Correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition in a Kondo simulator

The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine mol...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 34; pp. 24 - 249
Main Authors Zhou, Wang-Huai, Zhang, Jun, Nan, Nan, Li, Wei, He, Ze-Dong, Zhu, Zhan-Wu, Wu, Yun-Pei, Xiong, Yong-Chen
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 31.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy D z . For negative D z , the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when D z becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz-Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of D z , and then it contributes significantly to the Zeeman effect for positive D z , accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative D z , only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction. Insights into the correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition, by modeling an FePc molecule adsorbed on the Au(111) surface with an Anderson model.
AbstractList The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy D z . For negative D z , the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when D z becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz-Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of D z , and then it contributes significantly to the Zeeman effect for positive D z , accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative D z , only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction. Insights into the correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition, by modeling an FePc molecule adsorbed on the Au(111) surface with an Anderson model.
The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy D z . For negative D z , the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when D z becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz–Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of D z , and then it contributes significantly to the Zeeman effect for positive D z , accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative D z , only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction.
The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy Dz. For negative Dz, the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when Dz becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz–Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of Dz, and then it contributes significantly to the Zeeman effect for positive Dz, accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative Dz, only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction.
Author Wu, Yun-Pei
Nan, Nan
Li, Wei
Xiong, Yong-Chen
Zhou, Wang-Huai
He, Ze-Dong
Zhu, Zhan-Wu
Zhang, Jun
AuthorAffiliation Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering
School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology
AuthorAffiliation_xml – name: Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering
– name: School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology
Author_xml – sequence: 1
  givenname: Wang-Huai
  surname: Zhou
  fullname: Zhou, Wang-Huai
– sequence: 2
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 3
  givenname: Nan
  surname: Nan
  fullname: Nan, Nan
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 5
  givenname: Ze-Dong
  surname: He
  fullname: He, Ze-Dong
– sequence: 6
  givenname: Zhan-Wu
  surname: Zhu
  fullname: Zhu, Zhan-Wu
– sequence: 7
  givenname: Yun-Pei
  surname: Wu
  fullname: Wu, Yun-Pei
– sequence: 8
  givenname: Yong-Chen
  surname: Xiong
  fullname: Xiong, Yong-Chen
BookMark eNpdkU1Lw0AQhhepYFu9eBcCXkSI7lc2yVHiJy3ooZ7DdjOhW5PddHcj1F9v2oqCp5nD8z4M70zQyFgDCJ0TfEMwy28rqjpMhMg-jtCYcMHiHGd89Lun4gRNvF9jjElC2BhVhXUOGhm0NZE02tvgbLeNKqc_wUQz6wO4RoeveLGyfQPex2HbQbTppQl9G3Ur6SEKThqv9w49aIaYqWzkddsPZutO0XEtGw9nP3OK3h8fFsVzPH99einu5rGinIeYc64SigXHVbpMBHCMmUpyqAjBsmYVS5VKCVuqjOaEcJ5goIRBsqx5TSTO2BRdHbyds5sefChb7RU0jTRge19SkeUipYzyAb38h65t78xwXUnTQZUzznfC6wOlnPXeQV12TrfSbUuCy13h5T0t3vaFzwb44gA7r365v4ewbwZff2c
CitedBy_id crossref_primary_10_1016_j_jorganchem_2023_122813
Cites_doi 10.1126/science.288.5465.468
10.1103/PhysRevLett.45.494
10.1038/nnano.2014.326
10.1021/ja204562m
10.1103/RevModPhys.47.773
10.1134/S0036024420080191
10.1038/nnano.2013.264
10.1126/science.1125398
10.1103/PhysRevB.99.235145
10.1103/PhysRevB.85.155314
10.1103/PhysRevB.74.045312
10.1103/PhysRevB.76.045329
10.1038/s41565-021-00859-7
10.1038/s41586-018-0223-y
10.1038/s41534-021-00362-w
10.1016/j.physrep.2011.08.002
10.1103/PhysRevLett.111.236801
10.1126/science.1252841
10.1103/PhysRevB.86.035437
10.1103/PhysRevB.81.195405
10.1103/RevModPhys.69.315
10.1038/nphys3737
10.1021/acs.chemrev.5b00680
10.1039/C9CP01350D
10.1038/nature06930
10.1088/0034-4885/66/12/R01
10.1103/PhysRevLett.88.016803
10.1073/pnas.1322239111
10.1038/ncomms16012
10.1103/PhysRevB.83.075314
10.1103/PhysRevB.21.1003
10.1126/science.1082857
10.1038/nature12759
10.1038/ncomms14119
10.1103/PhysRevB.66.125315
10.1038/416608a
10.1088/0022-3719/11/24/030
10.1038/s42254-019-0022-x
10.1103/PhysRevLett.114.106807
10.1038/s41567-019-0573-x
10.1021/nl1009603
10.1103/PhysRevLett.70.2601
10.1103/PhysRevLett.127.123201
10.1147/rd.13.0223
10.1103/PhysRevB.79.085106
10.1103/PhysRevLett.122.197701
10.1039/D1CP04813A
10.1038/ncomms9536
10.1038/s41467-021-26339-z
10.1021/nn100793s
10.1103/PhysRevLett.77.940
10.1002/anie.201813331
10.1038/nature00790
10.1039/D0CP05915C
10.1038/s42254-019-0055-1
10.1039/C5CS00933B
10.1103/RevModPhys.80.395
10.1126/science.1186874
10.1126/science.288.5465.475
10.1103/PhysRevLett.50.1395
10.1103/PhysRevB.75.115313
10.1103/PhysRevLett.106.055701
10.1103/PhysRevLett.99.076402
10.1103/PhysRevLett.127.186805
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cp01668k
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 249
ExternalDocumentID 10_1039_D2CP01668K
d2cp01668k
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-JG
-~X
0R~
53G
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
HZ~
RAOCF
RIG
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c244t-444c520640d7b56e4003c59ed110af3d37cc713bc829114450e213e5bf4f1a083
ISSN 1463-9076
IngestDate Fri Oct 25 23:20:38 EDT 2024
Thu Oct 10 17:55:09 EDT 2024
Thu Sep 12 19:39:58 EDT 2024
Thu Sep 01 04:20:32 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c244t-444c520640d7b56e4003c59ed110af3d37cc713bc829114450e213e5bf4f1a083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8904-1292
PQID 2708393448
PQPubID 2047499
PageCount 1
ParticipantIDs proquest_miscellaneous_2689672324
crossref_primary_10_1039_D2CP01668K
proquest_journals_2708393448
rsc_primary_d2cp01668k
PublicationCentury 2000
PublicationDate 20220831
PublicationDateYYYYMMDD 2022-08-31
PublicationDate_xml – month: 8
  year: 2022
  text: 20220831
  day: 31
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ferri (D2CP01668K/cit12/1) 2019; 58
Klitzing (D2CP01668K/cit24/1) 1980; 45
Chiesa (D2CP01668K/cit51/1) 2019; 99
Kashcheyevs (D2CP01668K/cit66/1) 2007; 75
Bartolomé (D2CP01668K/cit46/1) 2010; 81
Zyazin (D2CP01668K/cit44/1) 2010; 10
Gehring (D2CP01668K/cit3/1) 2019; 1
Sachdev (D2CP01668K/cit18/1) 2000; 288
Xiong (D2CP01668K/cit30/1) 2019; 21
Chung (D2CP01668K/cit61/1) 2007; 76
Requist (D2CP01668K/cit4/1) 2014; 111
de Bruijckere (D2CP01668K/cit8/1) 2019; 122
Zimbovskaya (D2CP01668K/cit5/1) 2011; 509
Miyamachi (D2CP01668K/cit37/1) 2013; 503
Vojta (D2CP01668K/cit26/1) 2003; 66
Krishna-murthy (D2CP01668K/cit53/1) 1980; 21
Gehring (D2CP01668K/cit13/1) 2021; 16
Hirjibehedin (D2CP01668K/cit6/1) 2006; 312
Osterloh (D2CP01668K/cit22/1) 2002; 416
Parks (D2CP01668K/cit60/1) 2010; 328
Esat (D2CP01668K/cit11/1) 2018; 558
Rau (D2CP01668K/cit34/1) 2014; 344
Tanaka (D2CP01668K/cit50/1) 2012; 85
Ruiz-Tijerina (D2CP01668K/cit28/1) 2012; 86
Xiang (D2CP01668K/cit1/1) 2016; 116
Bitko (D2CP01668K/cit20/1) 1996; 77
Xin (D2CP01668K/cit2/1) 2019; 1
Frauhammer (D2CP01668K/cit21/1) 2021; 127
Scott (D2CP01668K/cit15/1) 2010; 4
Meir (D2CP01668K/cit57/1) 1993; 70
Xiong (D2CP01668K/cit33/1) 2022; 24
Rams (D2CP01668K/cit23/1) 2011; 106
Esat (D2CP01668K/cit29/1) 2016; 12
Wang (D2CP01668K/cit39/1) 2021; 7
Gambardella (D2CP01668K/cit35/1) 2003; 300
Wilson (D2CP01668K/cit52/1) 1975; 47
Bulla (D2CP01668K/cit54/1) 2008; 80
Jurca (D2CP01668K/cit43/1) 2011; 133
Warner (D2CP01668K/cit10/1) 2015; 10
Žitko (D2CP01668K/cit62/1) 2006; 74
Hiraoka (D2CP01668K/cit45/1) 2017; 8
Haldane (D2CP01668K/cit63/1) 1978; 11
Oberg (D2CP01668K/cit42/1) 2014; 9
Orenstein (D2CP01668K/cit19/1) 2000; 288
Lu (D2CP01668K/cit32/1) 2021; 127
Roch (D2CP01668K/cit16/1) 2008; 453
Hofstetter (D2CP01668K/cit64/1) 2001; 88
Mabrouk (D2CP01668K/cit59/1) 2020; 94
Donati (D2CP01668K/cit40/1) 2013; 111
Landauer (D2CP01668K/cit56/1) 1957; 1
Weichselbaum (D2CP01668K/cit58/1) 2007; 99
Liang (D2CP01668K/cit14/1) 2002; 417
Moreno-Pineda (D2CP01668K/cit38/1) 2018; 47
Wang (D2CP01668K/cit65/1) 2011; 83
Willke (D2CP01668K/cit48/1) 2019; 15
Laughlin (D2CP01668K/cit25/1) 1983; 50
Sondhi (D2CP01668K/cit27/1) 1997; 69
von Löhneysen (D2CP01668K/cit17/1) 1996; 8
Boese (D2CP01668K/cit49/1) 2002; 66
Nan (D2CP01668K/cit31/1) 2021; 23
Dubout (D2CP01668K/cit41/1) 2015; 114
Jacobson (D2CP01668K/cit36/1) 2015; 6
Žitko (D2CP01668K/cit47/1) 2021; 12
Muenks (D2CP01668K/cit7/1) 2017; 8
Willke (D2CP01668K/cit9/1) 2019; 15
Žitko (D2CP01668K/cit55/1) 2009; 79
References_xml – volume: 288
  start-page: 468
  year: 2000
  ident: D2CP01668K/cit19/1
  publication-title: Science
  doi: 10.1126/science.288.5465.468
  contributor:
    fullname: Orenstein
– volume: 45
  start-page: 494
  year: 1980
  ident: D2CP01668K/cit24/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
  contributor:
    fullname: Klitzing
– volume: 10
  start-page: 259
  year: 2015
  ident: D2CP01668K/cit10/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.326
  contributor:
    fullname: Warner
– volume: 133
  start-page: 15814
  year: 2011
  ident: D2CP01668K/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204562m
  contributor:
    fullname: Jurca
– volume: 47
  start-page: 773
  year: 1975
  ident: D2CP01668K/cit52/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.47.773
  contributor:
    fullname: Wilson
– volume: 94
  start-page: 1704
  issue: 8
  year: 2020
  ident: D2CP01668K/cit59/1
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S0036024420080191
  contributor:
    fullname: Mabrouk
– volume: 9
  start-page: 64
  year: 2014
  ident: D2CP01668K/cit42/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.264
  contributor:
    fullname: Oberg
– volume: 312
  start-page: 1021
  year: 2006
  ident: D2CP01668K/cit6/1
  publication-title: Science
  doi: 10.1126/science.1125398
  contributor:
    fullname: Hirjibehedin
– volume: 99
  start-page: 235145
  year: 2019
  ident: D2CP01668K/cit51/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.235145
  contributor:
    fullname: Chiesa
– volume: 85
  start-page: 155314
  year: 2012
  ident: D2CP01668K/cit50/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.155314
  contributor:
    fullname: Tanaka
– volume: 74
  start-page: 045312
  year: 2006
  ident: D2CP01668K/cit62/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.045312
  contributor:
    fullname: Žitko
– volume: 76
  start-page: 045329
  year: 2007
  ident: D2CP01668K/cit61/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.045329
  contributor:
    fullname: Chung
– volume: 16
  start-page: 426
  year: 2021
  ident: D2CP01668K/cit13/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00859-7
  contributor:
    fullname: Gehring
– volume: 558
  start-page: 573
  year: 2018
  ident: D2CP01668K/cit11/1
  publication-title: Nature
  doi: 10.1038/s41586-018-0223-y
  contributor:
    fullname: Esat
– volume: 7
  start-page: 32
  year: 2021
  ident: D2CP01668K/cit39/1
  publication-title: npj Quantum Inform.
  doi: 10.1038/s41534-021-00362-w
  contributor:
    fullname: Wang
– volume: 509
  start-page: 1
  year: 2011
  ident: D2CP01668K/cit5/1
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2011.08.002
  contributor:
    fullname: Zimbovskaya
– volume: 111
  start-page: 236801
  year: 2013
  ident: D2CP01668K/cit40/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.236801
  contributor:
    fullname: Donati
– volume: 344
  start-page: 988
  issue: 6187
  year: 2014
  ident: D2CP01668K/cit34/1
  publication-title: Science
  doi: 10.1126/science.1252841
  contributor:
    fullname: Rau
– volume: 86
  start-page: 035437
  year: 2012
  ident: D2CP01668K/cit28/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.86.035437
  contributor:
    fullname: Ruiz-Tijerina
– volume: 81
  start-page: 195405
  year: 2010
  ident: D2CP01668K/cit46/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.195405
  contributor:
    fullname: Bartolomé
– volume: 69
  start-page: 315
  year: 1997
  ident: D2CP01668K/cit27/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.69.315
  contributor:
    fullname: Sondhi
– volume: 12
  start-page: 867
  year: 2016
  ident: D2CP01668K/cit29/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3737
  contributor:
    fullname: Esat
– volume: 116
  start-page: 4318
  year: 2016
  ident: D2CP01668K/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00680
  contributor:
    fullname: Xiang
– volume: 8
  start-page: 9689
  year: 1996
  ident: D2CP01668K/cit17/1
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: von Löhneysen
– volume: 21
  start-page: 11158
  year: 2019
  ident: D2CP01668K/cit30/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP01350D
  contributor:
    fullname: Xiong
– volume: 453
  start-page: 633
  year: 2008
  ident: D2CP01668K/cit16/1
  publication-title: Nature
  doi: 10.1038/nature06930
  contributor:
    fullname: Roch
– volume: 66
  start-page: 2069
  year: 2003
  ident: D2CP01668K/cit26/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/66/12/R01
  contributor:
    fullname: Vojta
– volume: 88
  start-page: 016803
  year: 2001
  ident: D2CP01668K/cit64/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.016803
  contributor:
    fullname: Hofstetter
– volume: 111
  start-page: 69
  issue: 1
  year: 2014
  ident: D2CP01668K/cit4/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1322239111
  contributor:
    fullname: Requist
– volume: 8
  start-page: 16012
  year: 2017
  ident: D2CP01668K/cit45/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16012
  contributor:
    fullname: Hiraoka
– volume: 83
  start-page: 075314
  year: 2011
  ident: D2CP01668K/cit65/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.075314
  contributor:
    fullname: Wang
– volume: 21
  start-page: 1003
  year: 1980
  ident: D2CP01668K/cit53/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.21.1003
  contributor:
    fullname: Krishna-murthy
– volume: 300
  start-page: 1130
  year: 2003
  ident: D2CP01668K/cit35/1
  publication-title: Science
  doi: 10.1126/science.1082857
  contributor:
    fullname: Gambardella
– volume: 503
  start-page: 242
  year: 2013
  ident: D2CP01668K/cit37/1
  publication-title: Nature
  doi: 10.1038/nature12759
  contributor:
    fullname: Miyamachi
– volume: 8
  start-page: 14119
  year: 2017
  ident: D2CP01668K/cit7/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14119
  contributor:
    fullname: Muenks
– volume: 66
  start-page: 125315
  year: 2002
  ident: D2CP01668K/cit49/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.66.125315
  contributor:
    fullname: Boese
– volume: 416
  start-page: 608
  year: 2002
  ident: D2CP01668K/cit22/1
  publication-title: Nature
  doi: 10.1038/416608a
  contributor:
    fullname: Osterloh
– volume: 11
  start-page: 5015
  year: 1978
  ident: D2CP01668K/cit63/1
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/11/24/030
  contributor:
    fullname: Haldane
– volume: 1
  start-page: 211
  year: 2019
  ident: D2CP01668K/cit2/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0022-x
  contributor:
    fullname: Xin
– volume: 114
  start-page: 106807
  year: 2015
  ident: D2CP01668K/cit41/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.106807
  contributor:
    fullname: Dubout
– volume: 15
  start-page: 1005
  year: 2019
  ident: D2CP01668K/cit48/1
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0573-x
  contributor:
    fullname: Willke
– volume: 10
  start-page: 3307
  issue: 9
  year: 2010
  ident: D2CP01668K/cit44/1
  publication-title: Nano Lett.
  doi: 10.1021/nl1009603
  contributor:
    fullname: Zyazin
– volume: 70
  start-page: 2601
  year: 1993
  ident: D2CP01668K/cit57/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.2601
  contributor:
    fullname: Meir
– volume: 127
  start-page: 123201
  year: 2021
  ident: D2CP01668K/cit21/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.123201
  contributor:
    fullname: Frauhammer
– volume: 1
  start-page: 223
  year: 1957
  ident: D2CP01668K/cit56/1
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.13.0223
  contributor:
    fullname: Landauer
– volume: 79
  start-page: 085106
  year: 2009
  ident: D2CP01668K/cit55/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.085106
  contributor:
    fullname: Žitko
– volume: 122
  start-page: 197701
  year: 2019
  ident: D2CP01668K/cit8/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.197701
  contributor:
    fullname: de Bruijckere
– volume: 24
  start-page: 5522
  year: 2022
  ident: D2CP01668K/cit33/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP04813A
  contributor:
    fullname: Xiong
– volume: 6
  start-page: 8536
  year: 2015
  ident: D2CP01668K/cit36/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9536
  contributor:
    fullname: Jacobson
– volume: 12
  start-page: 6027
  year: 2021
  ident: D2CP01668K/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26339-z
  contributor:
    fullname: Žitko
– volume: 4
  start-page: 3560
  year: 2010
  ident: D2CP01668K/cit15/1
  publication-title: ACS Nano
  doi: 10.1021/nn100793s
  contributor:
    fullname: Scott
– volume: 77
  start-page: 940
  year: 1996
  ident: D2CP01668K/cit20/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.940
  contributor:
    fullname: Bitko
– volume: 58
  start-page: 2
  year: 2019
  ident: D2CP01668K/cit12/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813331
  contributor:
    fullname: Ferri
– volume: 417
  start-page: 725
  year: 2002
  ident: D2CP01668K/cit14/1
  publication-title: Nature
  doi: 10.1038/nature00790
  contributor:
    fullname: Liang
– volume: 23
  start-page: 5878
  year: 2021
  ident: D2CP01668K/cit31/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05915C
  contributor:
    fullname: Nan
– volume: 15
  start-page: 1005
  year: 2019
  ident: D2CP01668K/cit9/1
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0573-x
  contributor:
    fullname: Willke
– volume: 1
  start-page: 381
  year: 2019
  ident: D2CP01668K/cit3/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0055-1
  contributor:
    fullname: Gehring
– volume: 47
  start-page: 501
  year: 2018
  ident: D2CP01668K/cit38/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00933B
  contributor:
    fullname: Moreno-Pineda
– volume: 80
  start-page: 395
  year: 2008
  ident: D2CP01668K/cit54/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.395
  contributor:
    fullname: Bulla
– volume: 328
  start-page: 1370
  year: 2010
  ident: D2CP01668K/cit60/1
  publication-title: Science
  doi: 10.1126/science.1186874
  contributor:
    fullname: Parks
– volume: 288
  start-page: 475
  year: 2000
  ident: D2CP01668K/cit18/1
  publication-title: Science
  doi: 10.1126/science.288.5465.475
  contributor:
    fullname: Sachdev
– volume: 50
  start-page: 1395
  year: 1983
  ident: D2CP01668K/cit25/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1395
  contributor:
    fullname: Laughlin
– volume: 75
  start-page: 115313
  year: 2007
  ident: D2CP01668K/cit66/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.115313
  contributor:
    fullname: Kashcheyevs
– volume: 106
  start-page: 055701
  year: 2011
  ident: D2CP01668K/cit23/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.055701
  contributor:
    fullname: Rams
– volume: 99
  start-page: 076402
  year: 2007
  ident: D2CP01668K/cit58/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.076402
  contributor:
    fullname: Weichselbaum
– volume: 127
  start-page: 186805
  year: 2021
  ident: D2CP01668K/cit32/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.186805
  contributor:
    fullname: Lu
SSID ssj0001513
Score 2.4419014
Snippet The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 24
SubjectTerms Anisotropy
Data processing
Kondo effect
Magnetic anisotropy
Magnetic moments
Metal phthalocyanines
Metal surfaces
Phase transitions
Quantum phenomena
Zeeman effect
Title Correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition in a Kondo simulator
URI https://www.proquest.com/docview/2708393448
https://search.proquest.com/docview/2689672324
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QEuFa-KhYKM4BYFdm3HSY5VKFpaWO1hKyouK9tJaARNttnkQE_8B278PH4J49h5lPZQuESJEzu7ni_z8owHoVckFsT3lHCnPA1dJnzqSp8olwVywphU_qTZMv_jnM9O2NGpdzoa_RpELdWVfK0ub8wr-R-qQhvQVWfJ_gNlu0GhAc6BvnAECsPxVjSOdGkNE8zmiDzbFFVZrL87calZmHOs8zdKULMv24gGujwr6m_A29zG83pRw7TW5876DESZLhaRmwAu7QMR0D2PC2eTnesCX0U51GIXLXFVWy7OnOkm4yrZNK6GRRR16WOf4dVNQJ_Iv7izWmTXXNZHdQfUuXHLzgcBQ03UwackG7opwMK1fteOszJOXbDE7b7XwzZTI65lxyal2sLOOjotc9UcZyCp9XV4oxiYUL2L6lsSLUCj5cFxL-zaBf6_ZGAXmdisydNw1ffdQjsEmBhwz52Dw-X7D52cB12Jmtw188fazW9p-KbvfVXd6W2YrbItMNMoMst7aNdaIPjAwOk-GiX5A3Qnain5EKUDWOEeVtjACvew-v3j5xVAYQso3AAK94DCGQyEG0DhDlCP0Mm7w2U0c205DleBDli5jDHlEb3yG_vS4wlwf6q8MIlBgxQpjamvlD-lUgUEJChj3iQhU5p4MmXpVMA3v4e28yJPHiMMz3CeBpIoIXWkgJShTqrjSeBLKYNgjF62s7Zam11XVtcpM0b77YSu7Fe5WRHNXULKGAzyorsNM6gXwkSeFDU8w4OQ-9qWGKM9IET3jpiodTP21ye3-gVP0d0e6_touyrr5BkoqZV8btHyB4zJk38
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+anisotropy+driven+Kosterlitz%E2%80%93Thouless-type+quantum+phase+transition+in+a+Kondo+simulator&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Wang-Huai&rft.au=Zhang%2C+Jun&rft.au=Nan%2C+Nan&rft.au=Li%2C+Wei&rft.date=2022-08-31&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=34&rft.spage=20040&rft.epage=20049&rft_id=info:doi/10.1039%2FD2CP01668K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP01668K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon