Systematics of vibrational properties of Au nanoparticles: a molecular dynamics approach

This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N ) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D ( ω )...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 36; pp. 21833 - 2184
Main Authors Bertoldi, Dalía S, Fernández Guillermet, A
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N ) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D ( ω ) versus ω function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the D ( ω ) versus ω relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna Ab Initio Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing N and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters ω D ( j ) expressing averages of the D ( ω ) versus ω function are evaluated, and expressed as Debye temperatures D ( j ), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of D ( j ) corresponding to j = −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing N upon the D ( j ) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the D ( j ) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities D (0), D (1), D (2) and D (4) and D (3) i.e. , the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between D (3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented. Debye temperatures versus N −1/3 for Au nanoparticles from the MD simulated VDOS using MEAM and EAM potentials.
AbstractList This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N ) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D ( ω ) versus ω function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the D ( ω ) versus ω relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna Ab Initio Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing N and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters ω D ( j ) expressing averages of the D ( ω ) versus ω function are evaluated, and expressed as Debye temperatures D ( j ), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of D ( j ) corresponding to j = −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing N upon the D ( j ) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the D ( j ) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities D (0), D (1), D (2) and D (4) and D (3) i.e. , the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between D (3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented. Debye temperatures versus N −1/3 for Au nanoparticles from the MD simulated VDOS using MEAM and EAM potentials.
This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N ) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D ( ω ) versus ω function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the D ( ω ) versus ω relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna Ab Initio Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing N and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters ω D ( j ) expressing averages of the D ( ω ) versus ω function are evaluated, and expressed as Debye temperatures θ D ( j ), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of θ D ( j ) corresponding to j = −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing N upon the θ D ( j ) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the θ D ( j ) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities θ D (0), θ D (1), θ D (2) and θ D (4) and θ D (−3) i.e. , the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between θ D (−3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented.
This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (N) varying in the range 1985 ≤ N ≤ 53 117. The LAMMPS code is adopted to calculate the vibrational density of states (VDOS), represented by D(ω) versus ω function. Two interatomic potentials, an EAM and a MEAM are used. The first part of the work is devoted to the D(ω) versus ω relation of macroscopic Au, which is obtained by MD simulations as well as by a density-functional-theory calculation using the Vienna Ab Initio Simulation Package and the PHONOPY code. Additional experimental and theoretical results on the VDOS of Au are used to compare with the present results. Next, the effect of changing N and the interatomic potential upon the VDOS of the nanoparticles is established. In particular, the effect of the surface vibrational modes upon the results is discussed. Various moment frequency parameters ωD(j) expressing averages of the D(ω) versus ω function are evaluated, and expressed as Debye temperatures θD(j), using standard relations. Attending to the relevance of these quantities in the description of the thermodynamic properties of macroscopic solids, values of θD(j) corresponding to j = −3, 0, 1, 2 and 4 are reported. On this basis, a picture of the systematic effects of changing N upon the θD(j) values is established both for the EAM and the MEAM potential. In addition, various interrelations between the θD(j) values for nanoparticles are presented. In particular, remarkably simple correlations are reported between the average quantities θD(0), θD(1), θD(2) and θD(4) and θD(−3) i.e., the Debye temperature which accounts for the low-frequency part of the spectrum. Finally, a discussion is reported of the relation between θD(−3) and other properties that are usually adopted as a measure of cohesion in macroscopic solids. To this aim, new correlations involving the nanoscopic counterpart of the temperature of fusion of macroscopic elements as well as the cohesive energy for Au nanoparticles are presented.
Author Fernández Guillermet, A
Bertoldi, Dalía S
AuthorAffiliation CONICET - Instituto Balseiro, Centro Atómico Bariloche
CONICET - Facultad de Ingeniería, Universidad Nacional de Cuyo
AuthorAffiliation_xml – name: CONICET - Instituto Balseiro, Centro Atómico Bariloche
– name: CONICET - Facultad de Ingeniería, Universidad Nacional de Cuyo
Author_xml – sequence: 1
  givenname: Dalía S
  surname: Bertoldi
  fullname: Bertoldi, Dalía S
– sequence: 2
  givenname: A
  surname: Fernández Guillermet
  fullname: Fernández Guillermet, A
BookMark eNpdkUlLw0AUgAepYFu9eBcCXkSIzpZJ4q3EFQoKKngLL5MXTEkycSYR-u-dtlLB09u-t8_IpDMdEnLK6BWjIr0uue4pl4mCAzJlUokwpYmc7PVYHZGZcytKKYuYmJKP17UbsIWh1i4wVfBdF9YbpoMm6K3p0Q41biOLMeigMz14j27Q3QQQtKZBPTZgg3LdQbupAb1PA_15TA4raBye_Mo5eb-_e8sew-Xzw1O2WIaaSzmEXKUlCCg1K2MNZRqBinWhUEkJVVmgUlIzZFAUgvHCeyJEP7mUqBBSCWJOLnZ1fduvEd2Qt7XT2DTQoRldzmOapixKOPXo-T90ZUbrN91QTEWCJ0J56nJHaWucs1jlva1bsOuc0Xxz5PyWZy_bIy88fLaDrdN77u8J4gcBNnx-
CitedBy_id crossref_primary_10_1007_s10853_023_09223_7
crossref_primary_10_3390_nano12213891
Cites_doi 10.1039/D0CP04442C
10.1039/C4NR02185A
10.1103/PhysRevB.75.033404
10.1103/PhysRevB.45.13244
10.1103/PhysRevB.40.3616
10.1016/j.calphad.2020.102205
10.1016/j.jpcs.2017.08.010
10.1103/PhysRevB.87.014301
10.1103/PhysRevLett.79.937
10.1103/PhysRevB.57.898
10.1021/jp408976f
10.1080/13642819708202322
10.1039/C8NR07373B
10.1016/j.matchemphys.2009.02.008
10.1103/PhysRevB.46.2727
10.1006/jcph.1995.1039
10.1038/srep39164
10.1103/PhysRevB.33.7983
10.1016/j.scriptamat.2015.07.021
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.8.3493
10.1039/b502142c
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.48.22
10.1103/PhysRevB.34.2293
10.1142/S0219581X19500388
10.1016/j.jnoncrysol.2013.04.022
10.1134/S0031918X17060102
10.1103/PhysRevB.37.790
10.1021/jp510666v
10.1021/acs.accounts.8b00376
10.1103/PhysRevB.83.245416
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.40.1521
10.1103/PhysRevB.68.104303
10.1103/PhysRevLett.81.1453
10.1021/jp309499t
10.1016/j.ssc.2006.05.035
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.56.14330
10.1063/1.3253134
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cp02486a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 2184
ExternalDocumentID 10_1039_D2CP02486A
d2cp02486a
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
1TJ
29O
4.4
705
70J
70~
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
53G
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
M4U
RAOCF
RIG
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c244t-269da3adc1d7cad95a67cb6e644afdbe664c1e1abb312bfdb5ee15144e6ea94a3
ISSN 1463-9076
IngestDate Sat Oct 05 04:19:42 EDT 2024
Thu Oct 10 15:58:40 EDT 2024
Thu Sep 12 19:40:00 EDT 2024
Fri Sep 23 04:21:16 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c244t-269da3adc1d7cad95a67cb6e644afdbe664c1e1abb312bfdb5ee15144e6ea94a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0900-7842
PQID 2716532836
PQPubID 2047499
PageCount 8
ParticipantIDs crossref_primary_10_1039_D2CP02486A
rsc_primary_d2cp02486a
proquest_journals_2716532836
proquest_miscellaneous_2709915820
PublicationCentury 2000
PublicationDate 2022-09-21
PublicationDateYYYYMMDD 2022-09-21
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Carles (D2CP02486A/cit2/1) 2016; 6
Ghuman (D2CP02486A/cit20/1) 2013; 373
Zhao (D2CP02486A/cit39/1) 1997; 56
Meyer (D2CP02486A/cit18/1) 2003; 68
Qu (D2CP02486A/cit41/1) 2017; 118
Foiles (D2CP02486A/cit15/1) 1986; 33
Chakraborty (D2CP02486A/cit17/1) 2018; 10
Sauceda (D2CP02486A/cit4/1) 2012; 116
Vishwanathan (D2CP02486A/cit8/1) 2017; 6
Ho (D2CP02486A/cit36/1) 1974; 3
Sauceda (D2CP02486A/cit6/1) 2015; 119
Kara (D2CP02486A/cit31/1) 1998; 81
Moruzzi (D2CP02486A/cit45/1) 1988; 37
Das (D2CP02486A/cit10/1) 2020; 19
Nieto-Ortega (D2CP02486A/cit9/1) 2018; 51
Cleri (D2CP02486A/cit30/1) 1993; 48
Bertoldi (D2CP02486A/cit13/1) 2017; 111
Sadaiyandi (D2CP02486A/cit37/1) 2009; 115
Methfessel (D2CP02486A/cit27/1) 1989; 40
Baskes (D2CP02486A/cit16/1) 1992; 46
Perdew (D2CP02486A/cit25/1) 1992; 45
Fultz (D2CP02486A/cit34/1) 1997; 79
Kittel (D2CP02486A/cit32/1) 1976
Frase (D2CP02486A/cit35/1) 1998; 57
Gschneidner Jr (D2CP02486A/cit46/1) 1964
Balerna (D2CP02486A/cit40/1) 1986; 34
Roduner (D2CP02486A/cit44/1) 2006; 35
Grimvall (D2CP02486A/cit11/1) 1999
Lynn (D2CP02486A/cit29/1) 1973; 8
Munoz (D2CP02486A/cit28/1) 2013; 87
Sopu (D2CP02486A/cit19/1) 2011; 83
Togo (D2CP02486A/cit24/1) 2015; 108
Fernández Guillermet (D2CP02486A/cit42/1) 1989; 40
Monkhorst (D2CP02486A/cit26/1) 1976; 13
Yang (D2CP02486A/cit38/1) 2006; 139
Plimpton (D2CP02486A/cit14/1) 1995; 117
Frase (D2CP02486A/cit33/1) 1997; 75
Chui (D2CP02486A/cit3/1) 2007; 75
Kresse (D2CP02486A/cit23/1) 1996; 6
Bertoldi (D2CP02486A/cit12/1) 2021; 23
Sauceda (D2CP02486A/cit5/1) 2013; 117
Kresse (D2CP02486A/cit22/1) 1999; 59
Blöchl (D2CP02486A/cit21/1) 1994; 50
Bayle (D2CP02486A/cit1/1) 2014; 6
Bertoldi (D2CP02486A/cit43/1) 2020; 71
Vishwanathan (D2CP02486A/cit7/1) 2016; 6
References_xml – issn: 1999
  publication-title: Thermophysical Properties of Materials
  doi: Grimvall
– issn: 1976
  publication-title: Introduction to Solid State Physics
  doi: Kittel
– issn: 1964
  end-page: p 275-426
  publication-title: Solid State Physics
  doi: Gschneidner Jr
– volume: 23
  start-page: 1298
  year: 2021
  ident: D2CP02486A/cit12/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04442C
  contributor:
    fullname: Bertoldi
– volume: 6
  start-page: 9157
  year: 2014
  ident: D2CP02486A/cit1/1
  publication-title: Nanoscale
  doi: 10.1039/C4NR02185A
  contributor:
    fullname: Bayle
– volume: 75
  start-page: 033404
  year: 2007
  ident: D2CP02486A/cit3/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.033404
  contributor:
    fullname: Chui
– volume: 45
  start-page: 13244
  year: 1992
  ident: D2CP02486A/cit25/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.45.13244
  contributor:
    fullname: Perdew
– volume: 40
  start-page: 3616
  year: 1989
  ident: D2CP02486A/cit27/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.40.3616
  contributor:
    fullname: Methfessel
– volume: 71
  start-page: 102205
  year: 2020
  ident: D2CP02486A/cit43/1
  publication-title: Calphad
  doi: 10.1016/j.calphad.2020.102205
  contributor:
    fullname: Bertoldi
– volume: 111
  start-page: 286
  year: 2017
  ident: D2CP02486A/cit13/1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.08.010
  contributor:
    fullname: Bertoldi
– volume: 87
  start-page: 014301
  year: 2013
  ident: D2CP02486A/cit28/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.014301
  contributor:
    fullname: Munoz
– volume: 79
  start-page: 937
  year: 1997
  ident: D2CP02486A/cit34/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.937
  contributor:
    fullname: Fultz
– volume: 57
  start-page: 898
  year: 1998
  ident: D2CP02486A/cit35/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.898
  contributor:
    fullname: Frase
– volume: 117
  start-page: 25160
  year: 2013
  ident: D2CP02486A/cit5/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408976f
  contributor:
    fullname: Sauceda
– volume: 75
  start-page: 335
  year: 1997
  ident: D2CP02486A/cit33/1
  publication-title: Philos. Mag. B
  doi: 10.1080/13642819708202322
  contributor:
    fullname: Frase
– volume: 10
  start-page: 22148
  year: 2018
  ident: D2CP02486A/cit17/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR07373B
  contributor:
    fullname: Chakraborty
– volume: 115
  start-page: 703
  year: 2009
  ident: D2CP02486A/cit37/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2009.02.008
  contributor:
    fullname: Sadaiyandi
– volume: 46
  start-page: 2727
  year: 1992
  ident: D2CP02486A/cit16/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.46.2727
  contributor:
    fullname: Baskes
– volume: 117
  start-page: 1
  year: 1995
  ident: D2CP02486A/cit14/1
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
  contributor:
    fullname: Plimpton
– volume: 6
  start-page: 1
  year: 2016
  ident: D2CP02486A/cit2/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep39164
  contributor:
    fullname: Carles
– volume: 33
  start-page: 7983
  year: 1986
  ident: D2CP02486A/cit15/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.33.7983
  contributor:
    fullname: Foiles
– volume: 108
  start-page: 1
  year: 2015
  ident: D2CP02486A/cit24/1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
  contributor:
    fullname: Togo
– volume: 59
  start-page: 1758
  year: 1999
  ident: D2CP02486A/cit22/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: Kresse
– volume: 8
  start-page: 3493
  year: 1973
  ident: D2CP02486A/cit29/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.8.3493
  contributor:
    fullname: Lynn
– volume: 35
  start-page: 583
  year: 2006
  ident: D2CP02486A/cit44/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b502142c
  contributor:
    fullname: Roduner
– volume: 50
  start-page: 17953
  year: 1994
  ident: D2CP02486A/cit21/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume-title: Introduction to Solid State Physics
  year: 1976
  ident: D2CP02486A/cit32/1
  contributor:
    fullname: Kittel
– volume: 48
  start-page: 22
  year: 1993
  ident: D2CP02486A/cit30/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.48.22
  contributor:
    fullname: Cleri
– volume: 34
  start-page: 2293
  year: 1986
  ident: D2CP02486A/cit40/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.34.2293
  contributor:
    fullname: Balerna
– volume: 19
  start-page: 1950038
  year: 2020
  ident: D2CP02486A/cit10/1
  publication-title: Int. J. Nanosci.
  doi: 10.1142/S0219581X19500388
  contributor:
    fullname: Das
– volume: 373
  start-page: 28
  year: 2013
  ident: D2CP02486A/cit20/1
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.04.022
  contributor:
    fullname: Ghuman
– volume: 118
  start-page: 528
  year: 2017
  ident: D2CP02486A/cit41/1
  publication-title: Phys. Met. Metall.
  doi: 10.1134/S0031918X17060102
  contributor:
    fullname: Qu
– volume: 37
  start-page: 790
  year: 1988
  ident: D2CP02486A/cit45/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.790
  contributor:
    fullname: Moruzzi
– volume: 119
  start-page: 10876
  year: 2015
  ident: D2CP02486A/cit6/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510666v
  contributor:
    fullname: Sauceda
– volume: 6
  start-page: 325
  year: 2017
  ident: D2CP02486A/cit8/1
  publication-title: J. Mater. Sci. Eng.
  contributor:
    fullname: Vishwanathan
– volume: 51
  start-page: 2811
  year: 2018
  ident: D2CP02486A/cit9/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00376
  contributor:
    fullname: Nieto-Ortega
– volume: 83
  start-page: 245416
  year: 2011
  ident: D2CP02486A/cit19/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.245416
  contributor:
    fullname: Sopu
– volume: 13
  start-page: 5188
  year: 1976
  ident: D2CP02486A/cit26/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
  contributor:
    fullname: Monkhorst
– start-page: 275
  volume-title: Solid State Physics
  year: 1964
  ident: D2CP02486A/cit46/1
  contributor:
    fullname: Gschneidner Jr
– volume: 40
  start-page: 1521
  year: 1989
  ident: D2CP02486A/cit42/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.40.1521
  contributor:
    fullname: Fernández Guillermet
– volume: 68
  start-page: 104303
  year: 2003
  ident: D2CP02486A/cit18/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.104303
  contributor:
    fullname: Meyer
– volume: 81
  start-page: 1453
  year: 1998
  ident: D2CP02486A/cit31/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1453
  contributor:
    fullname: Kara
– volume: 6
  start-page: 1000232
  year: 2016
  ident: D2CP02486A/cit7/1
  publication-title: J. Phys. Chem. Biophys.
  contributor:
    fullname: Vishwanathan
– volume: 116
  start-page: 25147
  year: 2012
  ident: D2CP02486A/cit4/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp309499t
  contributor:
    fullname: Sauceda
– volume: 139
  start-page: 148
  year: 2006
  ident: D2CP02486A/cit38/1
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2006.05.035
  contributor:
    fullname: Yang
– volume: 6
  start-page: 15
  year: 1996
  ident: D2CP02486A/cit23/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: Kresse
– volume-title: Thermophysical Properties of Materials
  year: 1999
  ident: D2CP02486A/cit11/1
  contributor:
    fullname: Grimvall
– volume: 56
  start-page: 14330
  year: 1997
  ident: D2CP02486A/cit39/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.56.14330
  contributor:
    fullname: Zhao
– volume: 3
  start-page: 1
  year: 1974
  ident: D2CP02486A/cit36/1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.3253134
  contributor:
    fullname: Ho
SSID ssj0001513
Score 2.4509344
Snippet This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms ( N )...
This paper reports the results of a Molecular Dynamics (MD) study of the vibrational properties of spherical Au nanoparticles with a number of atoms (N)...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 21833
SubjectTerms Atomic properties
Debye temperature
Gold
Mathematical analysis
Molecular dynamics
Nanoparticles
Thermodynamic properties
Vibration mode
Title Systematics of vibrational properties of Au nanoparticles: a molecular dynamics approach
URI https://www.proquest.com/docview/2716532836
https://search.proquest.com/docview/2709915820
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4AL4lWxUJAR3FaBJE68NbeQblXQqqxEVtpbNI6dU5td7aOH_nrGdpxkpR4KlyhyXtJ8zvibGc8MIV80JLVKeBzUXMsAV3wIQNRVwIRM01qkUrgNstf8apH8WqbLvr2VzS7Zya_V_YN5Jf-DKo4hriZL9h-Q7V6KA3iO-OIREcbjozD-05Vhthsy7ozp2_r21sbJvjHVUi3X3I8baNA-HmyDg_Gtb407Vq4v_bYrMT7krHMPZeWbw7kzM-QcI1vrWJjneZcs9gO_beJabtv8jQ3HX8B4wDw3jR2MjA8bJ6pNSbx1kZFs6IpAK9ZEZ9zM0E59JpwFInRN37x-dTnS7Txih9ry3FXBaJdea24-qNdDZsqiqrhamxpsfLB6-Yj99e_ycjGblcV0WRyRkxj1Diq8k2xa_Jx1SzPSG-Zr1DLxrX_fISvpTY2jje8DY_lG8YI8bw0FmjnEXpInunlFnuYegtdkOUCfrmo6QJ_26Jsr2Z4eoP-dAu2wpx576rF_QxaX0yK_Cto-GUGF5GwXxFwoYKCqSE0qUCIFPqkk10h1oVZSc55UkY5AShbFEkdSrVESSaK5BpEAOyXHzarRbwkNVQKooyfAGCQyjM4lhKaxVCqlYrGQI_LZy6lcu3Iopd3GwER5EedzK81sRM68CMv2d9mWMVrmKUM2y0fkU3cZZWYiVNDo1d7cgwZLlCIrHZFTFH33jR6pd494-D151k_PM3K82-z1B-SOO_mxnRF_AZMpddM
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematics+of+vibrational+properties+of+Au+nanoparticles%3A+a+molecular+dynamics+approach&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Bertoldi%2C+Dal%C3%ADa+S&rft.au=Fern%C3%A1ndez+Guillermet%2C+A&rft.date=2022-09-21&rft.eissn=1463-9084&rft.volume=24&rft.issue=36&rft.spage=21833&rft.epage=21840&rft_id=info:doi/10.1039%2Fd2cp02486a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon