Quantized Distributed Federated Learning for Industrial Internet of Things
Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which is a crucial enabler to implement artificial intelligence (AI) at the edge of the Industrial Internet of Things (IIoT) scenario. Distributed...
Saved in:
Published in | IEEE internet of things journal Vol. 10; no. 4; pp. 3027 - 3036 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which is a crucial enabler to implement artificial intelligence (AI) at the edge of the Industrial Internet of Things (IIoT) scenario. Distributed FL (DFL) based on Device-to-Device (D2D) communications can solve the single point of failure and scaling issue of centralized FL, but subject to the communication resource limitation of D2D links. Thus, it is crucial to reduce the data transmission volume of FL models between devices. In this article, we propose a quantization-based DFL (Q-DFL) mechanism in a D2D network and prove its convergence. Q-DFL contains two phases: 1) in phase I, a local model is trained with the stochastic gradient descent (SGD) algorithm on each IIoT device and then exchanges the quantified model parameters between neighboring nodes and 2) in phase II, a quantitative consensus mechanism is designed to ensure the local models converge to the same global model. We also propose an adaptive stopping mechanism and a synchronization protocol to fulfill the phase transition from phase I to phase II. Simulation results reveal that with Q-DFL, a 1-bit quantizer can be employed without affecting the model convergence at the price of slight accuracy reduction, which achieves significant transmission bandwidth saving. Further simulation of Q-DFL for the MobileNet model is fulfilled with different quantization bit levels, which reveals their performance tradeoff among the system information flow consumption, the system time delay, and the system energy cost. |
---|---|
AbstractList | Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which is a crucial enabler to implement artificial intelligence (AI) at the edge of the Industrial Internet of Things (IIoT) scenario. Distributed FL (DFL) based on Device-to-Device (D2D) communications can solve the single point of failure and scaling issue of centralized FL, but subject to the communication resource limitation of D2D links. Thus, it is crucial to reduce the data transmission volume of FL models between devices. In this article, we propose a quantization-based DFL (Q-DFL) mechanism in a D2D network and prove its convergence. Q-DFL contains two phases: 1) in phase I, a local model is trained with the stochastic gradient descent (SGD) algorithm on each IIoT device and then exchanges the quantified model parameters between neighboring nodes and 2) in phase II, a quantitative consensus mechanism is designed to ensure the local models converge to the same global model. We also propose an adaptive stopping mechanism and a synchronization protocol to fulfill the phase transition from phase I to phase II. Simulation results reveal that with Q-DFL, a 1-bit quantizer can be employed without affecting the model convergence at the price of slight accuracy reduction, which achieves significant transmission bandwidth saving. Further simulation of Q-DFL for the MobileNet model is fulfilled with different quantization bit levels, which reveals their performance tradeoff among the system information flow consumption, the system time delay, and the system energy cost. |
Author | Ma, Teng Wang, Haibo Li, Chong |
Author_xml | – sequence: 1 givenname: Teng orcidid: 0000-0001-9301-0934 surname: Ma fullname: Ma, Teng email: 19120095@bjtu.edu.cn organization: Research Institute of Broadband Wireless Mobile Communication, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Haibo orcidid: 0000-0002-3024-6250 surname: Wang fullname: Wang, Haibo email: hbwang@bjtu.edu.cn organization: Research Institute of Broadband Wireless Mobile Communication, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Chong surname: Li fullname: Li, Chong email: cl3607@columbia.edu organization: Department of Electrical Engineering, Columbia University, New York, NY, USA |
BookMark | eNp9kMFKAzEQhoNUsNY-gHhZ8Lw1mewm3aNUq5VCEeo5ZNOJptRszWYP-vRmaRHxIAzMf_i-GfjPycA3Hgm5ZHTCGK1unhar9QQosAlnvJISTsgQOMi8EAIGv_IZGbftllKatJJVYkienjvto_vCTXbn2hhc3cWU57jBoPu0RB2886-ZbUK28Juuh_QuxYjBY8wam63fEtBekFOrdy2Oj3tEXub369ljvlw9LGa3y9xAUZQ5oJiWWBgL3BguEeo0IBkXtJYW5KYQVtfcSIuiFiBhWmtJDS2NrUoQmo_I9eHuPjQfHbZRbZsu-PRSgZQF5wUIkSh5oExo2jagVcZFHV3jY9BupxhVfXeq70713aljd8lkf8x9cO86fP7rXB0ch4g_fCWETAL_BkiCe5g |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_TCOMM_2024_3435072 crossref_primary_10_32604_cmc_2023_036505 crossref_primary_10_3390_electronics13234744 crossref_primary_10_1016_j_comcom_2023_12_014 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_1109_ACCESS_2021_3087410 crossref_primary_10_1016_j_suscom_2025_101087 crossref_primary_10_1109_COMST_2023_3315746 crossref_primary_10_1109_TWC_2023_3297790 |
Cites_doi | 10.1109/JSAC.2019.2904348 10.1109/INFOCOM42981.2021.9488679 10.1109/SPAWC48557.2020.9154332 10.1109/WCSP49889.2020.9299798 10.1109/MIE.2016.2618724 10.1109/CAMAD50429.2020.9209305 10.1109/TWC.2020.3024629 10.1073/pnas.2024789118 10.1145/3298981 10.1109/TAC.2010.2052384 10.4018/978-1-60566-766-9 10.1109/INFOCOMWKSHPS51825.2021.9484526 10.1109/JPROC.2006.887293 10.1109/JIOT.2020.2964162 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2021.3139772 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 3036 |
ExternalDocumentID | 10_1109_JIOT_2021_3139772 9667110 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2019JBZ001 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2445-2e685e4cf23cc37e2be2b271360b7f27d46fab3c7fe6b62728ba70c05cf9526a3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 13:17:10 EDT 2025 Tue Jul 01 04:08:16 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Wed Aug 27 02:18:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2445-2e685e4cf23cc37e2be2b271360b7f27d46fab3c7fe6b62728ba70c05cf9526a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3024-6250 0000-0001-9301-0934 |
PQID | 2774334266 |
PQPubID | 2040421 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2774334266 crossref_citationtrail_10_1109_JIOT_2021_3139772 ieee_primary_9667110 crossref_primary_10_1109_JIOT_2021_3139772 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Chen (ref9) 2020 McMahan (ref15) Li (ref19) 2020 ref2 Konečný (ref10) 2016 ref1 ref17 ref16 (ref24) 2018 He (ref12) 2020 ref23 ref20 Salehi (ref14) 2020 ref21 (ref25) 2012 Koloskova (ref18) 2019 ref8 ref7 ref4 ref3 ref6 ref5 Howard (ref22) 2017 Hsieh (ref11) |
References_xml | – year: 2020 ident: ref19 article-title: Blockchain assisted decentralized federated learning (BLADE-FL) with lazy clients publication-title: arXiv:2012.02044 – ident: ref7 doi: 10.1109/JSAC.2019.2904348 – ident: ref8 doi: 10.1109/INFOCOM42981.2021.9488679 – volume-title: Dog Breed Identification year: 2018 ident: ref24 – ident: ref17 doi: 10.1109/SPAWC48557.2020.9154332 – ident: ref13 doi: 10.1109/WCSP49889.2020.9299798 – ident: ref1 doi: 10.1109/MIE.2016.2618724 – year: 2020 ident: ref12 article-title: CosSGD: Nonlinear quantization for communication-efficient federated learning publication-title: arXiv:2012.08241 – start-page: 629 volume-title: Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI) ident: ref11 article-title: Gaia: Geo-distributed machine learning approaching LAN speeds – year: 2016 ident: ref10 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv:1610.05492 – ident: ref16 doi: 10.1109/CAMAD50429.2020.9209305 – ident: ref4 doi: 10.1109/TWC.2020.3024629 – ident: ref6 doi: 10.1073/pnas.2024789118 – ident: ref2 doi: 10.1145/3298981 – year: 2020 ident: ref14 article-title: Federated learning in unreliable and resource-constrained cellular wireless networks publication-title: arXiv:2012.05137 – volume-title: Bluetooth Low Energy year: 2012 ident: ref25 – year: 2017 ident: ref22 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – year: 2019 ident: ref18 article-title: Decentralized stochastic optimization and gossip algorithms with compressed communication publication-title: arXiv:1902.00340 – ident: ref21 doi: 10.1109/TAC.2010.2052384 – ident: ref23 doi: 10.4018/978-1-60566-766-9 – start-page: 1273 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref15 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref5 doi: 10.1109/INFOCOMWKSHPS51825.2021.9484526 – year: 2020 ident: ref9 article-title: To talk or to work: Energy efficient federated learning over mobile devices via the weight quantization and 5G transmission co-design publication-title: arXiv:2012.11070 – ident: ref20 doi: 10.1109/JPROC.2006.887293 – ident: ref3 doi: 10.1109/JIOT.2020.2964162 |
SSID | ssj0001105196 |
Score | 2.325692 |
Snippet | Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3027 |
SubjectTerms | Adaptation models Algorithms Artificial intelligence Collaborative work Consensus protocol Convergence Data models Data transmission Deep learning Device-to-Device (D2D) communication Device-to-device communication distributed federated learning (DFL) Energy costs Federated learning Industrial applications Industrial Internet of Things Information flow Internet of Things Machine learning Measurement Phase transitions quantization Quantization (signal) Synchronism Training |
Title | Quantized Distributed Federated Learning for Industrial Internet of Things |
URI | https://ieeexplore.ieee.org/document/9667110 https://www.proquest.com/docview/2774334266 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qyYtvsb7IwZO4NY9NtnsUtdRCFUGht2WTnYgorejupb_ezG62xQci5JBDAmEmyXyTzMxHyImQ_pLTSkXe2LEoBi2jXOQqSo0svHlLuatJ-0a3evAYD8dqvETO5rkwAFAHn0EXu_VffjG1FT6VnXtonnDMp1r2jluTq7V4T-EIRnT4uOQsPR_e3D14B1Bw75cizBFfTE_NpfLjAq6tSn-djNr1NMEkL92qNF07-1aq8b8L3iBrAV7Si2Y_bJIlmGyR9Za6gYaTvE2G95UX6fMMCnqFpXOR9cr3-1haIsdeqLv6RD2opQt-D9q8IEJJp442nJ875LF__XA5iAKtQmS9LVeRAN1TEFsnpLUyAWF8E95Z1cwkTiRFrF1upE0caKNFInomT5hlyrpUCZ3LXbIymU5gj9CiyJlVMoWY25jzIu85zMm0znAGDHSHsFbimQ01x5H64jWrfQ-WZqikDJWUBSV1yOl8yltTcOOvwdso9PnAIO8OOWzVmoUj-ZEJD3SlRECy__usA7KKXPIYks3VIVkp3ys48oijNMf1VvsEihvSeg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOJQLFCgilIcPPVVs4sfamz0i2iikhKpSIuW2WnvHCIESRJMLv76eXSdRS4WQfPDBlqwZ2_ONPTMfwBepwiVntE6CseNJikYlpSx1kltVBfOWC1-T9g1vTX-cDiZ6sgEXq1wYRKyDz7BN3fovv5q5BT2VdQI0zwTlU20Fu69Fk621flERBEdM_LoUPO8Mrn-OggsoRfBMCejIv4xPzaby6gqu7UpvF4bLFTXhJA_txdy23cs_xRrfu-SPsBMBJrtsdsQebOB0H3aX5A0snuUDGPxaBKHev2DFvlHxXOK9Cv0eFZcoqRcrr96xAGvZmuGDNW-IOGczzxrWz08w7n0fXfWTSKyQuGDNdSLRdDWmzkvlnMpQ2tBkcFcNt5mXWZUaX1rlMo_GGpnJri0z7rh2PtfSlOoQNqezKR4Bq6qSO61yTIVLhajKrqesTOet4MjRtIAvJV64WHWcyC8ei9r74HlBSipISUVUUgu-rqY8NSU33hp8QEJfDYzybsHJUq1FPJS_CxmgrlIESY7_P-scPvRHw5vi5vr2x2fYJmZ5CtAW-gQ2588LPA34Y27P6m33B6091cM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+Distributed+Federated+Learning+for+Industrial+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Ma%2C+Teng&rft.au=Wang%2C+Haibo&rft.au=Li%2C+Chong&rft.date=2023-02-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=10&rft.issue=4&rft.spage=3027&rft.epage=3036&rft_id=info:doi/10.1109%2FJIOT.2021.3139772&rft.externalDocID=9667110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |