Ultra-fast computation of fractal dimension for RGB images

The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature extraction, object recognition, texture analysis, and image compression and denoising, among many others. A variety of algorithms have been prev...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 1
Main Authors Ruiz de Miras, Juan, Li, Yurong, León, Alejandro, Arroyo, Germán, López, Luis, Torres, Juan Carlos, Martín, Domingo
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-025-01415-y

Cover

Loading…
Abstract The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature extraction, object recognition, texture analysis, and image compression and denoising, among many others. A variety of algorithms have been previously proposed for estimating the FD, however most of them are limited to binary or gray-scale images only. In recent years, several authors have proposed algorithms for computing the FD of color images. Nevertheless, almost all these methods are computationally inefficient when analyzing large images. Nowadays, color images can be very large in size, and there is a growing trend toward even larger datasets. This implies that the time required to calculate the FD of such datasets can become extremely long. In this paper we present a very efficient GPU algorithm, implemented in CUDA, for computing the FD of RGB color images. Our solution is an extension to RGB of the differential box-counting (DBC) algorithm for gray-scale images. Our implementation simplifies the box-counting computation to very simple operations which are easily combined across iterations. We evaluated our algorithm on two distinct hardware/software platforms using a set of images of increasing size. The performance of our method was compared against two recent FD algorithms for RGB images: a fast box-merging GPU algorithm, and the most advanced approach based on extending the DBC method. The results showed that our GPU algorithm performed very well and achieved speedups of up to 7.9× and 6172.6× regarding these algorithms, respectively. In addition, our algorithm achieved average error rates similar to those obtained by the two reference algorithms when estimating the FD for synthetic images with known FD values, and even outperformed them when processing large images. These results suggest that our GPU algorithm offers a highly reliable and ultra-fast solution for estimating the FD of color images.
AbstractList The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature extraction, object recognition, texture analysis, and image compression and denoising, among many others. A variety of algorithms have been previously proposed for estimating the FD, however most of them are limited to binary or gray-scale images only. In recent years, several authors have proposed algorithms for computing the FD of color images. Nevertheless, almost all these methods are computationally inefficient when analyzing large images. Nowadays, color images can be very large in size, and there is a growing trend toward even larger datasets. This implies that the time required to calculate the FD of such datasets can become extremely long. In this paper we present a very efficient GPU algorithm, implemented in CUDA, for computing the FD of RGB color images. Our solution is an extension to RGB of the differential box-counting (DBC) algorithm for gray-scale images. Our implementation simplifies the box-counting computation to very simple operations which are easily combined across iterations. We evaluated our algorithm on two distinct hardware/software platforms using a set of images of increasing size. The performance of our method was compared against two recent FD algorithms for RGB images: a fast box-merging GPU algorithm, and the most advanced approach based on extending the DBC method. The results showed that our GPU algorithm performed very well and achieved speedups of up to 7.9× and 6172.6× regarding these algorithms, respectively. In addition, our algorithm achieved average error rates similar to those obtained by the two reference algorithms when estimating the FD for synthetic images with known FD values, and even outperformed them when processing large images. These results suggest that our GPU algorithm offers a highly reliable and ultra-fast solution for estimating the FD of color images.
ArticleNumber 36
Author Martín, Domingo
López, Luis
Ruiz de Miras, Juan
Torres, Juan Carlos
Arroyo, Germán
León, Alejandro
Li, Yurong
Author_xml – sequence: 1
  givenname: Juan
  orcidid: 0000-0001-7579-8350
  surname: Ruiz de Miras
  fullname: Ruiz de Miras, Juan
  email: demiras@ugr.es
  organization: Software Engineering Department, University of Granada
– sequence: 2
  givenname: Yurong
  orcidid: 0000-0002-3244-8083
  surname: Li
  fullname: Li, Yurong
  organization: School of Information Engineering, Southwestern University of Finance and Economics
– sequence: 3
  givenname: Alejandro
  orcidid: 0000-0001-8620-479X
  surname: León
  fullname: León, Alejandro
  organization: Software Engineering Department, University of Granada
– sequence: 4
  givenname: Germán
  orcidid: 0000-0001-7229-5029
  surname: Arroyo
  fullname: Arroyo, Germán
  organization: Software Engineering Department, University of Granada
– sequence: 5
  givenname: Luis
  orcidid: 0000-0002-3646-5761
  surname: López
  fullname: López, Luis
  organization: Software Engineering Department, University of Granada
– sequence: 6
  givenname: Juan Carlos
  orcidid: 0000-0002-0327-7748
  surname: Torres
  fullname: Torres, Juan Carlos
  organization: Software Engineering Department, University of Granada
– sequence: 7
  givenname: Domingo
  orcidid: 0000-0002-4088-0554
  surname: Martín
  fullname: Martín, Domingo
  organization: Software Engineering Department, University of Granada
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqOZ_NnsetNiq1AQxIK3kM0mpaXd1CQ97Lc3dUVvXmaGzHtvwm-CRp3vLELXQG6BEHkXc-UcEyowAQ4C92doDJwxLIX4GP3OHC7QJMYtIYwxWo3R_WqXgsZOx1QYvz8ck04b3xXeFS5ok_SuaDd728XTo_OheFs8Fpu9Xtt4ic6d3kV79dOnaDV_ep894-Xr4mX2sMSGcp4wWK0rAdwY2WpiDK1rV0JZmdaBaU3DRM1lA8xwQaUjGriEhtVE5EVDXcWm6GbIPQT_ebQxqa0_hi6fVAxKmqOAkayig8oEH2OwTh1C_mfoFRB1YqQGRiozUt-MVJ9NbDDFLO7WNvxF_-P6ApR7asw
Cites_doi 10.1007/s12010-022-04108-y
10.1142/S0218348X16500407
10.1016/J.JUM.2024.10.008
10.1109/21.259692
10.1137/1010093
10.1109/MM.2011.24
10.1007/s10044-019-00839-7
10.1088/2051-672X/acbe53
10.1007/s11227-019-03030-1
10.1007/978-3-031-72845-7_17
10.1016/J.CHAOS.2021.111351
10.1016/j.jclepro.2022.134691
10.1155/2013/876386
10.36922/AC.1628
10.1109/ACCESS.2019.2916934
10.1016/J.CPC.2024.109215
10.1088/0031-8949/1986/T13/004
10.1063/1.4958709
10.1119/1.13295
10.1109/CBMS.2017.121
10.1504/IJART.2017.083902
10.1007/s10851-019-00912-0
10.1163/22134913-20181092
10.1007/s11042-022-13519-2
10.1007/978-1-4612-3784-6
10.1515/jmbm-2016-0006
10.48550/arXiv.1107.2336
10.3390/fractalfract8030152
10.1016/J.IJLEO.2018.03.106
10.3390/math11183803
10.18280/MMEP.110111
10.1109/TIP.2010.2059032
10.1073/PNAS.1800083115
10.1016/J.SIGPRO.2012.01.016
10.1016/J.IJLEO.2018.02.066
10.1016/j.patrec.2017.08.022
10.1016/S0167-8655(98)00002-6
10.1186/S40494-021-00618-W
10.1007/978-981-15-7834-2_24
10.3390/vision4010010
10.1016/J.PATREC.2023.08.005
10.1016/J.OCECOAMAN.2024.107426
10.1109/CINE.2015.37
10.3390/RS16142545
10.1016/j.powtec.2020.01.053
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. 2025
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-025-01415-y
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01415_y
GrantInformation_xml – fundername: Universidad de Granada
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c244t-1eaa8514cc7da0cc299f6168cdf1cdcb35947b13c4527f0a1471b3905359b2f83
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 22:06:48 EDT 2025
Tue Jul 01 01:15:19 EDT 2025
Thu Apr 24 03:40:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CUDA
Box-counting
Fractal dimension
GPU
Color image
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-1eaa8514cc7da0cc299f6168cdf1cdcb35947b13c4527f0a1471b3905359b2f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3244-8083
0000-0001-8620-479X
0000-0001-7229-5029
0000-0002-3646-5761
0000-0001-7579-8350
0000-0002-0327-7748
0000-0002-4088-0554
OpenAccessLink https://link.springer.com/10.1007/s10044-025-01415-y
PQID 3162168130
PQPubID 2043691
ParticipantIDs proquest_journals_3162168130
crossref_primary_10_1007_s10044_025_01415_y
springer_journals_10_1007_s10044_025_01415_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References F Ji (1415_CR54) 2021; 9
N Sarkar (1415_CR10) 1994; 24
S Nayak (1415_CR11) 2017; 19
J Ruiz de Miras (1415_CR29) 2020; 76
NS Nikolaidis (1415_CR15) 2016; 25
APH Don (1415_CR26) 2021; 152
1415_CR21
1415_CR25
M Salem (1415_CR47) 2024; 13
G Mather (1415_CR51) 2018; 6
1415_CR23
1415_CR24
1415_CR28
P Abry (1415_CR52) 2013; 93
P Brodatz (1415_CR38) 1966
Y Li (1415_CR22) 2020; 62
T Bountis (1415_CR53) 2017; 10
M Bigerelle (1415_CR43) 2023; 11
IV Grossu (1415_CR50) 2024; 301
1415_CR14
CM Wittenbrink (1415_CR32) 2011; 31
1415_CR13
1415_CR16
X Zhao (1415_CR17) 2016; 24
S Abdelmounaime (1415_CR41) 2013; 2013
S Liu (1415_CR27) 2019; 7
BB Mandelbrot (1415_CR37) 1968; 10
G-B So (1415_CR8) 2017; 98
1415_CR44
1415_CR42
Z Ning (1415_CR48) 2024; 258
1415_CR45
N Rashied (1415_CR1) 2024; 11
1415_CR49
A Saber Jabdaragh (1415_CR6) 2023; 173
S Ghatak (1415_CR9) 2023; 195
1415_CR7
S Wang (1415_CR4) 2022; 379
E Tripathi (1415_CR2) 2023; 82
M Ivanovici (1415_CR12) 2011; 20
SR Nayak (1415_CR19) 2018; 166
HYD Sigaki (1415_CR46) 2018; 115
MK Biswas (1415_CR30) 1998; 19
C Panigrahy (1415_CR20) 2020; 23
1415_CR33
MF Barnsley (1415_CR40) 1988
C Panigrahy (1415_CR5) 2020; 364
1415_CR31
1415_CR36
1415_CR34
SR Nayak (1415_CR18) 2018; 162
1415_CR35
1415_CR3
1415_CR39
References_xml – volume-title: Textures: a photographic album for artists and designers
  year: 1966
  ident: 1415_CR38
– volume: 195
  start-page: 2196
  year: 2023
  ident: 1415_CR9
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-022-04108-y
– volume: 24
  start-page: 1650040
  year: 2016
  ident: 1415_CR17
  publication-title: Fractals
  doi: 10.1142/S0218348X16500407
– volume: 19
  start-page: 323
  year: 2017
  ident: 1415_CR11
  publication-title: Int J Pure Appl Math
– volume: 13
  start-page: 565
  year: 2024
  ident: 1415_CR47
  publication-title: J Urban Manage
  doi: 10.1016/J.JUM.2024.10.008
– volume: 24
  start-page: 115
  year: 1994
  ident: 1415_CR10
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.259692
– ident: 1415_CR33
– volume: 10
  start-page: 422
  year: 1968
  ident: 1415_CR37
  publication-title: SIAM Rev
  doi: 10.1137/1010093
– volume: 31
  start-page: 50
  year: 2011
  ident: 1415_CR32
  publication-title: IEEE Micro
  doi: 10.1109/MM.2011.24
– volume: 23
  start-page: 819
  year: 2020
  ident: 1415_CR20
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-019-00839-7
– volume: 11
  start-page: 15019
  year: 2023
  ident: 1415_CR43
  publication-title: Surf Topogr Metrol Prop
  doi: 10.1088/2051-672X/acbe53
– volume: 76
  start-page: 204
  year: 2020
  ident: 1415_CR29
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03030-1
– ident: 1415_CR45
  doi: 10.1007/978-3-031-72845-7_17
– volume: 152
  start-page: 111351
  year: 2021
  ident: 1415_CR26
  publication-title: Chaos Solitons Fract
  doi: 10.1016/J.CHAOS.2021.111351
– volume: 379
  start-page: 134691
  year: 2022
  ident: 1415_CR4
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.134691
– volume: 2013
  start-page: 876386
  year: 2013
  ident: 1415_CR41
  publication-title: Int Sch Res Not
  doi: 10.1155/2013/876386
– ident: 1415_CR42
  doi: 10.36922/AC.1628
– volume: 7
  start-page: 62412
  year: 2019
  ident: 1415_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916934
– volume: 301
  start-page: 109215
  year: 2024
  ident: 1415_CR50
  publication-title: Comput Phys Commun
  doi: 10.1016/J.CPC.2024.109215
– ident: 1415_CR13
  doi: 10.1088/0031-8949/1986/T13/004
– ident: 1415_CR24
  doi: 10.1063/1.4958709
– ident: 1415_CR7
  doi: 10.1119/1.13295
– ident: 1415_CR36
– ident: 1415_CR16
  doi: 10.1109/CBMS.2017.121
– volume: 10
  start-page: 27
  year: 2017
  ident: 1415_CR53
  publication-title: Int J Arts Technol
  doi: 10.1504/IJART.2017.083902
– volume: 62
  start-page: 37
  year: 2020
  ident: 1415_CR22
  publication-title: J Math Imaging Vis
  doi: 10.1007/s10851-019-00912-0
– volume: 6
  start-page: 97
  year: 2018
  ident: 1415_CR51
  publication-title: Art Percept
  doi: 10.1163/22134913-20181092
– volume: 82
  start-page: 39745
  year: 2023
  ident: 1415_CR2
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13519-2
– volume-title: The science of fractal images
  year: 1988
  ident: 1415_CR40
  doi: 10.1007/978-1-4612-3784-6
– volume: 25
  start-page: 61
  year: 2016
  ident: 1415_CR15
  publication-title: J Mech Behav Mater
  doi: 10.1515/jmbm-2016-0006
– ident: 1415_CR31
– ident: 1415_CR14
  doi: 10.48550/arXiv.1107.2336
– ident: 1415_CR25
  doi: 10.3390/fractalfract8030152
– ident: 1415_CR39
– ident: 1415_CR35
– volume: 166
  start-page: 110
  year: 2018
  ident: 1415_CR19
  publication-title: Optik (Stuttg)
  doi: 10.1016/J.IJLEO.2018.03.106
– ident: 1415_CR3
  doi: 10.3390/math11183803
– volume: 11
  start-page: 107
  year: 2024
  ident: 1415_CR1
  publication-title: Math Model Eng Probl
  doi: 10.18280/MMEP.110111
– volume: 20
  start-page: 227
  year: 2011
  ident: 1415_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2059032
– volume: 115
  start-page: E8585
  year: 2018
  ident: 1415_CR46
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/PNAS.1800083115
– volume: 93
  start-page: 554
  year: 2013
  ident: 1415_CR52
  publication-title: Sig Process
  doi: 10.1016/J.SIGPRO.2012.01.016
– ident: 1415_CR28
– volume: 162
  start-page: 196
  year: 2018
  ident: 1415_CR18
  publication-title: Optik (Stuttg)
  doi: 10.1016/J.IJLEO.2018.02.066
– volume: 98
  start-page: 53
  year: 2017
  ident: 1415_CR8
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.08.022
– volume: 19
  start-page: 309
  year: 1998
  ident: 1415_CR30
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(98)00002-6
– volume: 9
  start-page: 1
  year: 2021
  ident: 1415_CR54
  publication-title: Herit Sci
  doi: 10.1186/S40494-021-00618-W
– ident: 1415_CR21
  doi: 10.1007/978-981-15-7834-2_24
– ident: 1415_CR44
  doi: 10.3390/vision4010010
– volume: 173
  start-page: 108
  year: 2023
  ident: 1415_CR6
  publication-title: Pattern Recognit Lett
  doi: 10.1016/J.PATREC.2023.08.005
– volume: 258
  start-page: 107426
  year: 2024
  ident: 1415_CR48
  publication-title: Ocean Coast Manage
  doi: 10.1016/J.OCECOAMAN.2024.107426
– ident: 1415_CR34
– ident: 1415_CR23
  doi: 10.1109/CINE.2015.37
– ident: 1415_CR49
  doi: 10.3390/RS16142545
– volume: 364
  start-page: 276
  year: 2020
  ident: 1415_CR5
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2020.01.053
SSID ssj0033328
Score 2.3791616
Snippet The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Color imagery
Computation
Computer Science
Datasets
Digital imaging
Fractal analysis
Fractal geometry
Fractals
Graphics processing units
Gray scale
Image compression
Image segmentation
Object recognition
Original Article
Pattern Recognition
Synthetic data
Texture recognition
Title Ultra-fast computation of fractal dimension for RGB images
URI https://link.springer.com/article/10.1007/s10044-025-01415-y
https://www.proquest.com/docview/3162168130
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUygMbWKrjV8JWqj4EggFRqUyR4yQSErSoCUP_PWc3UQHBwGpHp-izfd-X-B4AF2GgIytlRlmmDBUy1dQw5XNletZGmVDW5TvfP6jJVNzO5KxKCivqaPf6StJ76i_Jbj0hqGu_6oITJV01oCXx293t62nQr_0v59x3VEUhwKmWglWpMr_b-E5HG43541rUs81oD3YqmUj663Xdh61sfgC7lWQk1YEscKjuylCPHcL19LVcGpqboiTWz3rwySInuUuJQrOpK-nvfpMRlKzkcXxDXt7QrxRHMB0NnwYTWnVIoBZpuUSAjUHJJKzVqUFskVtyxVRo05zZ1CZcRkInjFshA533DEMqSnjkarpESZCH_Bia88U8OwGi8zBU0jLlLhqtNIlMjcpSK5DRudVBGy5roOL3dSGMeFPy2MEaI6yxhzVetaFTYxlXh6KIOVMBvhyyZhuuanw3039bO_3f42ewHfgldpFiHWiWy4_sHKVDmXSh1R8_3w270BioQdfvm09aRbt6
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDLDwRhQKeGADS3X8StigohRoO6BWYrMcJ5aQoEVNGPr3XLuJKioYWO3oKjp-nJPY91yELuNIJVaInNBcGsJFpoihMuTKtK1Nci6tz3ceDGVvzJ9exWtlk-NzYVbO732KW5tz4ouu-iuJgszX0QaHL2Xvk9-RnXrXZYyFOqpA_4wowWmVIPN7jJ8ktFSWK4ehgWO6u2i7Eof4djGae2gtn-yjnUoo4moZFtBU12Ko2w7Qzfi9nBniTFFiG3oD5HjqsPOJUBA280b-_ucYBqGKXx7u8NsH7CbFIRp370edHqnqIhALZFwCrMaAUOLWqswAosAoTlIZ28xRm9mUiYSrlDLLRaRc21AgoJQl3sklSSMXsyPUmEwn-THCysWxFJZKf7xohUlFZmSeWQ48zqyKmuiqBkp_Luwv9NLo2MOqAVYdYNXzJmrVWOpqKRSaURnBywFXNtF1je-y--9oJ_97_AJt9kaDvu4_Dp9P0VYUhtvfFWuhRjn7ys9APJTpeZg135Jgt9s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA06QXzxLk6n5sE3DVuaS1vfdDrnbYg42FtJkwYE7cZWH_bv_ZK1bIo--JqUUE4u57T5zvchdBoFYayFyAjNpCJcmJAoKr1XpqV1nHGpnd_5qSe7fX4_EIMFF7-Pdq-uJGeeBpelKS-aI2ObC8a3FufElWJ1gYqCTJfRCnypUBfU15bt6ixmjPnqqiAKGAkFp6Vt5vcxvlPTXG_-uCL1zNPZROulZMSXszneQktZvo02SvmIy805gaaqQkPVtoMu-u_FWBGrJgXWvtdPBB5abJ09CoY1Lr2_-2WGQb7il9sr_PYBZ8xkF_U7N6_tLimrJRANFF0A2EqBfOJah0YBzsAzVlIZaWOpNjplIuZhSpnmIghtS1GgpZTFLr9LnAY2Ynuolg_zbB_h0EaRFJpKd-mohUqFUTIzmgO7Mx0GdXRWAZWMZkkxknn6YwdrArAmHtZkWkeNCsuk3CCThFEZwMsBg9bReYXvvPvv0Q7-9_gJWn2-7iSPd72HQ7QW-Nl2AWQNVCvGn9kRKIoiPfaL5gs72MAi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-fast+computation+of+fractal+dimension+for+RGB+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10044-025-01415-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon