MetaE2RL: Toward Meta-Reasoning for Energy-Efficient Multigoal Reinforcement Learning With Squeezed-Edge You Only Look Once

Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive reinforcement learning (RL) algorithms. We propose meta-reasoning for energy efficiency of multigoal RL, a hardware-aware framework that incorporates l...

Full description

Saved in:
Bibliographic Details
Published inIEEE MICRO Vol. 43; no. 6; pp. 29 - 39
Main Authors Navardi, Mozhgan, Humes, Edward, Manjunath, Tejaswini, Mohsenin, Tinoosh
Format Journal Article
LanguageEnglish
Published Los Alamitos IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive reinforcement learning (RL) algorithms. We propose meta-reasoning for energy efficiency of multigoal RL, a hardware-aware framework that incorporates low-power preprocessing solutions and meta-reasoning to enable deployment of multigoal RL on tiny autonomous devices. For this aim, a meta-level is proposed to allocate resources efficiently in real time by switching between models with different complexities. Moreover, squeezed-edge you only look once (YOLO) is proposed for energy-efficient object detection in the preprocessing phase. For the experimental results, the proposed squeezed-edge YOLO was deployed on board a tiny drone named Crazyflie with a GAP8 processor that includes eight parallel RISC-V cluster cores. We compared latency and power consumption of squeezed-edge YOLO and a lighter convolutional neural network (CNN)-based model while deploying them separately on board on GAP8. The experimental results show squeezed-edge YOLO is 8× smaller than previous work and consumes 541 mW on GAP8 with inference latency of 130 ms.
AbstractList Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive reinforcement learning (RL) algorithms. We propose meta-reasoning for energy efficiency of multigoal RL, a hardware-aware framework that incorporates low-power preprocessing solutions and meta-reasoning to enable deployment of multigoal RL on tiny autonomous devices. For this aim, a meta-level is proposed to allocate resources efficiently in real time by switching between models with different complexities. Moreover, squeezed-edge you only look once (YOLO) is proposed for energy-efficient object detection in the preprocessing phase. For the experimental results, the proposed squeezed-edge YOLO was deployed on board a tiny drone named Crazyflie with a GAP8 processor that includes eight parallel RISC-V cluster cores. We compared latency and power consumption of squeezed-edge YOLO and a lighter convolutional neural network (CNN)-based model while deploying them separately on board on GAP8. The experimental results show squeezed-edge YOLO is 8× smaller than previous work and consumes 541 mW on GAP8 with inference latency of 130 ms.
Author Humes, Edward
Manjunath, Tejaswini
Mohsenin, Tinoosh
Navardi, Mozhgan
Author_xml – sequence: 1
  givenname: Mozhgan
  orcidid: 0000-0002-3521-2869
  surname: Navardi
  fullname: Navardi, Mozhgan
  email: mnavard1@jhu.edu
  organization: Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: Edward
  orcidid: 0009-0002-3945-0116
  surname: Humes
  fullname: Humes, Edward
  email: ehumes2@umbc.edu
  organization: University of Maryland Baltimore County, Baltimore, MD, USA
– sequence: 3
  givenname: Tejaswini
  orcidid: 0000-0001-9690-5047
  surname: Manjunath
  fullname: Manjunath, Tejaswini
  email: lu48456@umbc.edu
  organization: Fabrx Space, Houston, TX, USA
– sequence: 4
  givenname: Tinoosh
  orcidid: 0000-0001-5551-2124
  surname: Mohsenin
  fullname: Mohsenin, Tinoosh
  email: tinoosh@jhu.edu
  organization: Johns Hopkins University, Baltimore, MD, USA
BookMark eNpNkM1Lw0AQxRepYFs9e_Gw4Dnt7uzmy5uU-AEJhVoRTyHdTGJquls3KVL9591aD55mePzem-GNyEAbjYRccjbhnMXTLJsAAzERgkfA2AkZ8liEnuRSDMiQQQgeDwWckVHXrRljPrBoSL4z7IsEFukNXZrPwpb0IHgLLDqjG13TyliaaLT13kuqqlEN6p5mu7ZvalO0dIGNdojCzUFPsbC_rpemf6NPHzvELyy9pKyRvpodnet2T1Nj3t2m8JycVkXb4cXfHJPnu2Q5e_DS-f3j7Db1FEjZe1zKoPJjrhgPQl-AYkUsOcAKSp-vYhBB6ZeS85WUKKvQcajQBweXQSgCJcbk-pi7tca91PX52uysdidziKI4hCgUvqOmR0pZ03UWq3xrm01h9zln-aHhPMvyQ8P5X8POcXV0NIj4j4YAXK74AYUFd30
CODEN IEMIDZ
Cites_doi 10.1117/12.2619418
10.1145/3489517.3530472
10.1186/s40537-019-0268-2
10.1109/tits.2022.3158253
10.1109/iscas46773.2023.10181715
10.1109/access.2021.3096229
10.1109/aicas54282.2022.9869975
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/MM.2023.3318200
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1937-4143
EndPage 39
ExternalDocumentID 10_1109_MM_2023_3318200
10262288
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
C1A
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
OHT
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNI
RNS
RZB
TAE
TN5
TWZ
VH1
YZZ
ZCG
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-1446f591c0167532c0a94122b2d51b9236d5d411b44e4f71c0ece52167d6736c3
IEDL.DBID RIE
ISSN 0272-1732
IngestDate Thu Oct 10 17:08:25 EDT 2024
Thu Sep 26 17:57:46 EDT 2024
Mon Nov 04 12:09:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-1446f591c0167532c0a94122b2d51b9236d5d411b44e4f71c0ece52167d6736c3
ORCID 0000-0001-5551-2124
0009-0002-3945-0116
0000-0001-9690-5047
0000-0002-3521-2869
PQID 2889728735
PQPubID 37061
PageCount 11
ParticipantIDs crossref_primary_10_1109_MM_2023_3318200
proquest_journals_2889728735
ieee_primary_10262288
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE MICRO
PublicationTitleAbbrev MM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
Schaul (ref9) 2015
Ren (ref10) 2022
ref12
ref4
Navardi (ref3) 2022
Kaiming (ref11) 2014
ref6
ref5
ref2
ref1
Manjunath (ref7) 2023
References_xml – ident: ref5
  doi: 10.1117/12.2619418
– start-page: 1312
  volume-title: Proc. IEEE Int. Conf. Mach. Learn.
  year: 2015
  ident: ref9
  article-title: Universal value function approximators
  contributor:
    fullname: Schaul
– ident: ref2
  doi: 10.1145/3489517.3530472
– volume-title: Proc. 37th AAAI Conf. Artif. Intell., 1st Reinforcement Learn. Ready Prod. Workshop
  year: 2023
  ident: ref7
  article-title: ReProHRL: Towards multi-goal navigation in the real world using hierarchical agents
  contributor:
    fullname: Manjunath
– ident: ref1
  doi: 10.1186/s40537-019-0268-2
– ident: ref4
  doi: 10.1109/tits.2022.3158253
– start-page: 346
  volume-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
  year: 2014
  ident: ref11
  contributor:
    fullname: Kaiming
– ident: ref6
  doi: 10.1109/iscas46773.2023.10181715
– ident: ref8
  doi: 10.1109/access.2021.3096229
– ident: ref12
  doi: 10.1109/aicas54282.2022.9869975
– volume-title: Proc. 3rd Workshop Closing Reality Gap Sim2Real Transfer Robot., Sci. Syst. (RSS)
  year: 2022
  ident: ref3
  article-title: Toward real-world implementation of deep reinforcement learning for vision-based autonomous drone navigation with mission
  contributor:
    fullname: Navardi
– year: 2022
  ident: ref10
  article-title: Towards an interpretable hierarchical agent framework using semantic goals
  contributor:
    fullname: Ren
SSID ssj0005208
Score 2.4445279
Snippet Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 29
SubjectTerms Algorithms
Artificial neural networks
Computational modeling
Energy efficiency
Image edge detection
Laser radar
Machine learning
Microprocessors
Object detection
Object recognition
Power consumption
Power management
Preprocessing
Reasoning
Reinforcement learning
RISC
Sensors
Title MetaE2RL: Toward Meta-Reasoning for Energy-Efficient Multigoal Reinforcement Learning With Squeezed-Edge You Only Look Once
URI https://ieeexplore.ieee.org/document/10262288
https://www.proquest.com/docview/2889728735
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6uJy-ujxXXFzl48JLa5tFsvYlURKzCquittMl0FWVXtHtQ_7yTtAurIngLIU1CJpl8k858Q8i-A8ncArDSsd1KCYINikHIjNaVKiodq8J7-V7GZ7fy_F7dt8HqPhYGALzzGQSu6P_l24mZuqcyPOHYMR8MOqSjk6QJ1pr35_Bql2vOIi14y-MThclhlgUuS3gghKMrD79dQT6nyi9F7G-X0y65nM2rcSp5CqZ1GZiPH5SN_574CllucSY9bjbGKlmA8RrpznI40PZIr5PPDOoi5cOLI3rjPWipq2BDKN78Qy1FUEtTHyDIUk83gSNRH7Y7muAAQ_DUq8a_MtKWrXVE7x7rB3rtrOQPsCy1I6CoV-jV-PmdXiCux5KBHrk9TW9OzlibkIEZRAE1c7ZjpZLIuNgFJbgJi0RGnJfcqqhEqBhbZWUUlShzWWlsBwYQH8TaOvcxIzbI4ngyhk1ChZUlqgYJaF7KouIImw1ioVAUKowRlPTJwUxG-UvDu5F7eyVM8izLnTjzVpx90nMrPtesWew-2ZkJNW8P5luO9YlGK1GorT8-2yZLrvcm3nCHLNavU9hF4FGXe37DfQFQHtJr
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BONBLw6OItAV84MDFy64f--CG0FYBskEKichttWvPpgiUVM3m0PLnO_ZupBZUiZtledeWxx5_Y898A_DWgWRhEXnt2G6VQsnTKg25SZJGV00S68p7-U7j8UJ9WeplH6zuY2EQ0TufYeCK_i3fbszOXZXRDqcfizR9CI8IWKdxF65126PDK16RCB4lUvRMPlGYvS-KwOUJD6R0hOXhnUPIZ1X5RxX78-VsCNP9yDq3kl_Brq0Dc_0XaeN_D_0JHPZIk33slsZTeIDrZzDcZ3Fg_aZ-Dn8KbKtczCYf2Nz70DJXwWdYbf1VLSNYy3IfIshzTzhBPTEfuLvaUAcz9OSrxt8zsp6vdcV-_GzP2XdnJ1-j5bldISPNwr6tf1-xCSF7Khk8gsVZPv805n1KBm4IB7TcWY-NziLjohe0FCasMhUJUQuro5rAYmy1VVFUk9RVk1A7NEgIIU6scyAz8gUM1ps1vgQmrapJOSgkA1NVjSDgbAgNhbLSYUywZATv9jIqLzrmjdJbLGFWFkXpxFn24hzBkZvxW826yR7B6V6oZb81tyXVZwnZiVIf3_PZG3g8nheTcvJ5-vUEDlxPXfThKQzayx2-IhjS1q_94rsBfFfVtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaE2RL%3A+Toward+Meta-Reasoning+for+Energy-Efficient+Multigoal+Reinforcement+Learning+With+Squeezed-Edge+You+Only+Look+Once&rft.jtitle=IEEE+MICRO&rft.au=Navardi%2C+Mozhgan&rft.au=Humes%2C+Edward&rft.au=Manjunath%2C+Tejaswini&rft.au=Mohsenin%2C+Tinoosh&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0272-1732&rft.eissn=1937-4143&rft.volume=43&rft.issue=6&rft.spage=29&rft_id=info:doi/10.1109%2FMM.2023.3318200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-1732&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-1732&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-1732&client=summon