Significance of variable thermal conductivity and nonuniform heating Source for Burgers nanofluid flow subject to modified thermal laws
The thermal conductivity attributes a major role to the thermal transportation and engineering processes where the fluid is used as an energy source. It has been commonly noted that much attention of research towards the heat and fluid flow is intended by keeping the fluctuation of thermal conductiv...
Saved in:
Published in | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 37; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
10.01.2023
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0217-9792 1793-6578 |
DOI | 10.1142/S0217979223500054 |
Cover
Loading…
Abstract | The thermal conductivity attributes a major role to the thermal transportation and engineering processes where the fluid is used as an energy source. It has been commonly noted that much attention of research towards the heat and fluid flow is intended by keeping the fluctuation of thermal conductivity as a constant. However, experimental results shows that most of the times, thermal conductivity changes in variation of temperature, pressure or different configurations. The prime attention of current research is to explore the role of variable thermal conductivity for thermal transport of Burgers nanofluid due to inclined surface. The Buongiorno nanofluid model is used to illustrate the Brownian motion and thermophoresis properties. The heat transfer phenomenon is analyzed by incorporating the modified Cattaneo–Christov (CC) theories. Moreover, to maintain the improved heat transfer rate, the novel nonuniform heat source applications are also utilized. After altering the governing problem into dimensionless system, homotopy analysis scheme is used with excellent accuracy. The physical pattern of velocity, heat transfer rate and concentration phenomenon are observed in view of involved parameters. It is noted that the presence of variable thermal conductivity enhanced the thermal process more effectively as compared to constant thermal conductivity assumptions. Both heat and mass transfer phenomenon enhances for Deborah number. The declining concentration change is observed with variation of concentration relaxation number. |
---|---|
AbstractList | The thermal conductivity attributes a major role to the thermal transportation and engineering processes where the fluid is used as an energy source. It has been commonly noted that much attention of research towards the heat and fluid flow is intended by keeping the fluctuation of thermal conductivity as a constant. However, experimental results shows that most of the times, thermal conductivity changes in variation of temperature, pressure or different configurations. The prime attention of current research is to explore the role of variable thermal conductivity for thermal transport of Burgers nanofluid due to inclined surface. The Buongiorno nanofluid model is used to illustrate the Brownian motion and thermophoresis properties. The heat transfer phenomenon is analyzed by incorporating the modified Cattaneo–Christov (CC) theories. Moreover, to maintain the improved heat transfer rate, the novel nonuniform heat source applications are also utilized. After altering the governing problem into dimensionless system, homotopy analysis scheme is used with excellent accuracy. The physical pattern of velocity, heat transfer rate and concentration phenomenon are observed in view of involved parameters. It is noted that the presence of variable thermal conductivity enhanced the thermal process more effectively as compared to constant thermal conductivity assumptions. Both heat and mass transfer phenomenon enhances for Deborah number. The declining concentration change is observed with variation of concentration relaxation number. |
Author | Gasmi, Hatem Al-Khaled, Kamel Hamdi, Essaieb Ghazouani, Nejib Ouazir, Abderrahmane Khan, Sami Ullah |
Author_xml | – sequence: 1 givenname: Sami Ullah surname: Khan fullname: Khan, Sami Ullah – sequence: 2 givenname: Kamel surname: Al-Khaled fullname: Al-Khaled, Kamel – sequence: 3 givenname: Hatem surname: Gasmi fullname: Gasmi, Hatem – sequence: 4 givenname: Essaieb surname: Hamdi fullname: Hamdi, Essaieb – sequence: 5 givenname: Abderrahmane surname: Ouazir fullname: Ouazir, Abderrahmane – sequence: 6 givenname: Nejib surname: Ghazouani fullname: Ghazouani, Nejib |
BookMark | eNp9kc9KAzEQxoNUsK0-gLeA59Ukm262Ry3-g4KH6nnJZidtyjapSdbSJ_C1zVLpwYKngW_mN1_yzQgNrLOA0DUlt5RydrcgjIqpmDKWTwghE36GhknIs2IiygEa9u2s71-gUQjrNFIwQYboe2GW1mijpFWAncZf0htZt4DjCvxGtlg523Qqmi8T91jaBifnLiHOb_AKZDR2iReu8wlPGn7o_BJ8wFZap9vONFi3bodDV69BRRwd3rgmGUJzdGjlLlyicy3bAFe_dYw-nh7fZy_Z_O35dXY_zxTjnGdSiILqSd3k9ZRIDYpwJoBLYIIDozlQzcqmTmrNeJkLolMGIGWpuS51WeRjdHPYu_Xus4MQq3V6u02WVVpRFqIsUoRjJA5TyrsQPOhKmZi-6mz00rQVJVWfenWSeiLpH3LrzUb6_b8MOTA759smKAM29ic5oqfID8QWl-E |
CitedBy_id | crossref_primary_10_1016_j_csite_2024_105046 crossref_primary_10_1007_s00396_024_05364_6 crossref_primary_10_1016_j_padiff_2025_101164 crossref_primary_10_1142_S0217979224503909 crossref_primary_10_1016_j_heliyon_2024_e27185 crossref_primary_10_1016_j_ijhydene_2023_06_324 crossref_primary_10_1515_phys_2024_0042 crossref_primary_10_1080_02286203_2024_2331001 crossref_primary_10_1177_0958305X231196298 |
Cites_doi | 10.1166/jon.2021.1795 10.1016/j.est.2022.105198 10.1016/j.aej.2021.07.030 10.1016/j.ijmultiphaseflow.2020.103260 10.1016/j.icheatmasstransfer.2022.105980 10.1007/s10973-020-09910-6 10.1016/j.csite.2021.101073 10.1016/j.icheatmasstransfer.2022.105885 10.1016/j.aej.2021.04.106 10.1142/8939 10.1016/j.molliq.2016.05.051 10.1016/j.cjph.2017.02.017 10.1007/s10483-017-2188-6 10.1016/j.icheatmasstransfer.2022.106019 10.1016/j.ijheatmasstransfer.2016.07.113 10.1038/s41598-022-06213-8 10.1016/j.cplett.2021.139172 10.1016/j.csite.2021.101746 10.1038/s41598-021-93748-x 10.1016/j.molliq.2021.116103 10.1038/s41598-022-14312-9 10.1515/ntrev-2022-0108 10.1016/j.aej.2020.08.012 10.1007/s13204-020-01386-y 10.1016/j.mechrescom.2008.11.003 10.1016/j.csite.2020.100828 10.1016/j.aej.2021.11.013 10.1016/j.ijmecsci.2010.09.007 10.1016/j.amc.2021.126883 10.1016/j.jics.2022.100399 10.1016/j.icheatmasstransfer.2021.105711 |
ContentType | Journal Article |
Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company |
Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0217979223500054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6578 |
ExternalDocumentID | 10_1142_S0217979223500054 S0217979223500054 |
GroupedDBID | -~X 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RNS RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c2444-a7761f5bd3b90afec0427e4ae274e213e1f28db042b248370f793eaa8f4f8f863 |
ISSN | 0217-9792 |
IngestDate | Mon Jun 30 12:43:56 EDT 2025 Tue Jul 01 02:05:44 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Fri Aug 23 08:19:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Burger nanofluid analytical approach nonuniform heat source inclined surface variable thermal conductivity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2444-a7761f5bd3b90afec0427e4ae274e213e1f28db042b248370f793eaa8f4f8f863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3454-7859 |
PQID | 2748678622 |
PQPubID | 2049856 |
ParticipantIDs | proquest_journals_2748678622 crossref_citationtrail_10_1142_S0217979223500054 crossref_primary_10_1142_S0217979223500054 worldscientific_primary_S0217979223500054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230110 2023-01-10 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230110 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics |
PublicationYear | 2023 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0217979223500054BIB030 Javid K. (S0217979223500054BIB011) 2022; 30 Liu L. (S0217979223500054BIB028) 2016; 103 S0217979223500054BIB009 S0217979223500054BIB007 Cattaneo C. (S0217979223500054BIB025) 1948; 3 S0217979223500054BIB029 S0217979223500054BIB006 S0217979223500054BIB005 Ali A. (S0217979223500054BIB008) 2021; 143 S0217979223500054BIB027 S0217979223500054BIB004 Elmaboud Y. A. (S0217979223500054BIB020) 2020; 59 S0217979223500054BIB026 S0217979223500054BIB003 S0217979223500054BIB002 Javaid M. (S0217979223500054BIB023) 2022; 61 Li X. Y. (S0217979223500054BIB010) 2022; 61 (S0217979223500054BIB014) 2022; 12 Waqas H. (S0217979223500054BIB022) 2021; 11 Nazir U. (S0217979223500054BIB012) 2022; 12 Fourier J. B. J. (S0217979223500054BIB024) 1822 Iqbal Z. (S0217979223500054BIB021) 2020; 10 S0217979223500054BIB019 Khan S. U. (S0217979223500054BIB034) 2021; 26 S0217979223500054BIB018 S0217979223500054BIB017 S0217979223500054BIB016 S0217979223500054BIB015 S0217979223500054BIB013 S0217979223500054BIB033 S0217979223500054BIB032 S0217979223500054BIB031 |
References_xml | – volume: 3 start-page: 83 year: 1948 ident: S0217979223500054BIB025 publication-title: Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia – ident: S0217979223500054BIB003 doi: 10.1166/jon.2021.1795 – ident: S0217979223500054BIB015 doi: 10.1016/j.est.2022.105198 – volume: 61 start-page: 2484 year: 2022 ident: S0217979223500054BIB010 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.07.030 – ident: S0217979223500054BIB002 doi: 10.1016/j.ijmultiphaseflow.2020.103260 – ident: S0217979223500054BIB017 doi: 10.1016/j.icheatmasstransfer.2022.105980 – volume: 143 start-page: 2367 year: 2021 ident: S0217979223500054BIB008 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09910-6 – volume: 26 start-page: 101073 year: 2021 ident: S0217979223500054BIB034 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101073 – volume-title: Théorie Analytique De La Chaleur year: 1822 ident: S0217979223500054BIB024 – ident: S0217979223500054BIB018 doi: 10.1016/j.icheatmasstransfer.2022.105885 – volume: 61 start-page: 17 year: 2022 ident: S0217979223500054BIB023 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.106 – ident: S0217979223500054BIB032 doi: 10.1142/8939 – ident: S0217979223500054BIB027 doi: 10.1016/j.molliq.2016.05.051 – ident: S0217979223500054BIB019 doi: 10.1016/j.cjph.2017.02.017 – ident: S0217979223500054BIB029 doi: 10.1007/s10483-017-2188-6 – ident: S0217979223500054BIB016 doi: 10.1016/j.icheatmasstransfer.2022.106019 – volume: 103 start-page: 1191 year: 2016 ident: S0217979223500054BIB028 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.07.113 – volume: 12 start-page: 2335 year: 2022 ident: S0217979223500054BIB014 publication-title: Sci. Rep. doi: 10.1038/s41598-022-06213-8 – ident: S0217979223500054BIB005 doi: 10.1016/j.cplett.2021.139172 – volume: 30 start-page: 101746 year: 2022 ident: S0217979223500054BIB011 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101746 – volume: 11 start-page: 14305 year: 2021 ident: S0217979223500054BIB022 publication-title: Sci. Rep. doi: 10.1038/s41598-021-93748-x – ident: S0217979223500054BIB009 doi: 10.1016/j.molliq.2021.116103 – volume: 12 start-page: 10306 year: 2022 ident: S0217979223500054BIB012 publication-title: Sci. Rep. doi: 10.1038/s41598-022-14312-9 – ident: S0217979223500054BIB013 doi: 10.1515/ntrev-2022-0108 – volume: 59 start-page: 4563 year: 2020 ident: S0217979223500054BIB020 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.08.012 – volume: 10 start-page: 5331 year: 2020 ident: S0217979223500054BIB021 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01386-y – ident: S0217979223500054BIB026 doi: 10.1016/j.mechrescom.2008.11.003 – ident: S0217979223500054BIB004 doi: 10.1016/j.csite.2020.100828 – ident: S0217979223500054BIB006 doi: 10.1016/j.aej.2021.11.013 – ident: S0217979223500054BIB033 doi: 10.1016/j.ijmecsci.2010.09.007 – ident: S0217979223500054BIB030 doi: 10.1016/j.amc.2021.126883 – ident: S0217979223500054BIB031 doi: 10.1016/j.jics.2022.100399 – ident: S0217979223500054BIB007 doi: 10.1016/j.icheatmasstransfer.2021.105711 |
SSID | ssj0006270 |
Score | 2.3686676 |
Snippet | The thermal conductivity attributes a major role to the thermal transportation and engineering processes where the fluid is used as an energy source. It has... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Brownian motion Deborah number Dimensionless analysis Fluid dynamics Fluid flow Heat conductivity Heat transfer Homotopy theory Mass transfer Nanofluids Thermal conductivity Thermal energy Thermophoresis |
Title | Significance of variable thermal conductivity and nonuniform heating Source for Burgers nanofluid flow subject to modified thermal laws |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0217979223500054 https://www.proquest.com/docview/2748678622 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2WyFxWfEUhQX5wAWqlMZx8zh2YWGFWITUrbS3yknspSgPRFqQ-AP8bWZsxwkEIZZLWo1TO818sT9P5kHIUyAduZBhAsxtwTyehdxLuM88hlGMgKjMFxiNfP4-PFvzt5eLy4PDcc9rab9LZ9n3P8aV_I9WQQZ6xSjZa2jWdQoC-A76hSNoGI7_pOPV9qpCVx_t9g-s7ytsfHUoFLK6Umf-qDCfqykQgSZy2OzvKwzGKpEiapfnlTbfa3fDEx0j3UwrUdWq2G_zqSrqb9Nmn6K1BmlqWecwoMzdCIWwrPxT5xLfWRh7eSlKU3TNWFKa2fREm2hrLMDbQH-lzvPZNmMbhjrpLNIYK9aJhaXNVuQWjI_WkivK7XQN2HZm7mXhQWNhjbqilM6n5I1oSlO0W7QWbGPLz7X0tGnEVqZ9uwhDrzDPesjq2Vf7IukJUjtd9c16w6kWNmZeEpmqfDNplgKYudAxKO6vFSZBTf-ZGC5BnOmX4NAl9siChebF3XrrvCAH5xySMYPdDhuR8fLV-buVoxQhi4yx0F6mfT0PQ70YdPIrwep2TUc6BW_jbkiPRl3cIkd2_0OXBsy3yYGs7pAbH4wy75IffUjTWtEW0tQCjvYhTQHStIM0tZCmBtIUZNRCmjpIU4Q0tZCmu5q2kHYjIKTvkfXr04uXZ56tFeJlQFC5J6Io9NUizYM0mQslM6whI7mQLOKS-YH0FYvzFKQpwyIKcwXqlULEiqtYxWFwn4zgeuUDQoMkjHgeLJJ5nnKWyVT5LIRPrvBOq3RC5u0N3mQ2kT7Wcyk2JsifbQY6mZDn7iefTRaZv5183GptYx_TZgN_IwZeGTI2Ic9-06TrctDVw2uc-4jc7B6jYzLafdnLx0C4d-kTC8efWmXaUQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+variable+thermal+conductivity+and+nonuniform+heating+Source+for+Burgers+nanofluid+flow+subject+to+modified+thermal+laws&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Khan%2C+Sami+Ullah&rft.au=Al-Khaled%2C+Kamel&rft.au=Gasmi%2C+Hatem&rft.au=Hamdi%2C+Essaieb&rft.date=2023-01-10&rft.pub=World+Scientific+Publishing+Company&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1142%2FS0217979223500054&rft.externalDocID=S0217979223500054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon |