong – sequence: 6 givenname: Zhan-Wu surname: Zhu fullname: Zhu, Zhan-Wu – sequence: 7 givenname: Yun-Pei surname: Wu fullname: Wu, Yun-Pei – sequence: 8 givenname: Yong-Chen surname: Xiong fullname: Xiong, Yong-Chen |
BookMark | eNpdkU1Lw0AQhhepYFu9eBcCXkSI7lc2yVHiJy3ooZ7DdjOhW5PddHcj1F9v2oqCp5nD8z4M70zQyFgDCJ0TfEMwy28rqjpMhMg-jtCYcMHiHGd89Lun4gRNvF9jjElC2BhVhXUOGhm0NZE02tvgbLeNKqc_wUQz6wO4RoeveLGyfQPex2HbQbTppQl9G3Ur6SEKThqv9w49aIaYqWzkddsPZutO0XEtGw9nP3OK3h8fFsVzPH99einu5rGinIeYc64SigXHVbpMBHCMmUpyqAjBsmYVS5VKCVuqjOaEcJ5goIRBsqx5TSTO2BRdHbyds5sefChb7RU0jTRge19SkeUipYzyAb38h65t78xwXUnTQZUzznfC6wOlnPXeQV12TrfSbUuCy13h5T0t3vaFzwb44gA7r365v4ewbwZff2c |
CitedBy_id | crossref_primary_10_1016_j_jorganchem_2023_122813 |
Cites_doi | 10.1126/science.288.5465.468 10.1103/PhysRevLett.45.494 10.1038/nnano.2014.326 10.1021/ja204562m 10.1103/RevModPhys.47.773 10.1134/S0036024420080191 10.1038/nnano.2013.264 10.1126/science.1125398 10.1103/PhysRevB.99.235145 10.1103/PhysRevB.85.155314 10.1103/PhysRevB.74.045312 10.1103/PhysRevB.76.045329 10.1038/s41565-021-00859-7 10.1038/s41586-018-0223-y 10.1038/s41534-021-00362-w 10.1016/j.physrep.2011.08.002 10.1103/PhysRevLett.111.236801 10.1126/science.1252841 10.1103/PhysRevB.86.035437 10.1103/PhysRevB.81.195405 10.1103/RevModPhys.69.315 10.1038/nphys3737 10.1021/acs.chemrev.5b00680 10.1039/C9CP01350D 10.1038/nature06930 10.1088/0034-4885/66/12/R01 10.1103/PhysRevLett.88.016803 10.1073/pnas.1322239111 10.1038/ncomms16012 10.1103/PhysRevB.83.075314 10.1103/PhysRevB.21.1003 10.1126/science.1082857 10.1038/nature12759 10.1038/ncomms14119 10.1103/PhysRevB.66.125315 10.1038/416608a 10.1088/0022-3719/11/24/030 10.1038/s42254-019-0022-x 10.1103/PhysRevLett.114.106807 10.1038/s41567-019-0573-x 10.1021/nl1009603 10.1103/PhysRevLett.70.2601 10.1103/PhysRevLett.127.123201 10.1147/rd.13.0223 10.1103/PhysRevB.79.085106 10.1103/PhysRevLett.122.197701 10.1039/D1CP04813A 10.1038/ncomms9536 10.1038/s41467-021-26339-z 10.1021/nn100793s 10.1103/PhysRevLett.77.940 10.1002/anie.201813331 10.1038/nature00790 10.1039/D0CP05915C 10.1038/s42254-019-0055-1 10.1039/C5CS00933B 10.1103/RevModPhys.80.395 10.1126/science.1186874 10.1126/science.288.5465.475 10.1103/PhysRevLett.50.1395 10.1103/PhysRevB.75.115313 10.1103/PhysRevLett.106.055701 10.1103/PhysRevLett.99.076402 10.1103/PhysRevLett.127.186805 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cp01668k |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 249 |
ExternalDocumentID | 10_1039_D2CP01668K d2cp01668k |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO H13 HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -JG -~X 0R~ 53G 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AGEGJ AHGCF APEMP CITATION GGIMP HZ~ RAOCF RIG 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c244t-444c520640d7b56e4003c59ed110af3d37cc713bc829114450e213e5bf4f1a083 |
ISSN | 1463-9076 |
IngestDate | Fri Oct 25 23:20:38 EDT 2024 Thu Oct 10 17:55:09 EDT 2024 Thu Sep 12 19:39:58 EDT 2024 Thu Sep 01 04:20:32 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c244t-444c520640d7b56e4003c59ed110af3d37cc713bc829114450e213e5bf4f1a083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8904-1292 |
PQID | 2708393448 |
PQPubID | 2047499 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2689672324 crossref_primary_10_1039_D2CP01668K proquest_journals_2708393448 rsc_primary_d2cp01668k |
PublicationCentury | 2000 |
PublicationDate | 20220831 |
PublicationDateYYYYMMDD | 2022-08-31 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220831 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ferri (D2CP01668K/cit12/1) 2019; 58 Klitzing (D2CP01668K/cit24/1) 1980; 45 Chiesa (D2CP01668K/cit51/1) 2019; 99 Kashcheyevs (D2CP01668K/cit66/1) 2007; 75 Bartolomé (D2CP01668K/cit46/1) 2010; 81 Zyazin (D2CP01668K/cit44/1) 2010; 10 Gehring (D2CP01668K/cit3/1) 2019; 1 Sachdev (D2CP01668K/cit18/1) 2000; 288 Xiong (D2CP01668K/cit30/1) 2019; 21 Chung (D2CP01668K/cit61/1) 2007; 76 Requist (D2CP01668K/cit4/1) 2014; 111 de Bruijckere (D2CP01668K/cit8/1) 2019; 122 Zimbovskaya (D2CP01668K/cit5/1) 2011; 509 Miyamachi (D2CP01668K/cit37/1) 2013; 503 Vojta (D2CP01668K/cit26/1) 2003; 66 Krishna-murthy (D2CP01668K/cit53/1) 1980; 21 Gehring (D2CP01668K/cit13/1) 2021; 16 Hirjibehedin (D2CP01668K/cit6/1) 2006; 312 Osterloh (D2CP01668K/cit22/1) 2002; 416 Parks (D2CP01668K/cit60/1) 2010; 328 Esat (D2CP01668K/cit11/1) 2018; 558 Rau (D2CP01668K/cit34/1) 2014; 344 Tanaka (D2CP01668K/cit50/1) 2012; 85 Ruiz-Tijerina (D2CP01668K/cit28/1) 2012; 86 Xiang (D2CP01668K/cit1/1) 2016; 116 Bitko (D2CP01668K/cit20/1) 1996; 77 Xin (D2CP01668K/cit2/1) 2019; 1 Frauhammer (D2CP01668K/cit21/1) 2021; 127 Scott (D2CP01668K/cit15/1) 2010; 4 Meir (D2CP01668K/cit57/1) 1993; 70 Xiong (D2CP01668K/cit33/1) 2022; 24 Rams (D2CP01668K/cit23/1) 2011; 106 Esat (D2CP01668K/cit29/1) 2016; 12 Wang (D2CP01668K/cit39/1) 2021; 7 Gambardella (D2CP01668K/cit35/1) 2003; 300 Wilson (D2CP01668K/cit52/1) 1975; 47 Bulla (D2CP01668K/cit54/1) 2008; 80 Jurca (D2CP01668K/cit43/1) 2011; 133 Warner (D2CP01668K/cit10/1) 2015; 10 Žitko (D2CP01668K/cit62/1) 2006; 74 Hiraoka (D2CP01668K/cit45/1) 2017; 8 Haldane (D2CP01668K/cit63/1) 1978; 11 Oberg (D2CP01668K/cit42/1) 2014; 9 Orenstein (D2CP01668K/cit19/1) 2000; 288 Lu (D2CP01668K/cit32/1) 2021; 127 Roch (D2CP01668K/cit16/1) 2008; 453 Hofstetter (D2CP01668K/cit64/1) 2001; 88 Mabrouk (D2CP01668K/cit59/1) 2020; 94 Donati (D2CP01668K/cit40/1) 2013; 111 Landauer (D2CP01668K/cit56/1) 1957; 1 Weichselbaum (D2CP01668K/cit58/1) 2007; 99 Liang (D2CP01668K/cit14/1) 2002; 417 Moreno-Pineda (D2CP01668K/cit38/1) 2018; 47 Wang (D2CP01668K/cit65/1) 2011; 83 Willke (D2CP01668K/cit48/1) 2019; 15 Laughlin (D2CP01668K/cit25/1) 1983; 50 Sondhi (D2CP01668K/cit27/1) 1997; 69 von Löhneysen (D2CP01668K/cit17/1) 1996; 8 Boese (D2CP01668K/cit49/1) 2002; 66 Nan (D2CP01668K/cit31/1) 2021; 23 Dubout (D2CP01668K/cit41/1) 2015; 114 Jacobson (D2CP01668K/cit36/1) 2015; 6 Žitko (D2CP01668K/cit47/1) 2021; 12 Muenks (D2CP01668K/cit7/1) 2017; 8 Willke (D2CP01668K/cit9/1) 2019; 15 Žitko (D2CP01668K/cit55/1) 2009; 79 |
References_xml | – volume: 288 start-page: 468 year: 2000 ident: D2CP01668K/cit19/1 publication-title: Science doi: 10.1126/science.288.5465.468 contributor: fullname: Orenstein – volume: 45 start-page: 494 year: 1980 ident: D2CP01668K/cit24/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 contributor: fullname: Klitzing – volume: 10 start-page: 259 year: 2015 ident: D2CP01668K/cit10/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.326 contributor: fullname: Warner – volume: 133 start-page: 15814 year: 2011 ident: D2CP01668K/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204562m contributor: fullname: Jurca – volume: 47 start-page: 773 year: 1975 ident: D2CP01668K/cit52/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.47.773 contributor: fullname: Wilson – volume: 94 start-page: 1704 issue: 8 year: 2020 ident: D2CP01668K/cit59/1 publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024420080191 contributor: fullname: Mabrouk – volume: 9 start-page: 64 year: 2014 ident: D2CP01668K/cit42/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.264 contributor: fullname: Oberg – volume: 312 start-page: 1021 year: 2006 ident: D2CP01668K/cit6/1 publication-title: Science doi: 10.1126/science.1125398 contributor: fullname: Hirjibehedin – volume: 99 start-page: 235145 year: 2019 ident: D2CP01668K/cit51/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.235145 contributor: fullname: Chiesa – volume: 85 start-page: 155314 year: 2012 ident: D2CP01668K/cit50/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.155314 contributor: fullname: Tanaka – volume: 74 start-page: 045312 year: 2006 ident: D2CP01668K/cit62/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.045312 contributor: fullname: Žitko – volume: 76 start-page: 045329 year: 2007 ident: D2CP01668K/cit61/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.045329 contributor: fullname: Chung – volume: 16 start-page: 426 year: 2021 ident: D2CP01668K/cit13/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00859-7 contributor: fullname: Gehring – volume: 558 start-page: 573 year: 2018 ident: D2CP01668K/cit11/1 publication-title: Nature doi: 10.1038/s41586-018-0223-y contributor: fullname: Esat – volume: 7 start-page: 32 year: 2021 ident: D2CP01668K/cit39/1 publication-title: npj Quantum Inform. doi: 10.1038/s41534-021-00362-w contributor: fullname: Wang – volume: 509 start-page: 1 year: 2011 ident: D2CP01668K/cit5/1 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2011.08.002 contributor: fullname: Zimbovskaya – volume: 111 start-page: 236801 year: 2013 ident: D2CP01668K/cit40/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.236801 contributor: fullname: Donati – volume: 344 start-page: 988 issue: 6187 year: 2014 ident: D2CP01668K/cit34/1 publication-title: Science doi: 10.1126/science.1252841 contributor: fullname: Rau – volume: 86 start-page: 035437 year: 2012 ident: D2CP01668K/cit28/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.86.035437 contributor: fullname: Ruiz-Tijerina – volume: 81 start-page: 195405 year: 2010 ident: D2CP01668K/cit46/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.195405 contributor: fullname: Bartolomé – volume: 69 start-page: 315 year: 1997 ident: D2CP01668K/cit27/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.69.315 contributor: fullname: Sondhi – volume: 12 start-page: 867 year: 2016 ident: D2CP01668K/cit29/1 publication-title: Nat. Phys. doi: 10.1038/nphys3737 contributor: fullname: Esat – volume: 116 start-page: 4318 year: 2016 ident: D2CP01668K/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00680 contributor: fullname: Xiang – volume: 8 start-page: 9689 year: 1996 ident: D2CP01668K/cit17/1 publication-title: J. Phys.: Condens. Matter contributor: fullname: von Löhneysen – volume: 21 start-page: 11158 year: 2019 ident: D2CP01668K/cit30/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP01350D contributor: fullname: Xiong – volume: 453 start-page: 633 year: 2008 ident: D2CP01668K/cit16/1 publication-title: Nature doi: 10.1038/nature06930 contributor: fullname: Roch – volume: 66 start-page: 2069 year: 2003 ident: D2CP01668K/cit26/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/66/12/R01 contributor: fullname: Vojta – volume: 88 start-page: 016803 year: 2001 ident: D2CP01668K/cit64/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.016803 contributor: fullname: Hofstetter – volume: 111 start-page: 69 issue: 1 year: 2014 ident: D2CP01668K/cit4/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1322239111 contributor: fullname: Requist – volume: 8 start-page: 16012 year: 2017 ident: D2CP01668K/cit45/1 publication-title: Nat. Commun. doi: 10.1038/ncomms16012 contributor: fullname: Hiraoka – volume: 83 start-page: 075314 year: 2011 ident: D2CP01668K/cit65/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.075314 contributor: fullname: Wang – volume: 21 start-page: 1003 year: 1980 ident: D2CP01668K/cit53/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.21.1003 contributor: fullname: Krishna-murthy – volume: 300 start-page: 1130 year: 2003 ident: D2CP01668K/cit35/1 publication-title: Science doi: 10.1126/science.1082857 contributor: fullname: Gambardella – volume: 503 start-page: 242 year: 2013 ident: D2CP01668K/cit37/1 publication-title: Nature doi: 10.1038/nature12759 contributor: fullname: Miyamachi – volume: 8 start-page: 14119 year: 2017 ident: D2CP01668K/cit7/1 publication-title: Nat. Commun. doi: 10.1038/ncomms14119 contributor: fullname: Muenks – volume: 66 start-page: 125315 year: 2002 ident: D2CP01668K/cit49/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.66.125315 contributor: fullname: Boese – volume: 416 start-page: 608 year: 2002 ident: D2CP01668K/cit22/1 publication-title: Nature doi: 10.1038/416608a contributor: fullname: Osterloh – volume: 11 start-page: 5015 year: 1978 ident: D2CP01668K/cit63/1 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/11/24/030 contributor: fullname: Haldane – volume: 1 start-page: 211 year: 2019 ident: D2CP01668K/cit2/1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0022-x contributor: fullname: Xin – volume: 114 start-page: 106807 year: 2015 ident: D2CP01668K/cit41/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.106807 contributor: fullname: Dubout – volume: 15 start-page: 1005 year: 2019 ident: D2CP01668K/cit48/1 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0573-x contributor: fullname: Willke – volume: 10 start-page: 3307 issue: 9 year: 2010 ident: D2CP01668K/cit44/1 publication-title: Nano Lett. doi: 10.1021/nl1009603 contributor: fullname: Zyazin – volume: 70 start-page: 2601 year: 1993 ident: D2CP01668K/cit57/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.2601 contributor: fullname: Meir – volume: 127 start-page: 123201 year: 2021 ident: D2CP01668K/cit21/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.123201 contributor: fullname: Frauhammer – volume: 1 start-page: 223 year: 1957 ident: D2CP01668K/cit56/1 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.13.0223 contributor: fullname: Landauer – volume: 79 start-page: 085106 year: 2009 ident: D2CP01668K/cit55/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.085106 contributor: fullname: Žitko – volume: 122 start-page: 197701 year: 2019 ident: D2CP01668K/cit8/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.197701 contributor: fullname: de Bruijckere – volume: 24 start-page: 5522 year: 2022 ident: D2CP01668K/cit33/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP04813A contributor: fullname: Xiong – volume: 6 start-page: 8536 year: 2015 ident: D2CP01668K/cit36/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9536 contributor: fullname: Jacobson – volume: 12 start-page: 6027 year: 2021 ident: D2CP01668K/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26339-z contributor: fullname: Žitko – volume: 4 start-page: 3560 year: 2010 ident: D2CP01668K/cit15/1 publication-title: ACS Nano doi: 10.1021/nn100793s contributor: fullname: Scott – volume: 77 start-page: 940 year: 1996 ident: D2CP01668K/cit20/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.940 contributor: fullname: Bitko – volume: 58 start-page: 2 year: 2019 ident: D2CP01668K/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813331 contributor: fullname: Ferri – volume: 417 start-page: 725 year: 2002 ident: D2CP01668K/cit14/1 publication-title: Nature doi: 10.1038/nature00790 contributor: fullname: Liang – volume: 23 start-page: 5878 year: 2021 ident: D2CP01668K/cit31/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05915C contributor: fullname: Nan – volume: 15 start-page: 1005 year: 2019 ident: D2CP01668K/cit9/1 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0573-x contributor: fullname: Willke – volume: 1 start-page: 381 year: 2019 ident: D2CP01668K/cit3/1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0055-1 contributor: fullname: Gehring – volume: 47 start-page: 501 year: 2018 ident: D2CP01668K/cit38/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00933B contributor: fullname: Moreno-Pineda – volume: 80 start-page: 395 year: 2008 ident: D2CP01668K/cit54/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.395 contributor: fullname: Bulla – volume: 328 start-page: 1370 year: 2010 ident: D2CP01668K/cit60/1 publication-title: Science doi: 10.1126/science.1186874 contributor: fullname: Parks – volume: 288 start-page: 475 year: 2000 ident: D2CP01668K/cit18/1 publication-title: Science doi: 10.1126/science.288.5465.475 contributor: fullname: Sachdev – volume: 50 start-page: 1395 year: 1983 ident: D2CP01668K/cit25/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1395 contributor: fullname: Laughlin – volume: 75 start-page: 115313 year: 2007 ident: D2CP01668K/cit66/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.115313 contributor: fullname: Kashcheyevs – volume: 106 start-page: 055701 year: 2011 ident: D2CP01668K/cit23/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.055701 contributor: fullname: Rams – volume: 99 start-page: 076402 year: 2007 ident: D2CP01668K/cit58/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.076402 contributor: fullname: Weichselbaum – volume: 127 start-page: 186805 year: 2021 ident: D2CP01668K/cit32/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.186805 contributor: fullname: Lu |
SSID | ssj0001513 |
Score | 2.4419014 |
Snippet | The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 24 |
SubjectTerms | Anisotropy Data processing Kondo effect Magnetic anisotropy Magnetic moments Metal phthalocyanines Metal surfaces Phase transitions Quantum phenomena Zeeman effect |
Title | Correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition in a Kondo simulator |
URI | https://www.proquest.com/docview/2708393448 https://search.proquest.com/docview/2689672324 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QEuFa-KhYKM4BYFdm3HSY5VKFpaWO1hKyouK9tJaARNttnkQE_8B278PH4J49h5lPZQuESJEzu7ni_z8owHoVckFsT3lHCnPA1dJnzqSp8olwVywphU_qTZMv_jnM9O2NGpdzoa_RpELdWVfK0ub8wr-R-qQhvQVWfJ_gNlu0GhAc6BvnAECsPxVjSOdGkNE8zmiDzbFFVZrL87calZmHOs8zdKULMv24gGujwr6m_A29zG83pRw7TW5876DESZLhaRmwAu7QMR0D2PC2eTnesCX0U51GIXLXFVWy7OnOkm4yrZNK6GRRR16WOf4dVNQJ_Iv7izWmTXXNZHdQfUuXHLzgcBQ03UwackG7opwMK1fteOszJOXbDE7b7XwzZTI65lxyal2sLOOjotc9UcZyCp9XV4oxiYUL2L6lsSLUCj5cFxL-zaBf6_ZGAXmdisydNw1ffdQjsEmBhwz52Dw-X7D52cB12Jmtw188fazW9p-KbvfVXd6W2YrbItMNMoMst7aNdaIPjAwOk-GiX5A3Qnain5EKUDWOEeVtjACvew-v3j5xVAYQso3AAK94DCGQyEG0DhDlCP0Mm7w2U0c205DleBDli5jDHlEb3yG_vS4wlwf6q8MIlBgxQpjamvlD-lUgUEJChj3iQhU5p4MmXpVMA3v4e28yJPHiMMz3CeBpIoIXWkgJShTqrjSeBLKYNgjF62s7Zam11XVtcpM0b77YSu7Fe5WRHNXULKGAzyorsNM6gXwkSeFDU8w4OQ-9qWGKM9IET3jpiodTP21ye3-gVP0d0e6_touyrr5BkoqZV8btHyB4zJk38 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+anisotropy+driven+Kosterlitz%E2%80%93Thouless-type+quantum+phase+transition+in+a+Kondo+simulator&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Wang-Huai&rft.au=Zhang%2C+Jun&rft.au=Nan%2C+Nan&rft.au=Li%2C+Wei&rft.date=2022-08-31&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=34&rft.spage=20040&rft.epage=20049&rft_id=info:doi/10.1039%2FD2CP01668K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP01668K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |