GPT-Based Text-to-SQL for Spatial Databases
Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However,...
Saved in:
Published in | ISPRS international journal of geo-information Vol. 14; no. 8; p. 288 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2220-9964 2220-9964 |
DOI | 10.3390/ijgi14080288 |
Cover
Abstract | Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when dealing with complicated or unknown natural language questions. While advanced machine learning models can be trained, they typically require large labeled training datasets, which are severely lacking for spatial databases. Recently, Generative Pre-Trained Transformer (GPT) models have emerged as a promising paradigm for Text-to-SQL tasks in relational databases, driven by carefully designed prompts. In response to the severe lack of datasets for spatial databases, we have created a publicly available dataset that supports both English and Chinese. Furthermore, we propose a GPT-based method to construct prompts for spatial databases, which incorporates geographic and spatial database knowledge into the prompts and requires only a small number of training samples, such as 1, 3, or 5 examples. Extensive experiments demonstrate that incorporating geographic and spatial database knowledge into prompts improves the accuracy of Text-to-SQL tasks for spatial databases. Our proposed method can help non-experts access spatial databases more easily and conveniently. |
---|---|
AbstractList | Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when dealing with complicated or unknown natural language questions. While advanced machine learning models can be trained, they typically require large labeled training datasets, which are severely lacking for spatial databases. Recently, Generative Pre-Trained Transformer (GPT) models have emerged as a promising paradigm for Text-to-SQL tasks in relational databases, driven by carefully designed prompts. In response to the severe lack of datasets for spatial databases, we have created a publicly available dataset that supports both English and Chinese. Furthermore, we propose a GPT-based method to construct prompts for spatial databases, which incorporates geographic and spatial database knowledge into the prompts and requires only a small number of training samples, such as 1, 3, or 5 examples. Extensive experiments demonstrate that incorporating geographic and spatial database knowledge into prompts improves the accuracy of Text-to-SQL tasks for spatial databases. Our proposed method can help non-experts access spatial databases more easily and conveniently. |
Audience | Academic |
Author | Guo, Li Liang, Yubin Wang, Hui Liu, Le Huang, Jiajin |
Author_xml | – sequence: 1 givenname: Hui surname: Wang fullname: Wang, Hui – sequence: 2 givenname: Li surname: Guo fullname: Guo, Li – sequence: 3 givenname: Yubin surname: Liang fullname: Liang, Yubin – sequence: 4 givenname: Le surname: Liu fullname: Liu, Le – sequence: 5 givenname: Jiajin surname: Huang fullname: Huang, Jiajin |
BookMark | eNpNUcFKAzEQDVLBWnvzAwoedWuSyW6TY61aCwWV1nOYZJOS0jY1uwX9e6MVceYww-PN4_HmnHR2cecIuWR0CKDobVivAhNUUi7lCelyzmmhVCU6__Yz0m-aNc2lGEhBu-R6-rIs7rBx9WDpPtqijcXidT7wMQ0We2wDbgb32KLJjOaCnHrcNK7_O3vk7fFhOXkq5s_T2WQ8LywXghWeyUp4KazwI4kjXopagh2BqSuwxpbcVEJJqB1DMAAgEbgqHRuBKtF4Az0yO-rWEdd6n8IW06eOGPQPENNKY2qD3TjtaqO4MUoh5wI4Vbw2lUEoreNoqc9aV0etfYrvB9e0eh0PaZfta8huaU6uYpk1PLJWmEXDzsc2oc1du22wOWcfMj6WJVSKMSrywc3xwKbYNMn5P5uM6u936P_vgC8RmHsl |
Cites_doi | 10.1080/10095020.2025.2505556 10.3115/1117794.1117811 10.1007/s10707-023-00494-5 10.18653/v1/D19-1377 10.18653/v1/2021.acl-long.75 10.3390/ijgi14070256 10.1080/17538947.2025.2509812 10.1145/3737873 10.18653/v1/2020.acl-main.398 10.18653/v1/2022.deelio-1.10 10.18653/v1/2023.findings-emnlp.996 10.3390/ijgi13010026 10.1177/2053951716661366 10.1145/3589132.3625600 10.18653/v1/2021.acl-long.195 10.18653/v1/D18-1425 10.1016/j.knosys.2025.113624 10.14778/3641204.3641221 10.1145/3609956.3609974 10.18653/v1/2020.emnlp-main.562 10.1109/TKDE.2025.3592032 10.18653/v1/2020.acl-main.745 10.1007/s10707-023-00496-3 10.1007/978-981-99-7022-3_23 10.18653/v1/2021.emnlp-main.702 10.18653/v1/2023.findings-emnlp.227 10.1145/3347146.3359069 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/ijgi14080288 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Visual Arts |
EISSN | 2220-9964 |
ExternalDocumentID | oai_doaj_org_article_edb92bb99a22432092db6ba35ce2ac0f A853691104 10_3390_ijgi14080288 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ZBA PUEGO 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c2441-f1864f84c4f78a7254d83c73bd63cbc52b64983de1a3b3338a3295e17395abfb3 |
IEDL.DBID | BENPR |
ISSN | 2220-9964 |
IngestDate | Mon Sep 01 19:40:19 EDT 2025 Thu Aug 28 04:06:51 EDT 2025 Tue Sep 02 03:58:17 EDT 2025 Thu Jul 31 00:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2441-f1864f84c4f78a7254d83c73bd63cbc52b64983de1a3b3338a3295e17395abfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3244039061?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3244039061 |
PQPubID | 2032387 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_edb92bb99a22432092db6ba35ce2ac0f proquest_journals_3244039061 gale_infotracacademiconefile_A853691104 crossref_primary_10_3390_ijgi14080288 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-24 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | ISPRS international journal of geo-information |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_36 ref_13 ref_12 ref_34 ref_11 ref_10 ref_32 Hou (ref_38) 2025; 319 ref_31 ref_30 ref_19 ref_18 ref_17 ref_39 ref_16 Gao (ref_33) 2024; 17 ref_15 Leszczynski (ref_1) 2016; 3 Hou (ref_37) 2025; 138 Wang (ref_27) 2024; 28 Choi (ref_21) 2021; 47 Wang (ref_4) 2023; 27 ref_25 ref_24 ref_23 ref_22 ref_20 Hou (ref_35) 2025; 18 ref_41 ref_40 ref_3 ref_2 ref_29 ref_28 ref_26 ref_9 ref_8 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_36 doi: 10.1080/10095020.2025.2505556 – ident: ref_9 doi: 10.3115/1117794.1117811 – volume: 27 start-page: 427 year: 2023 ident: ref_4 article-title: NALMO: Transforming Queries in Natural Language for Moving Objects Databases publication-title: GeoInformatica doi: 10.1007/s10707-023-00494-5 – ident: ref_13 doi: 10.18653/v1/D19-1377 – ident: ref_17 doi: 10.18653/v1/2021.acl-long.75 – ident: ref_11 – ident: ref_34 doi: 10.3390/ijgi14070256 – volume: 18 start-page: 2509812 year: 2025 ident: ref_35 article-title: Chain-of-Programming (CoP): Empowering Large Language Models for Geospatial Code Generation Task publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2025.2509812 – ident: ref_18 – ident: ref_30 doi: 10.1145/3737873 – ident: ref_24 doi: 10.18653/v1/2020.acl-main.398 – ident: ref_5 doi: 10.18653/v1/2022.deelio-1.10 – ident: ref_40 doi: 10.18653/v1/2023.findings-emnlp.996 – ident: ref_39 doi: 10.3390/ijgi13010026 – volume: 3 start-page: 1 year: 2016 ident: ref_1 article-title: Introduction: Spatial Big Data and Everyday Life publication-title: Big Data Soc. doi: 10.1177/2053951716661366 – ident: ref_3 doi: 10.1145/3589132.3625600 – ident: ref_15 doi: 10.18653/v1/2021.acl-long.195 – ident: ref_12 doi: 10.18653/v1/D18-1425 – volume: 319 start-page: 113624 year: 2025 ident: ref_38 article-title: Geo-FuB: A Method for Constructing An Operator-Function Knowledge Base for Geospatial Code Generation with Large Language Models publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2025.113624 – volume: 17 start-page: 1132 year: 2024 ident: ref_33 article-title: Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation publication-title: Proc. Vldb Endow. doi: 10.14778/3641204.3641221 – ident: ref_8 – ident: ref_2 doi: 10.1145/3609956.3609974 – ident: ref_14 doi: 10.18653/v1/2020.emnlp-main.562 – ident: ref_25 – ident: ref_31 – ident: ref_29 doi: 10.1109/TKDE.2025.3592032 – ident: ref_23 doi: 10.18653/v1/2020.acl-main.745 – ident: ref_10 – volume: 47 start-page: 309 year: 2021 ident: ref_21 article-title: RYANSQL: Recursively Applying Sketch-Based Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases publication-title: Comput. Linguist. – volume: 28 start-page: 29 year: 2024 ident: ref_27 article-title: Multilingual Spatial Domain Natural Language Interface to Databases publication-title: GeoInformatica doi: 10.1007/s10707-023-00496-3 – ident: ref_41 – volume: 138 start-page: 104456 year: 2025 ident: ref_37 article-title: GeoCode-GPT: A Large Language Model for Geospatial Code Generation publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_6 doi: 10.1007/978-981-99-7022-3_23 – ident: ref_16 doi: 10.18653/v1/2021.emnlp-main.702 – ident: ref_19 – ident: ref_32 doi: 10.18653/v1/2023.findings-emnlp.227 – ident: ref_22 – ident: ref_20 – ident: ref_26 doi: 10.1145/3347146.3359069 |
SSID | ssj0000913840 |
Score | 2.3317118 |
Snippet | Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 288 |
SubjectTerms | Datasets Deep learning Design Geometry Geospatial data GPT Language Machine learning Methods Natural language Prompt engineering Queries Query languages Questions Relational data bases Servers Spatial data spatial databases Text-to-SQL Training Translating and interpreting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAUEAUCsoAYkBW44_G8dgCpUKAQLSom-WvQBla1KYD_55zkqIyIBbWyIpOd_G9e4r9HkKn0mZcaKKxcNxjLinBRnqHBfeOtYNBVSHiev-Q9If8dtQerVh9hTNhpTxwmbiWd0ZSY6TUADaMxpI6kxgd3kO1jbPQfWMZr5CpogdLwoC6lCfdGfD61vj9dQxkIgU8TX9gUCHV_1tDLlCmt422qvEw6pRh7aA1P6mj9cqp_O2zjjZfxvNFuWK-iy5uHge4C0DkokGgsPkUPz_dRTCIRsFrGL6t6ErnOkDVfA8Ne9eDyz6u7A-wBcwlOCNpwrOUW56JVAtgci5lVjDjEmaNbVOTcJky54lmhgHV1IzKtifh15s2mWH7qDaZTvwBilIrtKeJC7dOuSe2kOgBZuGJFLFjooHOlglRH6XKhQJ2EBKnVhPXQN2Qre81QZu6eAAVU1XF1F8Va6DzkGsVdlA-01ZXFwEg1KBFpTowQSTQg2PeQM1lOVS1teYKJkAeQ2AJOfyPaI7QBg2WvrHAlDdRLZ8t_DHMGbk5KT6pL8iFzW0 priority: 102 providerName: Directory of Open Access Journals |
Title | GPT-Based Text-to-SQL for Spatial Databases |
URI | https://www.proquest.com/docview/3244039061 https://doaj.org/article/edb92bb99a22432092db6ba35ce2ac0f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB71cQAOCAqIlBLtAcQBWV0_srYPCDXQtEIQFUhRb5ZfW8IhaZPtgX_PzGa3wAGuu9ZqNR7PzGd7vg_ghY210p57ppPKTFnBWbA5Ma1ykiMSqGpJXD9Nq9Nz9eFidLEF074Xhq5V9jGxDdRpGWmP_BATvyoRoFf87dU1I9UoOl3tJTR8J62Q3rQUY9uwiyHZoN_vjo-nZ19ud12IBRMhzeYGvMTPHc5_XM4RZBjMs-av3NRS-P8rULfZZ_IA7ndlY3G0meeHsJUXe3CnUzD__nMP7n2br282I9aP4PXJ2YyNMUGlYkbQtlmyr58_FligFqRBjD5XvPeNpxS2fgznk-PZu1PWySKwiDbgrOamUrVRUdXaeI0ILxkZtQypkjHEkQiVskamzL0MEiGol8KOMqcjOR_qIJ_AzmK5yE-hMFH7LKpE3agq89hS9yDiyNzqMkk9gJe9QdzVhv3CIWogw7k_DTeAMVnrdgxxVrcPlqtL1y0Bl1OwIgRrPZYNUpRWpFAFTx4hfCzrAbwiWztaWc3KR981COCvEkeVO8LKosLYXKoBHPTT4bolt3a_HWT__6-fwV1BIr6lZkIdwE6zusnPsbJowhC2zeRk2DnNsMXnvwACE8wz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2V9FA4ICggUgrsgYoDsrprO-v1oUINbUlpGhVIUW_GX1vSQ1KSrVD_HL-Nmc1ugQPcet21LGs89ptne-YBvNK-lMpmlqkgI5OaZ8zpGJiSMYgeCVTVRVyPR_ngVH44652twM82F4aeVbZ7Yr1Rh5mnM_JtBH6ZIkHPs7eX3xmpRtHtaiuhYRtphbBTlxhrEjuO4vUPpHCLncM9nO8tzg_2x-8GrFEZYB67zFiZFbksC-llqQqrkDCFQnglXMiFd77HXS51IULMrHACGZ0VXPdiRjdc1pVOYL93YFVShmsHVvv7o5NPN6c8VHUTKdTyxb3A4W9PLs4nSGoKxPXiLyysJQP-BQw12h08gPtNmJrsLv3qIazE6TqsNYrp367X4d6XyeJq2WLxCN68PxmzPgJiSMZEpasZ-_xxmGBAnJDmMfp4smcrS5C5eAynt2KgJ9CZzqbxKSSFVzbyPFD2q4yZr0sFIcOJmVZpEKoLW61BzOWy2oZBlkKGM38argt9stZNG6qRXX-Yzc9Ns-RMDE5z57S2GKYInmoeXO4seSC3Pi278JpsbWglV3PrbZOQgEOlmlhmFyOZHLEglV3YbKfDNEt8YX475Mb_f7-EtcH4eGiGh6OjZ3CXk4BwqhiXm9Cp5lfxOUY1lXvRuE4CX2_bW38BF0cGSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVOLjgKCACBTYAxUHZGXXdtbrQ4Ua0tDSEgVIq96Mv7ZND0nJboX6F_lVjDfeAge49bprWbvjsd882zMP4LW0JRc600Q47gmXNCNGekcE9471g0BVU8T10zjfO-IfT_ona_CzzYUJ1yrbNbFZqN3Chj3yHgI_T5Gg51mvjNciJsPRu4vvJChIhZPWVk5DR5kFt92UG4tJHgf-6gfSuWp7f4hjv0XpaHf6fo9ExQFisfuMlFmR87Lglpei0ALJkyuYFcy4nFlj-9TkXBbM-Uwzw5DdaUZl32fhtEub0jDs9xasC0RJ3oH1we548uV6xydU4EQ6tbp9z_BXerPz0xkSnAIxvvgLFxv5gH-BRIN8owdwP4asyc7Kxx7Cmp9vwJ2onn52tQH3jmfV5apF9QjefphMyQDB0SXTQKvrBfn6-TDB4DgJ-sfo78lQ1zrAZ_UYjm7EQE-gM1_M_VNICiu0p7kLmbDcZ7YpG4Rsx2dSpI6JLmy1BlEXq8obChlLMJz603BdGARrXbcJ9bKbB4vlqYrTT3lnJDVGSo0hC6OppM7kRgdvpNqmZRfeBFurMKvrpbY6Jifgp4b6WGoHo5occSHlXdhsh0PF6V6p38757P-vX8Ft9Fp1uD8-eA53adASTgWhfBM69fLSv8AApzYvo-ck8O2mnfUXMAQKdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPT-Based+Text-to-SQL+for+Spatial+Databases&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Wang%2C+Hui&rft.au=Guo%2C+Li&rft.au=Liang+Yubin&rft.au=Liu%2C+Le&rft.date=2025-07-24&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=14&rft.issue=8&rft.spage=288&rft_id=info:doi/10.3390%2Fijgi14080288&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |