Systematics of vibrational properties of Au nanoparticles: a molecular dynamics approach
This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N ) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D ( ω )...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 36; pp. 21833 - 2184 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (
N
) varying in the range 1985 ≤
N
≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by
D
(
ω
)
versus ω
function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the
D
(
ω
)
versus ω
relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna
Ab Initio
Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing
N
and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters
ω
D
(
j
) expressing averages of the
D
(
ω
)
versus ω
function are evaluated, and expressed as Debye temperatures
D
(
j
), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of
D
(
j
) corresponding to
j
= −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing
N
upon the
D
(
j
) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the
D
(
j
) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities
D
(0),
D
(1),
D
(2) and
D
(4) and
D
(3)
i.e.
, the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between
D
(3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented.
Debye temperatures
versus N
−1/3
for Au nanoparticles from the MD simulated VDOS using MEAM and EAM potentials. |
---|---|
AbstractList | This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (
N
) varying in the range 1985 ≤
N
≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by
D
(
ω
)
versus ω
function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the
D
(
ω
)
versus ω
relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna
Ab Initio
Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing
N
and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters
ω
D
(
j
) expressing averages of the
D
(
ω
)
versus ω
function are evaluated, and expressed as Debye temperatures
D
(
j
), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of
D
(
j
) corresponding to
j
= −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing
N
upon the
D
(
j
) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the
D
(
j
) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities
D
(0),
D
(1),
D
(2) and
D
(4) and
D
(3)
i.e.
, the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between
D
(3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented.
Debye temperatures
versus N
−1/3
for Au nanoparticles from the MD simulated VDOS using MEAM and EAM potentials. This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N ) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D ( ω ) versus ω function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the D ( ω ) versus ω relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna Ab Initio Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing N and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters ω D ( j ) expressing averages of the D ( ω ) versus ω function are evaluated, and expressed as Debye temperatures θ D ( j ), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of θ D ( j ) corresponding to j = −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing N upon the θ D ( j ) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the θ D ( j ) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities θ D (0), θ D (1), θ D (2) and θ D (4) and θ D (−3) i.e. , the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between θ D (−3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented. This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (N) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D(ω) versus ω function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the D(ω) versus ω relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna Ab Initio Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing N and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters ωD(j) expressing averages of the D(ω) versus ω function are evaluated, and expressed as Debye temperatures θD(j), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of θD(j) corresponding to j = −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing N upon the θD(j) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the θD(j) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities θD(0), θD(1), θD(2) and θD(4) and θD(−3) i.e., the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between θD(−3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented. |
Author | Fernández Guillermet, A Bertoldi, Dalía S |
AuthorAffiliation | CONICET - Instituto Balseiro, Centro Atómico Bariloche CONICET - Facultad de Ingeniería, Universidad Nacional de Cuyo |
AuthorAffiliation_xml | – name: CONICET - Instituto Balseiro, Centro Atómico Bariloche – name: CONICET - Facultad de Ingeniería, Universidad Nacional de Cuyo |
Author_xml | – sequence: 1 givenname: Dalía S surname: Bertoldi fullname: Bertoldi, Dalía S – sequence: 2 givenname: A surname: Fernández Guillermet fullname: Fernández Guillermet, A |
BookMark | eNpdkUlLw0AUgAepYFu9eBcCXkSIzpZJ4q3EFQoKKngLL5MXTEkycSYR-u-dtlLB09u-t8_IpDMdEnLK6BWjIr0uue4pl4mCAzJlUokwpYmc7PVYHZGZcytKKYuYmJKP17UbsIWh1i4wVfBdF9YbpoMm6K3p0Q41biOLMeigMz14j27Q3QQQtKZBPTZgg3LdQbupAb1PA_15TA4raBye_Mo5eb-_e8sew-Xzw1O2WIaaSzmEXKUlCCg1K2MNZRqBinWhUEkJVVmgUlIzZFAUgvHCeyJEP7mUqBBSCWJOLnZ1fduvEd2Qt7XT2DTQoRldzmOapixKOPXo-T90ZUbrN91QTEWCJ0J56nJHaWucs1jlva1bsOuc0Xxz5PyWZy_bIy88fLaDrdN77u8J4gcBNnx- |
CitedBy_id | crossref_primary_10_1007_s10853_023_09223_7 crossref_primary_10_3390_nano12213891 |
Cites_doi | 10.1039/D0CP04442C 10.1039/C4NR02185A 10.1103/PhysRevB.75.033404 10.1103/PhysRevB.45.13244 10.1103/PhysRevB.40.3616 10.1016/j.calphad.2020.102205 10.1016/j.jpcs.2017.08.010 10.1103/PhysRevB.87.014301 10.1103/PhysRevLett.79.937 10.1103/PhysRevB.57.898 10.1021/jp408976f 10.1080/13642819708202322 10.1039/C8NR07373B 10.1016/j.matchemphys.2009.02.008 10.1103/PhysRevB.46.2727 10.1006/jcph.1995.1039 10.1038/srep39164 10.1103/PhysRevB.33.7983 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.8.3493 10.1039/b502142c 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.48.22 10.1103/PhysRevB.34.2293 10.1142/S0219581X19500388 10.1016/j.jnoncrysol.2013.04.022 10.1134/S0031918X17060102 10.1103/PhysRevB.37.790 10.1021/jp510666v 10.1021/acs.accounts.8b00376 10.1103/PhysRevB.83.245416 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.40.1521 10.1103/PhysRevB.68.104303 10.1103/PhysRevLett.81.1453 10.1021/jp309499t 10.1016/j.ssc.2006.05.035 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.56.14330 10.1063/1.3253134 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cp02486a |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 2184 |
ExternalDocumentID | 10_1039_D2CP02486A d2cp02486a |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 1TJ 29O 4.4 705 70J 70~ 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GNO H13 HZ~ H~N IDZ J3G J3I N9A NHB O9- OK1 P2P R7B R7C RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT 53G AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AGEGJ AHGCF APEMP CITATION GGIMP M4U RAOCF RIG 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c244t-269da3adc1d7cad95a67cb6e644afdbe664c1e1abb312bfdb5ee15144e6ea94a3 |
ISSN | 1463-9076 |
IngestDate | Sat Oct 05 04:19:42 EDT 2024 Thu Oct 10 15:58:40 EDT 2024 Thu Sep 12 19:40:00 EDT 2024 Fri Sep 23 04:21:16 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c244t-269da3adc1d7cad95a67cb6e644afdbe664c1e1abb312bfdb5ee15144e6ea94a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0900-7842 |
PQID | 2716532836 |
PQPubID | 2047499 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D2CP02486A rsc_primary_d2cp02486a proquest_journals_2716532836 proquest_miscellaneous_2709915820 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-21 |
PublicationDateYYYYMMDD | 2022-09-21 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Carles (D2CP02486A/cit2/1) 2016; 6 Ghuman (D2CP02486A/cit20/1) 2013; 373 Zhao (D2CP02486A/cit39/1) 1997; 56 Meyer (D2CP02486A/cit18/1) 2003; 68 Qu (D2CP02486A/cit41/1) 2017; 118 Foiles (D2CP02486A/cit15/1) 1986; 33 Chakraborty (D2CP02486A/cit17/1) 2018; 10 Sauceda (D2CP02486A/cit4/1) 2012; 116 Vishwanathan (D2CP02486A/cit8/1) 2017; 6 Ho (D2CP02486A/cit36/1) 1974; 3 Sauceda (D2CP02486A/cit6/1) 2015; 119 Kara (D2CP02486A/cit31/1) 1998; 81 Moruzzi (D2CP02486A/cit45/1) 1988; 37 Das (D2CP02486A/cit10/1) 2020; 19 Nieto-Ortega (D2CP02486A/cit9/1) 2018; 51 Cleri (D2CP02486A/cit30/1) 1993; 48 Bertoldi (D2CP02486A/cit13/1) 2017; 111 Sadaiyandi (D2CP02486A/cit37/1) 2009; 115 Methfessel (D2CP02486A/cit27/1) 1989; 40 Baskes (D2CP02486A/cit16/1) 1992; 46 Perdew (D2CP02486A/cit25/1) 1992; 45 Fultz (D2CP02486A/cit34/1) 1997; 79 Kittel (D2CP02486A/cit32/1) 1976 Frase (D2CP02486A/cit35/1) 1998; 57 Gschneidner Jr (D2CP02486A/cit46/1) 1964 Balerna (D2CP02486A/cit40/1) 1986; 34 Roduner (D2CP02486A/cit44/1) 2006; 35 Grimvall (D2CP02486A/cit11/1) 1999 Lynn (D2CP02486A/cit29/1) 1973; 8 Munoz (D2CP02486A/cit28/1) 2013; 87 Sopu (D2CP02486A/cit19/1) 2011; 83 Togo (D2CP02486A/cit24/1) 2015; 108 Fernández Guillermet (D2CP02486A/cit42/1) 1989; 40 Monkhorst (D2CP02486A/cit26/1) 1976; 13 Yang (D2CP02486A/cit38/1) 2006; 139 Plimpton (D2CP02486A/cit14/1) 1995; 117 Frase (D2CP02486A/cit33/1) 1997; 75 Chui (D2CP02486A/cit3/1) 2007; 75 Kresse (D2CP02486A/cit23/1) 1996; 6 Bertoldi (D2CP02486A/cit12/1) 2021; 23 Sauceda (D2CP02486A/cit5/1) 2013; 117 Kresse (D2CP02486A/cit22/1) 1999; 59 Blöchl (D2CP02486A/cit21/1) 1994; 50 Bayle (D2CP02486A/cit1/1) 2014; 6 Bertoldi (D2CP02486A/cit43/1) 2020; 71 Vishwanathan (D2CP02486A/cit7/1) 2016; 6 |
References_xml | – issn: 1999 publication-title: Thermophysical Properties of Materials doi: Grimvall – issn: 1976 publication-title: Introduction to Solid State Physics doi: Kittel – issn: 1964 end-page: p 275-426 publication-title: Solid State Physics doi: Gschneidner Jr – volume: 23 start-page: 1298 year: 2021 ident: D2CP02486A/cit12/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04442C contributor: fullname: Bertoldi – volume: 6 start-page: 9157 year: 2014 ident: D2CP02486A/cit1/1 publication-title: Nanoscale doi: 10.1039/C4NR02185A contributor: fullname: Bayle – volume: 75 start-page: 033404 year: 2007 ident: D2CP02486A/cit3/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.033404 contributor: fullname: Chui – volume: 45 start-page: 13244 year: 1992 ident: D2CP02486A/cit25/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.45.13244 contributor: fullname: Perdew – volume: 40 start-page: 3616 year: 1989 ident: D2CP02486A/cit27/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.40.3616 contributor: fullname: Methfessel – volume: 71 start-page: 102205 year: 2020 ident: D2CP02486A/cit43/1 publication-title: Calphad doi: 10.1016/j.calphad.2020.102205 contributor: fullname: Bertoldi – volume: 111 start-page: 286 year: 2017 ident: D2CP02486A/cit13/1 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2017.08.010 contributor: fullname: Bertoldi – volume: 87 start-page: 014301 year: 2013 ident: D2CP02486A/cit28/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.014301 contributor: fullname: Munoz – volume: 79 start-page: 937 year: 1997 ident: D2CP02486A/cit34/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.937 contributor: fullname: Fultz – volume: 57 start-page: 898 year: 1998 ident: D2CP02486A/cit35/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.898 contributor: fullname: Frase – volume: 117 start-page: 25160 year: 2013 ident: D2CP02486A/cit5/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp408976f contributor: fullname: Sauceda – volume: 75 start-page: 335 year: 1997 ident: D2CP02486A/cit33/1 publication-title: Philos. Mag. B doi: 10.1080/13642819708202322 contributor: fullname: Frase – volume: 10 start-page: 22148 year: 2018 ident: D2CP02486A/cit17/1 publication-title: Nanoscale doi: 10.1039/C8NR07373B contributor: fullname: Chakraborty – volume: 115 start-page: 703 year: 2009 ident: D2CP02486A/cit37/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.02.008 contributor: fullname: Sadaiyandi – volume: 46 start-page: 2727 year: 1992 ident: D2CP02486A/cit16/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.46.2727 contributor: fullname: Baskes – volume: 117 start-page: 1 year: 1995 ident: D2CP02486A/cit14/1 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 contributor: fullname: Plimpton – volume: 6 start-page: 1 year: 2016 ident: D2CP02486A/cit2/1 publication-title: Sci. Rep. doi: 10.1038/srep39164 contributor: fullname: Carles – volume: 33 start-page: 7983 year: 1986 ident: D2CP02486A/cit15/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.33.7983 contributor: fullname: Foiles – volume: 108 start-page: 1 year: 2015 ident: D2CP02486A/cit24/1 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 contributor: fullname: Togo – volume: 59 start-page: 1758 year: 1999 ident: D2CP02486A/cit22/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 contributor: fullname: Kresse – volume: 8 start-page: 3493 year: 1973 ident: D2CP02486A/cit29/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.8.3493 contributor: fullname: Lynn – volume: 35 start-page: 583 year: 2006 ident: D2CP02486A/cit44/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b502142c contributor: fullname: Roduner – volume: 50 start-page: 17953 year: 1994 ident: D2CP02486A/cit21/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 contributor: fullname: Blöchl – volume-title: Introduction to Solid State Physics year: 1976 ident: D2CP02486A/cit32/1 contributor: fullname: Kittel – volume: 48 start-page: 22 year: 1993 ident: D2CP02486A/cit30/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.48.22 contributor: fullname: Cleri – volume: 34 start-page: 2293 year: 1986 ident: D2CP02486A/cit40/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.34.2293 contributor: fullname: Balerna – volume: 19 start-page: 1950038 year: 2020 ident: D2CP02486A/cit10/1 publication-title: Int. J. Nanosci. doi: 10.1142/S0219581X19500388 contributor: fullname: Das – volume: 373 start-page: 28 year: 2013 ident: D2CP02486A/cit20/1 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.04.022 contributor: fullname: Ghuman – volume: 118 start-page: 528 year: 2017 ident: D2CP02486A/cit41/1 publication-title: Phys. Met. Metall. doi: 10.1134/S0031918X17060102 contributor: fullname: Qu – volume: 37 start-page: 790 year: 1988 ident: D2CP02486A/cit45/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.790 contributor: fullname: Moruzzi – volume: 119 start-page: 10876 year: 2015 ident: D2CP02486A/cit6/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp510666v contributor: fullname: Sauceda – volume: 6 start-page: 325 year: 2017 ident: D2CP02486A/cit8/1 publication-title: J. Mater. Sci. Eng. contributor: fullname: Vishwanathan – volume: 51 start-page: 2811 year: 2018 ident: D2CP02486A/cit9/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00376 contributor: fullname: Nieto-Ortega – volume: 83 start-page: 245416 year: 2011 ident: D2CP02486A/cit19/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.245416 contributor: fullname: Sopu – volume: 13 start-page: 5188 year: 1976 ident: D2CP02486A/cit26/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 contributor: fullname: Monkhorst – start-page: 275 volume-title: Solid State Physics year: 1964 ident: D2CP02486A/cit46/1 contributor: fullname: Gschneidner Jr – volume: 40 start-page: 1521 year: 1989 ident: D2CP02486A/cit42/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.40.1521 contributor: fullname: Fernández Guillermet – volume: 68 start-page: 104303 year: 2003 ident: D2CP02486A/cit18/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.104303 contributor: fullname: Meyer – volume: 81 start-page: 1453 year: 1998 ident: D2CP02486A/cit31/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.1453 contributor: fullname: Kara – volume: 6 start-page: 1000232 year: 2016 ident: D2CP02486A/cit7/1 publication-title: J. Phys. Chem. Biophys. contributor: fullname: Vishwanathan – volume: 116 start-page: 25147 year: 2012 ident: D2CP02486A/cit4/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp309499t contributor: fullname: Sauceda – volume: 139 start-page: 148 year: 2006 ident: D2CP02486A/cit38/1 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2006.05.035 contributor: fullname: Yang – volume: 6 start-page: 15 year: 1996 ident: D2CP02486A/cit23/1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: Kresse – volume-title: Thermophysical Properties of Materials year: 1999 ident: D2CP02486A/cit11/1 contributor: fullname: Grimvall – volume: 56 start-page: 14330 year: 1997 ident: D2CP02486A/cit39/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.56.14330 contributor: fullname: Zhao – volume: 3 start-page: 1 year: 1974 ident: D2CP02486A/cit36/1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.3253134 contributor: fullname: Ho |
SSID | ssj0001513 |
Score | 2.4509344 |
Snippet | This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (
N
)... This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (N)... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 21833 |
SubjectTerms | Atomic properties Debye temperature Gold Mathematical analysis Molecular dynamics Nanoparticles Thermodynamic properties Vibration mode |
Title | Systematics of vibrational properties of Au nanoparticles: a molecular dynamics approach |
URI | https://www.proquest.com/docview/2716532836 https://search.proquest.com/docview/2709915820 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4AL4lWxUJAR3FaBJE68NbeQblXQqqxEVtpbNI6dU5td7aOH_nrGdpxkpR4KlyhyXtJ8zvibGc8MIV80JLVKeBzUXMsAV3wIQNRVwIRM01qkUrgNstf8apH8WqbLvr2VzS7Zya_V_YN5Jf-DKo4hriZL9h-Q7V6KA3iO-OIREcbjozD-05Vhthsy7ozp2_r21sbJvjHVUi3X3I8baNA-HmyDg_Gtb407Vq4v_bYrMT7krHMPZeWbw7kzM-QcI1vrWJjneZcs9gO_beJabtv8jQ3HX8B4wDw3jR2MjA8bJ6pNSbx1kZFs6IpAK9ZEZ9zM0E59JpwFInRN37x-dTnS7Txih9ry3FXBaJdea24-qNdDZsqiqrhamxpsfLB6-Yj99e_ycjGblcV0WRyRkxj1Diq8k2xa_Jx1SzPSG-Zr1DLxrX_fISvpTY2jje8DY_lG8YI8bw0FmjnEXpInunlFnuYegtdkOUCfrmo6QJ_26Jsr2Z4eoP-dAu2wpx576rF_QxaX0yK_Cto-GUGF5GwXxFwoYKCqSE0qUCIFPqkk10h1oVZSc55UkY5AShbFEkdSrVESSaK5BpEAOyXHzarRbwkNVQKooyfAGCQyjM4lhKaxVCqlYrGQI_LZy6lcu3Iopd3GwER5EedzK81sRM68CMv2d9mWMVrmKUM2y0fkU3cZZWYiVNDo1d7cgwZLlCIrHZFTFH33jR6pd494-D151k_PM3K82-z1B-SOO_mxnRF_AZMpddM |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematics+of+vibrational+properties+of+Au+nanoparticles%3A+a+molecular+dynamics+approach&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Bertoldi%2C+Dal%C3%ADa+S&rft.au=Fern%C3%A1ndez+Guillermet%2C+A&rft.date=2022-09-21&rft.eissn=1463-9084&rft.volume=24&rft.issue=36&rft.spage=21833&rft.epage=21840&rft_id=info:doi/10.1039%2Fd2cp02486a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |