Quantized Distributed Federated Learning for Industrial Internet of Things

Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which is a crucial enabler to implement artificial intelligence (AI) at the edge of the Industrial Internet of Things (IIoT) scenario. Distributed...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 10; no. 4; pp. 3027 - 3036
Main Authors Ma, Teng, Wang, Haibo, Li, Chong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which is a crucial enabler to implement artificial intelligence (AI) at the edge of the Industrial Internet of Things (IIoT) scenario. Distributed FL (DFL) based on Device-to-Device (D2D) communications can solve the single point of failure and scaling issue of centralized FL, but subject to the communication resource limitation of D2D links. Thus, it is crucial to reduce the data transmission volume of FL models between devices. In this article, we propose a quantization-based DFL (Q-DFL) mechanism in a D2D network and prove its convergence. Q-DFL contains two phases: 1) in phase I, a local model is trained with the stochastic gradient descent (SGD) algorithm on each IIoT device and then exchanges the quantified model parameters between neighboring nodes and 2) in phase II, a quantitative consensus mechanism is designed to ensure the local models converge to the same global model. We also propose an adaptive stopping mechanism and a synchronization protocol to fulfill the phase transition from phase I to phase II. Simulation results reveal that with Q-DFL, a 1-bit quantizer can be employed without affecting the model convergence at the price of slight accuracy reduction, which achieves significant transmission bandwidth saving. Further simulation of Q-DFL for the MobileNet model is fulfilled with different quantization bit levels, which reveals their performance tradeoff among the system information flow consumption, the system time delay, and the system energy cost.
AbstractList Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which is a crucial enabler to implement artificial intelligence (AI) at the edge of the Industrial Internet of Things (IIoT) scenario. Distributed FL (DFL) based on Device-to-Device (D2D) communications can solve the single point of failure and scaling issue of centralized FL, but subject to the communication resource limitation of D2D links. Thus, it is crucial to reduce the data transmission volume of FL models between devices. In this article, we propose a quantization-based DFL (Q-DFL) mechanism in a D2D network and prove its convergence. Q-DFL contains two phases: 1) in phase I, a local model is trained with the stochastic gradient descent (SGD) algorithm on each IIoT device and then exchanges the quantified model parameters between neighboring nodes and 2) in phase II, a quantitative consensus mechanism is designed to ensure the local models converge to the same global model. We also propose an adaptive stopping mechanism and a synchronization protocol to fulfill the phase transition from phase I to phase II. Simulation results reveal that with Q-DFL, a 1-bit quantizer can be employed without affecting the model convergence at the price of slight accuracy reduction, which achieves significant transmission bandwidth saving. Further simulation of Q-DFL for the MobileNet model is fulfilled with different quantization bit levels, which reveals their performance tradeoff among the system information flow consumption, the system time delay, and the system energy cost.
Author Ma, Teng
Wang, Haibo
Li, Chong
Author_xml – sequence: 1
  givenname: Teng
  orcidid: 0000-0001-9301-0934
  surname: Ma
  fullname: Ma, Teng
  email: 19120095@bjtu.edu.cn
  organization: Research Institute of Broadband Wireless Mobile Communication, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Haibo
  orcidid: 0000-0002-3024-6250
  surname: Wang
  fullname: Wang, Haibo
  email: hbwang@bjtu.edu.cn
  organization: Research Institute of Broadband Wireless Mobile Communication, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Chong
  surname: Li
  fullname: Li, Chong
  email: cl3607@columbia.edu
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
BookMark eNp9kMFKAzEQhoNUsNY-gHhZ8Lw1mewm3aNUq5VCEeo5ZNOJptRszWYP-vRmaRHxIAzMf_i-GfjPycA3Hgm5ZHTCGK1unhar9QQosAlnvJISTsgQOMi8EAIGv_IZGbftllKatJJVYkienjvto_vCTXbn2hhc3cWU57jBoPu0RB2886-ZbUK28Juuh_QuxYjBY8wam63fEtBekFOrdy2Oj3tEXub369ljvlw9LGa3y9xAUZQ5oJiWWBgL3BguEeo0IBkXtJYW5KYQVtfcSIuiFiBhWmtJDS2NrUoQmo_I9eHuPjQfHbZRbZsu-PRSgZQF5wUIkSh5oExo2jagVcZFHV3jY9BupxhVfXeq70713aljd8lkf8x9cO86fP7rXB0ch4g_fCWETAL_BkiCe5g
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3435072
crossref_primary_10_32604_cmc_2023_036505
crossref_primary_10_3390_electronics13234744
crossref_primary_10_1016_j_comcom_2023_12_014
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_1109_ACCESS_2021_3087410
crossref_primary_10_1016_j_suscom_2025_101087
crossref_primary_10_1109_COMST_2023_3315746
crossref_primary_10_1109_TWC_2023_3297790
Cites_doi 10.1109/JSAC.2019.2904348
10.1109/INFOCOM42981.2021.9488679
10.1109/SPAWC48557.2020.9154332
10.1109/WCSP49889.2020.9299798
10.1109/MIE.2016.2618724
10.1109/CAMAD50429.2020.9209305
10.1109/TWC.2020.3024629
10.1073/pnas.2024789118
10.1145/3298981
10.1109/TAC.2010.2052384
10.4018/978-1-60566-766-9
10.1109/INFOCOMWKSHPS51825.2021.9484526
10.1109/JPROC.2006.887293
10.1109/JIOT.2020.2964162
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3139772
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 3036
ExternalDocumentID 10_1109_JIOT_2021_3139772
9667110
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019JBZ001
  funderid: 10.13039/501100012226
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2445-2e685e4cf23cc37e2be2b271360b7f27d46fab3c7fe6b62728ba70c05cf9526a3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 13:17:10 EDT 2025
Tue Jul 01 04:08:16 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Wed Aug 27 02:18:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2445-2e685e4cf23cc37e2be2b271360b7f27d46fab3c7fe6b62728ba70c05cf9526a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3024-6250
0000-0001-9301-0934
PQID 2774334266
PQPubID 2040421
PageCount 10
ParticipantIDs proquest_journals_2774334266
crossref_citationtrail_10_1109_JIOT_2021_3139772
ieee_primary_9667110
crossref_primary_10_1109_JIOT_2021_3139772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Chen (ref9) 2020
McMahan (ref15)
Li (ref19) 2020
ref2
Konečný (ref10) 2016
ref1
ref17
ref16
(ref24) 2018
He (ref12) 2020
ref23
ref20
Salehi (ref14) 2020
ref21
(ref25) 2012
Koloskova (ref18) 2019
ref8
ref7
ref4
ref3
ref6
ref5
Howard (ref22) 2017
Hsieh (ref11)
References_xml – year: 2020
  ident: ref19
  article-title: Blockchain assisted decentralized federated learning (BLADE-FL) with lazy clients
  publication-title: arXiv:2012.02044
– ident: ref7
  doi: 10.1109/JSAC.2019.2904348
– ident: ref8
  doi: 10.1109/INFOCOM42981.2021.9488679
– volume-title: Dog Breed Identification
  year: 2018
  ident: ref24
– ident: ref17
  doi: 10.1109/SPAWC48557.2020.9154332
– ident: ref13
  doi: 10.1109/WCSP49889.2020.9299798
– ident: ref1
  doi: 10.1109/MIE.2016.2618724
– year: 2020
  ident: ref12
  article-title: CosSGD: Nonlinear quantization for communication-efficient federated learning
  publication-title: arXiv:2012.08241
– start-page: 629
  volume-title: Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI)
  ident: ref11
  article-title: Gaia: Geo-distributed machine learning approaching LAN speeds
– year: 2016
  ident: ref10
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv:1610.05492
– ident: ref16
  doi: 10.1109/CAMAD50429.2020.9209305
– ident: ref4
  doi: 10.1109/TWC.2020.3024629
– ident: ref6
  doi: 10.1073/pnas.2024789118
– ident: ref2
  doi: 10.1145/3298981
– year: 2020
  ident: ref14
  article-title: Federated learning in unreliable and resource-constrained cellular wireless networks
  publication-title: arXiv:2012.05137
– volume-title: Bluetooth Low Energy
  year: 2012
  ident: ref25
– year: 2017
  ident: ref22
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– year: 2019
  ident: ref18
  article-title: Decentralized stochastic optimization and gossip algorithms with compressed communication
  publication-title: arXiv:1902.00340
– ident: ref21
  doi: 10.1109/TAC.2010.2052384
– ident: ref23
  doi: 10.4018/978-1-60566-766-9
– start-page: 1273
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref15
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref5
  doi: 10.1109/INFOCOMWKSHPS51825.2021.9484526
– year: 2020
  ident: ref9
  article-title: To talk or to work: Energy efficient federated learning over mobile devices via the weight quantization and 5G transmission co-design
  publication-title: arXiv:2012.11070
– ident: ref20
  doi: 10.1109/JPROC.2006.887293
– ident: ref3
  doi: 10.1109/JIOT.2020.2964162
SSID ssj0001105196
Score 2.325692
Snippet Federated learning (FL) enables multiple devices to collaboratively train a shared machine learning (ML) model while keeping all the local data private, which...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3027
SubjectTerms Adaptation models
Algorithms
Artificial intelligence
Collaborative work
Consensus protocol
Convergence
Data models
Data transmission
Deep learning
Device-to-Device (D2D) communication
Device-to-device communication
distributed federated learning (DFL)
Energy costs
Federated learning
Industrial applications
Industrial Internet of Things
Information flow
Internet of Things
Machine learning
Measurement
Phase transitions
quantization
Quantization (signal)
Synchronism
Training
Title Quantized Distributed Federated Learning for Industrial Internet of Things
URI https://ieeexplore.ieee.org/document/9667110
https://www.proquest.com/docview/2774334266
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qyYtvsb7IwZO4NY9NtnsUtdRCFUGht2WTnYgorejupb_ezG62xQci5JBDAmEmyXyTzMxHyImQ_pLTSkXe2LEoBi2jXOQqSo0svHlLuatJ-0a3evAYD8dqvETO5rkwAFAHn0EXu_VffjG1FT6VnXtonnDMp1r2jluTq7V4T-EIRnT4uOQsPR_e3D14B1Bw75cizBFfTE_NpfLjAq6tSn-djNr1NMEkL92qNF07-1aq8b8L3iBrAV7Si2Y_bJIlmGyR9Za6gYaTvE2G95UX6fMMCnqFpXOR9cr3-1haIsdeqLv6RD2opQt-D9q8IEJJp442nJ875LF__XA5iAKtQmS9LVeRAN1TEFsnpLUyAWF8E95Z1cwkTiRFrF1upE0caKNFInomT5hlyrpUCZ3LXbIymU5gj9CiyJlVMoWY25jzIu85zMm0znAGDHSHsFbimQ01x5H64jWrfQ-WZqikDJWUBSV1yOl8yltTcOOvwdso9PnAIO8OOWzVmoUj-ZEJD3SlRECy__usA7KKXPIYks3VIVkp3ys48oijNMf1VvsEihvSeg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOJQLFCgilIcPPVVs4sfamz0i2iikhKpSIuW2WnvHCIESRJMLv76eXSdRS4WQfPDBlqwZ2_ONPTMfwBepwiVntE6CseNJikYlpSx1kltVBfOWC1-T9g1vTX-cDiZ6sgEXq1wYRKyDz7BN3fovv5q5BT2VdQI0zwTlU20Fu69Fk621flERBEdM_LoUPO8Mrn-OggsoRfBMCejIv4xPzaby6gqu7UpvF4bLFTXhJA_txdy23cs_xRrfu-SPsBMBJrtsdsQebOB0H3aX5A0snuUDGPxaBKHev2DFvlHxXOK9Cv0eFZcoqRcrr96xAGvZmuGDNW-IOGczzxrWz08w7n0fXfWTSKyQuGDNdSLRdDWmzkvlnMpQ2tBkcFcNt5mXWZUaX1rlMo_GGpnJri0z7rh2PtfSlOoQNqezKR4Bq6qSO61yTIVLhajKrqesTOet4MjRtIAvJV64WHWcyC8ei9r74HlBSipISUVUUgu-rqY8NSU33hp8QEJfDYzybsHJUq1FPJS_CxmgrlIESY7_P-scPvRHw5vi5vr2x2fYJmZ5CtAW-gQ2588LPA34Y27P6m33B6091cM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+Distributed+Federated+Learning+for+Industrial+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Ma%2C+Teng&rft.au=Wang%2C+Haibo&rft.au=Li%2C+Chong&rft.date=2023-02-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=10&rft.issue=4&rft.spage=3027&rft.epage=3036&rft_id=info:doi/10.1109%2FJIOT.2021.3139772&rft.externalDocID=9667110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon