Ultra-fast computation of fractal dimension for RGB images
The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature extraction, object recognition, texture analysis, and image compression and denoising, among many others. A variety of algorithms have been prev...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 28; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-025-01415-y |
Cover
Loading…
Abstract | The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature extraction, object recognition, texture analysis, and image compression and denoising, among many others. A variety of algorithms have been previously proposed for estimating the FD, however most of them are limited to binary or gray-scale images only. In recent years, several authors have proposed algorithms for computing the FD of color images. Nevertheless, almost all these methods are computationally inefficient when analyzing large images. Nowadays, color images can be very large in size, and there is a growing trend toward even larger datasets. This implies that the time required to calculate the FD of such datasets can become extremely long. In this paper we present a very efficient GPU algorithm, implemented in CUDA, for computing the FD of RGB color images. Our solution is an extension to RGB of the differential box-counting (DBC) algorithm for gray-scale images. Our implementation simplifies the box-counting computation to very simple operations which are easily combined across iterations. We evaluated our algorithm on two distinct hardware/software platforms using a set of images of increasing size. The performance of our method was compared against two recent FD algorithms for RGB images: a fast box-merging GPU algorithm, and the most advanced approach based on extending the DBC method. The results showed that our GPU algorithm performed very well and achieved speedups of up to 7.9× and 6172.6× regarding these algorithms, respectively. In addition, our algorithm achieved average error rates similar to those obtained by the two reference algorithms when estimating the FD for synthetic images with known FD values, and even outperformed them when processing large images. These results suggest that our GPU algorithm offers a highly reliable and ultra-fast solution for estimating the FD of color images. |
---|---|
AbstractList | The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature extraction, object recognition, texture analysis, and image compression and denoising, among many others. A variety of algorithms have been previously proposed for estimating the FD, however most of them are limited to binary or gray-scale images only. In recent years, several authors have proposed algorithms for computing the FD of color images. Nevertheless, almost all these methods are computationally inefficient when analyzing large images. Nowadays, color images can be very large in size, and there is a growing trend toward even larger datasets. This implies that the time required to calculate the FD of such datasets can become extremely long. In this paper we present a very efficient GPU algorithm, implemented in CUDA, for computing the FD of RGB color images. Our solution is an extension to RGB of the differential box-counting (DBC) algorithm for gray-scale images. Our implementation simplifies the box-counting computation to very simple operations which are easily combined across iterations. We evaluated our algorithm on two distinct hardware/software platforms using a set of images of increasing size. The performance of our method was compared against two recent FD algorithms for RGB images: a fast box-merging GPU algorithm, and the most advanced approach based on extending the DBC method. The results showed that our GPU algorithm performed very well and achieved speedups of up to 7.9× and 6172.6× regarding these algorithms, respectively. In addition, our algorithm achieved average error rates similar to those obtained by the two reference algorithms when estimating the FD for synthetic images with known FD values, and even outperformed them when processing large images. These results suggest that our GPU algorithm offers a highly reliable and ultra-fast solution for estimating the FD of color images. |
ArticleNumber | 36 |
Author | Martín, Domingo López, Luis Ruiz de Miras, Juan Torres, Juan Carlos Arroyo, Germán León, Alejandro Li, Yurong |
Author_xml | – sequence: 1 givenname: Juan orcidid: 0000-0001-7579-8350 surname: Ruiz de Miras fullname: Ruiz de Miras, Juan email: demiras@ugr.es organization: Software Engineering Department, University of Granada – sequence: 2 givenname: Yurong orcidid: 0000-0002-3244-8083 surname: Li fullname: Li, Yurong organization: School of Information Engineering, Southwestern University of Finance and Economics – sequence: 3 givenname: Alejandro orcidid: 0000-0001-8620-479X surname: León fullname: León, Alejandro organization: Software Engineering Department, University of Granada – sequence: 4 givenname: Germán orcidid: 0000-0001-7229-5029 surname: Arroyo fullname: Arroyo, Germán organization: Software Engineering Department, University of Granada – sequence: 5 givenname: Luis orcidid: 0000-0002-3646-5761 surname: López fullname: López, Luis organization: Software Engineering Department, University of Granada – sequence: 6 givenname: Juan Carlos orcidid: 0000-0002-0327-7748 surname: Torres fullname: Torres, Juan Carlos organization: Software Engineering Department, University of Granada – sequence: 7 givenname: Domingo orcidid: 0000-0002-4088-0554 surname: Martín fullname: Martín, Domingo organization: Software Engineering Department, University of Granada |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqOZ_NnsetNiq1AQxIK3kM0mpaXd1CQ97Lc3dUVvXmaGzHtvwm-CRp3vLELXQG6BEHkXc-UcEyowAQ4C92doDJwxLIX4GP3OHC7QJMYtIYwxWo3R_WqXgsZOx1QYvz8ck04b3xXeFS5ok_SuaDd728XTo_OheFs8Fpu9Xtt4ic6d3kV79dOnaDV_ep894-Xr4mX2sMSGcp4wWK0rAdwY2WpiDK1rV0JZmdaBaU3DRM1lA8xwQaUjGriEhtVE5EVDXcWm6GbIPQT_ebQxqa0_hi6fVAxKmqOAkayig8oEH2OwTh1C_mfoFRB1YqQGRiozUt-MVJ9NbDDFLO7WNvxF_-P6ApR7asw |
Cites_doi | 10.1007/s12010-022-04108-y 10.1142/S0218348X16500407 10.1016/J.JUM.2024.10.008 10.1109/21.259692 10.1137/1010093 10.1109/MM.2011.24 10.1007/s10044-019-00839-7 10.1088/2051-672X/acbe53 10.1007/s11227-019-03030-1 10.1007/978-3-031-72845-7_17 10.1016/J.CHAOS.2021.111351 10.1016/j.jclepro.2022.134691 10.1155/2013/876386 10.36922/AC.1628 10.1109/ACCESS.2019.2916934 10.1016/J.CPC.2024.109215 10.1088/0031-8949/1986/T13/004 10.1063/1.4958709 10.1119/1.13295 10.1109/CBMS.2017.121 10.1504/IJART.2017.083902 10.1007/s10851-019-00912-0 10.1163/22134913-20181092 10.1007/s11042-022-13519-2 10.1007/978-1-4612-3784-6 10.1515/jmbm-2016-0006 10.48550/arXiv.1107.2336 10.3390/fractalfract8030152 10.1016/J.IJLEO.2018.03.106 10.3390/math11183803 10.18280/MMEP.110111 10.1109/TIP.2010.2059032 10.1073/PNAS.1800083115 10.1016/J.SIGPRO.2012.01.016 10.1016/J.IJLEO.2018.02.066 10.1016/j.patrec.2017.08.022 10.1016/S0167-8655(98)00002-6 10.1186/S40494-021-00618-W 10.1007/978-981-15-7834-2_24 10.3390/vision4010010 10.1016/J.PATREC.2023.08.005 10.1016/J.OCECOAMAN.2024.107426 10.1109/CINE.2015.37 10.3390/RS16142545 10.1016/j.powtec.2020.01.053 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-025-01415-y |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_025_01415_y |
GrantInformation_xml | – fundername: Universidad de Granada |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c244t-1eaa8514cc7da0cc299f6168cdf1cdcb35947b13c4527f0a1471b3905359b2f83 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 22:06:48 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Thu Apr 24 03:40:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CUDA Box-counting Fractal dimension GPU Color image |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-1eaa8514cc7da0cc299f6168cdf1cdcb35947b13c4527f0a1471b3905359b2f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3244-8083 0000-0001-8620-479X 0000-0001-7229-5029 0000-0002-3646-5761 0000-0001-7579-8350 0000-0002-0327-7748 0000-0002-4088-0554 |
OpenAccessLink | https://link.springer.com/10.1007/s10044-025-01415-y |
PQID | 3162168130 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3162168130 crossref_primary_10_1007_s10044_025_01415_y springer_journals_10_1007_s10044_025_01415_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | F Ji (1415_CR54) 2021; 9 N Sarkar (1415_CR10) 1994; 24 S Nayak (1415_CR11) 2017; 19 J Ruiz de Miras (1415_CR29) 2020; 76 NS Nikolaidis (1415_CR15) 2016; 25 APH Don (1415_CR26) 2021; 152 1415_CR21 1415_CR25 M Salem (1415_CR47) 2024; 13 G Mather (1415_CR51) 2018; 6 1415_CR23 1415_CR24 1415_CR28 P Abry (1415_CR52) 2013; 93 P Brodatz (1415_CR38) 1966 Y Li (1415_CR22) 2020; 62 T Bountis (1415_CR53) 2017; 10 M Bigerelle (1415_CR43) 2023; 11 IV Grossu (1415_CR50) 2024; 301 1415_CR14 CM Wittenbrink (1415_CR32) 2011; 31 1415_CR13 1415_CR16 X Zhao (1415_CR17) 2016; 24 S Abdelmounaime (1415_CR41) 2013; 2013 S Liu (1415_CR27) 2019; 7 BB Mandelbrot (1415_CR37) 1968; 10 G-B So (1415_CR8) 2017; 98 1415_CR44 1415_CR42 Z Ning (1415_CR48) 2024; 258 1415_CR45 N Rashied (1415_CR1) 2024; 11 1415_CR49 A Saber Jabdaragh (1415_CR6) 2023; 173 S Ghatak (1415_CR9) 2023; 195 1415_CR7 S Wang (1415_CR4) 2022; 379 E Tripathi (1415_CR2) 2023; 82 M Ivanovici (1415_CR12) 2011; 20 SR Nayak (1415_CR19) 2018; 166 HYD Sigaki (1415_CR46) 2018; 115 MK Biswas (1415_CR30) 1998; 19 C Panigrahy (1415_CR20) 2020; 23 1415_CR33 MF Barnsley (1415_CR40) 1988 C Panigrahy (1415_CR5) 2020; 364 1415_CR31 1415_CR36 1415_CR34 SR Nayak (1415_CR18) 2018; 162 1415_CR35 1415_CR3 1415_CR39 |
References_xml | – volume-title: Textures: a photographic album for artists and designers year: 1966 ident: 1415_CR38 – volume: 195 start-page: 2196 year: 2023 ident: 1415_CR9 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-022-04108-y – volume: 24 start-page: 1650040 year: 2016 ident: 1415_CR17 publication-title: Fractals doi: 10.1142/S0218348X16500407 – volume: 19 start-page: 323 year: 2017 ident: 1415_CR11 publication-title: Int J Pure Appl Math – volume: 13 start-page: 565 year: 2024 ident: 1415_CR47 publication-title: J Urban Manage doi: 10.1016/J.JUM.2024.10.008 – volume: 24 start-page: 115 year: 1994 ident: 1415_CR10 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.259692 – ident: 1415_CR33 – volume: 10 start-page: 422 year: 1968 ident: 1415_CR37 publication-title: SIAM Rev doi: 10.1137/1010093 – volume: 31 start-page: 50 year: 2011 ident: 1415_CR32 publication-title: IEEE Micro doi: 10.1109/MM.2011.24 – volume: 23 start-page: 819 year: 2020 ident: 1415_CR20 publication-title: Pattern Anal Appl doi: 10.1007/s10044-019-00839-7 – volume: 11 start-page: 15019 year: 2023 ident: 1415_CR43 publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/acbe53 – volume: 76 start-page: 204 year: 2020 ident: 1415_CR29 publication-title: J Supercomput doi: 10.1007/s11227-019-03030-1 – ident: 1415_CR45 doi: 10.1007/978-3-031-72845-7_17 – volume: 152 start-page: 111351 year: 2021 ident: 1415_CR26 publication-title: Chaos Solitons Fract doi: 10.1016/J.CHAOS.2021.111351 – volume: 379 start-page: 134691 year: 2022 ident: 1415_CR4 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.134691 – volume: 2013 start-page: 876386 year: 2013 ident: 1415_CR41 publication-title: Int Sch Res Not doi: 10.1155/2013/876386 – ident: 1415_CR42 doi: 10.36922/AC.1628 – volume: 7 start-page: 62412 year: 2019 ident: 1415_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916934 – volume: 301 start-page: 109215 year: 2024 ident: 1415_CR50 publication-title: Comput Phys Commun doi: 10.1016/J.CPC.2024.109215 – ident: 1415_CR13 doi: 10.1088/0031-8949/1986/T13/004 – ident: 1415_CR24 doi: 10.1063/1.4958709 – ident: 1415_CR7 doi: 10.1119/1.13295 – ident: 1415_CR36 – ident: 1415_CR16 doi: 10.1109/CBMS.2017.121 – volume: 10 start-page: 27 year: 2017 ident: 1415_CR53 publication-title: Int J Arts Technol doi: 10.1504/IJART.2017.083902 – volume: 62 start-page: 37 year: 2020 ident: 1415_CR22 publication-title: J Math Imaging Vis doi: 10.1007/s10851-019-00912-0 – volume: 6 start-page: 97 year: 2018 ident: 1415_CR51 publication-title: Art Percept doi: 10.1163/22134913-20181092 – volume: 82 start-page: 39745 year: 2023 ident: 1415_CR2 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13519-2 – volume-title: The science of fractal images year: 1988 ident: 1415_CR40 doi: 10.1007/978-1-4612-3784-6 – volume: 25 start-page: 61 year: 2016 ident: 1415_CR15 publication-title: J Mech Behav Mater doi: 10.1515/jmbm-2016-0006 – ident: 1415_CR31 – ident: 1415_CR14 doi: 10.48550/arXiv.1107.2336 – ident: 1415_CR25 doi: 10.3390/fractalfract8030152 – ident: 1415_CR39 – ident: 1415_CR35 – volume: 166 start-page: 110 year: 2018 ident: 1415_CR19 publication-title: Optik (Stuttg) doi: 10.1016/J.IJLEO.2018.03.106 – ident: 1415_CR3 doi: 10.3390/math11183803 – volume: 11 start-page: 107 year: 2024 ident: 1415_CR1 publication-title: Math Model Eng Probl doi: 10.18280/MMEP.110111 – volume: 20 start-page: 227 year: 2011 ident: 1415_CR12 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2059032 – volume: 115 start-page: E8585 year: 2018 ident: 1415_CR46 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/PNAS.1800083115 – volume: 93 start-page: 554 year: 2013 ident: 1415_CR52 publication-title: Sig Process doi: 10.1016/J.SIGPRO.2012.01.016 – ident: 1415_CR28 – volume: 162 start-page: 196 year: 2018 ident: 1415_CR18 publication-title: Optik (Stuttg) doi: 10.1016/J.IJLEO.2018.02.066 – volume: 98 start-page: 53 year: 2017 ident: 1415_CR8 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.08.022 – volume: 19 start-page: 309 year: 1998 ident: 1415_CR30 publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(98)00002-6 – volume: 9 start-page: 1 year: 2021 ident: 1415_CR54 publication-title: Herit Sci doi: 10.1186/S40494-021-00618-W – ident: 1415_CR21 doi: 10.1007/978-981-15-7834-2_24 – ident: 1415_CR44 doi: 10.3390/vision4010010 – volume: 173 start-page: 108 year: 2023 ident: 1415_CR6 publication-title: Pattern Recognit Lett doi: 10.1016/J.PATREC.2023.08.005 – volume: 258 start-page: 107426 year: 2024 ident: 1415_CR48 publication-title: Ocean Coast Manage doi: 10.1016/J.OCECOAMAN.2024.107426 – ident: 1415_CR34 – ident: 1415_CR23 doi: 10.1109/CINE.2015.37 – ident: 1415_CR49 doi: 10.3390/RS16142545 – volume: 364 start-page: 276 year: 2020 ident: 1415_CR5 publication-title: Powder Technol doi: 10.1016/j.powtec.2020.01.053 |
SSID | ssj0033328 |
Score | 2.3791616 |
Snippet | The fractal dimension (FD) is a quantitative parameter widely used to analyze digital images in many application fields such as image segmentation, feature... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Color imagery Computation Computer Science Datasets Digital imaging Fractal analysis Fractal geometry Fractals Graphics processing units Gray scale Image compression Image segmentation Object recognition Original Article Pattern Recognition Synthetic data Texture recognition |
Title | Ultra-fast computation of fractal dimension for RGB images |
URI | https://link.springer.com/article/10.1007/s10044-025-01415-y https://www.proquest.com/docview/3162168130 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUygMbWKrjV8JWqj4EggFRqUyR4yQSErSoCUP_PWc3UQHBwGpHp-izfd-X-B4AF2GgIytlRlmmDBUy1dQw5XNletZGmVDW5TvfP6jJVNzO5KxKCivqaPf6StJ76i_Jbj0hqGu_6oITJV01oCXx293t62nQr_0v59x3VEUhwKmWglWpMr_b-E5HG43541rUs81oD3YqmUj663Xdh61sfgC7lWQk1YEscKjuylCPHcL19LVcGpqboiTWz3rwySInuUuJQrOpK-nvfpMRlKzkcXxDXt7QrxRHMB0NnwYTWnVIoBZpuUSAjUHJJKzVqUFskVtyxVRo05zZ1CZcRkInjFshA533DEMqSnjkarpESZCH_Bia88U8OwGi8zBU0jLlLhqtNIlMjcpSK5DRudVBGy5roOL3dSGMeFPy2MEaI6yxhzVetaFTYxlXh6KIOVMBvhyyZhuuanw3039bO_3f42ewHfgldpFiHWiWy4_sHKVDmXSh1R8_3w270BioQdfvm09aRbt6 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDLDwRhQKeGADS3X8StigohRoO6BWYrMcJ5aQoEVNGPr3XLuJKioYWO3oKjp-nJPY91yELuNIJVaInNBcGsJFpoihMuTKtK1Nci6tz3ceDGVvzJ9exWtlk-NzYVbO732KW5tz4ouu-iuJgszX0QaHL2Xvk9-RnXrXZYyFOqpA_4wowWmVIPN7jJ8ktFSWK4ehgWO6u2i7Eof4djGae2gtn-yjnUoo4moZFtBU12Ko2w7Qzfi9nBniTFFiG3oD5HjqsPOJUBA280b-_ucYBqGKXx7u8NsH7CbFIRp370edHqnqIhALZFwCrMaAUOLWqswAosAoTlIZ28xRm9mUiYSrlDLLRaRc21AgoJQl3sklSSMXsyPUmEwn-THCysWxFJZKf7xohUlFZmSeWQ48zqyKmuiqBkp_Luwv9NLo2MOqAVYdYNXzJmrVWOpqKRSaURnBywFXNtF1je-y--9oJ_97_AJt9kaDvu4_Dp9P0VYUhtvfFWuhRjn7ys9APJTpeZg135Jgt9s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA06QXzxLk6n5sE3DVuaS1vfdDrnbYg42FtJkwYE7cZWH_bv_ZK1bIo--JqUUE4u57T5zvchdBoFYayFyAjNpCJcmJAoKr1XpqV1nHGpnd_5qSe7fX4_EIMFF7-Pdq-uJGeeBpelKS-aI2ObC8a3FufElWJ1gYqCTJfRCnypUBfU15bt6ixmjPnqqiAKGAkFp6Vt5vcxvlPTXG_-uCL1zNPZROulZMSXszneQktZvo02SvmIy805gaaqQkPVtoMu-u_FWBGrJgXWvtdPBB5abJ09CoY1Lr2_-2WGQb7il9sr_PYBZ8xkF_U7N6_tLimrJRANFF0A2EqBfOJah0YBzsAzVlIZaWOpNjplIuZhSpnmIghtS1GgpZTFLr9LnAY2Ynuolg_zbB_h0EaRFJpKd-mohUqFUTIzmgO7Mx0GdXRWAZWMZkkxknn6YwdrArAmHtZkWkeNCsuk3CCThFEZwMsBg9bReYXvvPvv0Q7-9_gJWn2-7iSPd72HQ7QW-Nl2AWQNVCvGn9kRKIoiPfaL5gs72MAi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-fast+computation+of+fractal+dimension+for+RGB+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10044-025-01415-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |