MetaE2RL: Toward Meta-Reasoning for Energy-Efficient Multigoal Reinforcement Learning With Squeezed-Edge You Only Look Once
Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive reinforcement learning (RL) algorithms. We propose meta-reasoning for energy efficiency of multigoal RL, a hardware-aware framework that incorporates l...
Saved in:
Published in | IEEE MICRO Vol. 43; no. 6; pp. 29 - 39 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive reinforcement learning (RL) algorithms. We propose meta-reasoning for energy efficiency of multigoal RL, a hardware-aware framework that incorporates low-power preprocessing solutions and meta-reasoning to enable deployment of multigoal RL on tiny autonomous devices. For this aim, a meta-level is proposed to allocate resources efficiently in real time by switching between models with different complexities. Moreover, squeezed-edge you only look once (YOLO) is proposed for energy-efficient object detection in the preprocessing phase. For the experimental results, the proposed squeezed-edge YOLO was deployed on board a tiny drone named Crazyflie with a GAP8 processor that includes eight parallel RISC-V cluster cores. We compared latency and power consumption of squeezed-edge YOLO and a lighter convolutional neural network (CNN)-based model while deploying them separately on board on GAP8. The experimental results show squeezed-edge YOLO is 8× smaller than previous work and consumes 541 mW on GAP8 with inference latency of 130 ms. |
---|---|
AbstractList | Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive reinforcement learning (RL) algorithms. We propose meta-reasoning for energy efficiency of multigoal RL, a hardware-aware framework that incorporates low-power preprocessing solutions and meta-reasoning to enable deployment of multigoal RL on tiny autonomous devices. For this aim, a meta-level is proposed to allocate resources efficiently in real time by switching between models with different complexities. Moreover, squeezed-edge you only look once (YOLO) is proposed for energy-efficient object detection in the preprocessing phase. For the experimental results, the proposed squeezed-edge YOLO was deployed on board a tiny drone named Crazyflie with a GAP8 processor that includes eight parallel RISC-V cluster cores. We compared latency and power consumption of squeezed-edge YOLO and a lighter convolutional neural network (CNN)-based model while deploying them separately on board on GAP8. The experimental results show squeezed-edge YOLO is 8× smaller than previous work and consumes 541 mW on GAP8 with inference latency of 130 ms. |
Author | Humes, Edward Manjunath, Tejaswini Mohsenin, Tinoosh Navardi, Mozhgan |
Author_xml | – sequence: 1 givenname: Mozhgan orcidid: 0000-0002-3521-2869 surname: Navardi fullname: Navardi, Mozhgan email: mnavard1@jhu.edu organization: Johns Hopkins University, Baltimore, MD, USA – sequence: 2 givenname: Edward orcidid: 0009-0002-3945-0116 surname: Humes fullname: Humes, Edward email: ehumes2@umbc.edu organization: University of Maryland Baltimore County, Baltimore, MD, USA – sequence: 3 givenname: Tejaswini orcidid: 0000-0001-9690-5047 surname: Manjunath fullname: Manjunath, Tejaswini email: lu48456@umbc.edu organization: Fabrx Space, Houston, TX, USA – sequence: 4 givenname: Tinoosh orcidid: 0000-0001-5551-2124 surname: Mohsenin fullname: Mohsenin, Tinoosh email: tinoosh@jhu.edu organization: Johns Hopkins University, Baltimore, MD, USA |
BookMark | eNpNkM1Lw0AQxRepYFs9e_Gw4Dnt7uzmy5uU-AEJhVoRTyHdTGJquls3KVL9591aD55mePzem-GNyEAbjYRccjbhnMXTLJsAAzERgkfA2AkZ8liEnuRSDMiQQQgeDwWckVHXrRljPrBoSL4z7IsEFukNXZrPwpb0IHgLLDqjG13TyliaaLT13kuqqlEN6p5mu7ZvalO0dIGNdojCzUFPsbC_rpemf6NPHzvELyy9pKyRvpodnet2T1Nj3t2m8JycVkXb4cXfHJPnu2Q5e_DS-f3j7Db1FEjZe1zKoPJjrhgPQl-AYkUsOcAKSp-vYhBB6ZeS85WUKKvQcajQBweXQSgCJcbk-pi7tca91PX52uysdidziKI4hCgUvqOmR0pZ03UWq3xrm01h9zln-aHhPMvyQ8P5X8POcXV0NIj4j4YAXK74AYUFd30 |
CODEN | IEMIDZ |
Cites_doi | 10.1117/12.2619418 10.1145/3489517.3530472 10.1186/s40537-019-0268-2 10.1109/tits.2022.3158253 10.1109/iscas46773.2023.10181715 10.1109/access.2021.3096229 10.1109/aicas54282.2022.9869975 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/MM.2023.3318200 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1937-4143 |
EndPage | 39 |
ExternalDocumentID | 10_1109_MM_2023_3318200 10262288 |
Genre | orig-research |
GroupedDBID | -DZ -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ACGFO ACGFS ACGOD ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ C1A CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL OHT P2P PQQKQ RIA RIC RIE RIG RNI RNS RZB TAE TN5 TWZ VH1 YZZ ZCG AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c244t-1446f591c0167532c0a94122b2d51b9236d5d411b44e4f71c0ece52167d6736c3 |
IEDL.DBID | RIE |
ISSN | 0272-1732 |
IngestDate | Thu Oct 10 17:08:25 EDT 2024 Thu Sep 26 17:57:46 EDT 2024 Mon Nov 04 12:09:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-1446f591c0167532c0a94122b2d51b9236d5d411b44e4f71c0ece52167d6736c3 |
ORCID | 0000-0001-5551-2124 0009-0002-3945-0116 0000-0001-9690-5047 0000-0002-3521-2869 |
PQID | 2889728735 |
PQPubID | 37061 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_MM_2023_3318200 proquest_journals_2889728735 ieee_primary_10262288 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Los Alamitos |
PublicationPlace_xml | – name: Los Alamitos |
PublicationTitle | IEEE MICRO |
PublicationTitleAbbrev | MM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref8 Schaul (ref9) 2015 Ren (ref10) 2022 ref12 ref4 Navardi (ref3) 2022 Kaiming (ref11) 2014 ref6 ref5 ref2 ref1 Manjunath (ref7) 2023 |
References_xml | – ident: ref5 doi: 10.1117/12.2619418 – start-page: 1312 volume-title: Proc. IEEE Int. Conf. Mach. Learn. year: 2015 ident: ref9 article-title: Universal value function approximators contributor: fullname: Schaul – ident: ref2 doi: 10.1145/3489517.3530472 – volume-title: Proc. 37th AAAI Conf. Artif. Intell., 1st Reinforcement Learn. Ready Prod. Workshop year: 2023 ident: ref7 article-title: ReProHRL: Towards multi-goal navigation in the real world using hierarchical agents contributor: fullname: Manjunath – ident: ref1 doi: 10.1186/s40537-019-0268-2 – ident: ref4 doi: 10.1109/tits.2022.3158253 – start-page: 346 volume-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition year: 2014 ident: ref11 contributor: fullname: Kaiming – ident: ref6 doi: 10.1109/iscas46773.2023.10181715 – ident: ref8 doi: 10.1109/access.2021.3096229 – ident: ref12 doi: 10.1109/aicas54282.2022.9869975 – volume-title: Proc. 3rd Workshop Closing Reality Gap Sim2Real Transfer Robot., Sci. Syst. (RSS) year: 2022 ident: ref3 article-title: Toward real-world implementation of deep reinforcement learning for vision-based autonomous drone navigation with mission contributor: fullname: Navardi – year: 2022 ident: ref10 article-title: Towards an interpretable hierarchical agent framework using semantic goals contributor: fullname: Ren |
SSID | ssj0005208 |
Score | 2.4445279 |
Snippet | Meta-reasoning shows promise in efficiently using the computational resources of tiny edge devices while performing highly computationally intensive... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 29 |
SubjectTerms | Algorithms Artificial neural networks Computational modeling Energy efficiency Image edge detection Laser radar Machine learning Microprocessors Object detection Object recognition Power consumption Power management Preprocessing Reasoning Reinforcement learning RISC Sensors |
Title | MetaE2RL: Toward Meta-Reasoning for Energy-Efficient Multigoal Reinforcement Learning With Squeezed-Edge You Only Look Once |
URI | https://ieeexplore.ieee.org/document/10262288 https://www.proquest.com/docview/2889728735 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6uJy-ujxXXFzl48JLa5tFsvYlURKzCquittMl0FWVXtHtQ_7yTtAurIngLIU1CJpl8k858Q8i-A8ncArDSsd1KCYINikHIjNaVKiodq8J7-V7GZ7fy_F7dt8HqPhYGALzzGQSu6P_l24mZuqcyPOHYMR8MOqSjk6QJ1pr35_Bql2vOIi14y-MThclhlgUuS3gghKMrD79dQT6nyi9F7G-X0y65nM2rcSp5CqZ1GZiPH5SN_574CllucSY9bjbGKlmA8RrpznI40PZIr5PPDOoi5cOLI3rjPWipq2BDKN78Qy1FUEtTHyDIUk83gSNRH7Y7muAAQ_DUq8a_MtKWrXVE7x7rB3rtrOQPsCy1I6CoV-jV-PmdXiCux5KBHrk9TW9OzlibkIEZRAE1c7ZjpZLIuNgFJbgJi0RGnJfcqqhEqBhbZWUUlShzWWlsBwYQH8TaOvcxIzbI4ngyhk1ChZUlqgYJaF7KouIImw1ioVAUKowRlPTJwUxG-UvDu5F7eyVM8izLnTjzVpx90nMrPtesWew-2ZkJNW8P5luO9YlGK1GorT8-2yZLrvcm3nCHLNavU9hF4FGXe37DfQFQHtJr |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BONBLw6OItAV84MDFy64f--CG0FYBskEKichttWvPpgiUVM3m0PLnO_ZupBZUiZtledeWxx5_Y898A_DWgWRhEXnt2G6VQsnTKg25SZJGV00S68p7-U7j8UJ9WeplH6zuY2EQ0TufYeCK_i3fbszOXZXRDqcfizR9CI8IWKdxF65126PDK16RCB4lUvRMPlGYvS-KwOUJD6R0hOXhnUPIZ1X5RxX78-VsCNP9yDq3kl_Brq0Dc_0XaeN_D_0JHPZIk33slsZTeIDrZzDcZ3Fg_aZ-Dn8KbKtczCYf2Nz70DJXwWdYbf1VLSNYy3IfIshzTzhBPTEfuLvaUAcz9OSrxt8zsp6vdcV-_GzP2XdnJ1-j5bldISPNwr6tf1-xCSF7Khk8gsVZPv805n1KBm4IB7TcWY-NziLjohe0FCasMhUJUQuro5rAYmy1VVFUk9RVk1A7NEgIIU6scyAz8gUM1ps1vgQmrapJOSgkA1NVjSDgbAgNhbLSYUywZATv9jIqLzrmjdJbLGFWFkXpxFn24hzBkZvxW826yR7B6V6oZb81tyXVZwnZiVIf3_PZG3g8nheTcvJ5-vUEDlxPXfThKQzayx2-IhjS1q_94rsBfFfVtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaE2RL%3A+Toward+Meta-Reasoning+for+Energy-Efficient+Multigoal+Reinforcement+Learning+With+Squeezed-Edge+You+Only+Look+Once&rft.jtitle=IEEE+MICRO&rft.au=Navardi%2C+Mozhgan&rft.au=Humes%2C+Edward&rft.au=Manjunath%2C+Tejaswini&rft.au=Mohsenin%2C+Tinoosh&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0272-1732&rft.eissn=1937-4143&rft.volume=43&rft.issue=6&rft.spage=29&rft_id=info:doi/10.1109%2FMM.2023.3318200&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-1732&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-1732&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-1732&client=summon |