GPT-Based Text-to-SQL for Spatial Databases

Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However,...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 14; no. 8; p. 288
Main Authors Wang, Hui, Guo, Li, Liang, Yubin, Liu, Le, Huang, Jiajin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.07.2025
Subjects
Online AccessGet full text
ISSN2220-9964
2220-9964
DOI10.3390/ijgi14080288

Cover

Abstract Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when dealing with complicated or unknown natural language questions. While advanced machine learning models can be trained, they typically require large labeled training datasets, which are severely lacking for spatial databases. Recently, Generative Pre-Trained Transformer (GPT) models have emerged as a promising paradigm for Text-to-SQL tasks in relational databases, driven by carefully designed prompts. In response to the severe lack of datasets for spatial databases, we have created a publicly available dataset that supports both English and Chinese. Furthermore, we propose a GPT-based method to construct prompts for spatial databases, which incorporates geographic and spatial database knowledge into the prompts and requires only a small number of training samples, such as 1, 3, or 5 examples. Extensive experiments demonstrate that incorporating geographic and spatial database knowledge into prompts improves the accuracy of Text-to-SQL tasks for spatial databases. Our proposed method can help non-experts access spatial databases more easily and conveniently.
AbstractList Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when dealing with complicated or unknown natural language questions. While advanced machine learning models can be trained, they typically require large labeled training datasets, which are severely lacking for spatial databases. Recently, Generative Pre-Trained Transformer (GPT) models have emerged as a promising paradigm for Text-to-SQL tasks in relational databases, driven by carefully designed prompts. In response to the severe lack of datasets for spatial databases, we have created a publicly available dataset that supports both English and Chinese. Furthermore, we propose a GPT-based method to construct prompts for spatial databases, which incorporates geographic and spatial database knowledge into the prompts and requires only a small number of training samples, such as 1, 3, or 5 examples. Extensive experiments demonstrate that incorporating geographic and spatial database knowledge into prompts improves the accuracy of Text-to-SQL tasks for spatial databases. Our proposed method can help non-experts access spatial databases more easily and conveniently.
Audience Academic
Author Guo, Li
Liang, Yubin
Wang, Hui
Liu, Le
Huang, Jiajin
Author_xml – sequence: 1
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
– sequence: 2
  givenname: Li
  surname: Guo
  fullname: Guo, Li
– sequence: 3
  givenname: Yubin
  surname: Liang
  fullname: Liang, Yubin
– sequence: 4
  givenname: Le
  surname: Liu
  fullname: Liu, Le
– sequence: 5
  givenname: Jiajin
  surname: Huang
  fullname: Huang, Jiajin
BookMark eNpNUcFKAzEQDVLBWnvzAwoedWuSyW6TY61aCwWV1nOYZJOS0jY1uwX9e6MVceYww-PN4_HmnHR2cecIuWR0CKDobVivAhNUUi7lCelyzmmhVCU6__Yz0m-aNc2lGEhBu-R6-rIs7rBx9WDpPtqijcXidT7wMQ0We2wDbgb32KLJjOaCnHrcNK7_O3vk7fFhOXkq5s_T2WQ8LywXghWeyUp4KazwI4kjXopagh2BqSuwxpbcVEJJqB1DMAAgEbgqHRuBKtF4Az0yO-rWEdd6n8IW06eOGPQPENNKY2qD3TjtaqO4MUoh5wI4Vbw2lUEoreNoqc9aV0etfYrvB9e0eh0PaZfta8huaU6uYpk1PLJWmEXDzsc2oc1du22wOWcfMj6WJVSKMSrywc3xwKbYNMn5P5uM6u936P_vgC8RmHsl
Cites_doi 10.1080/10095020.2025.2505556
10.3115/1117794.1117811
10.1007/s10707-023-00494-5
10.18653/v1/D19-1377
10.18653/v1/2021.acl-long.75
10.3390/ijgi14070256
10.1080/17538947.2025.2509812
10.1145/3737873
10.18653/v1/2020.acl-main.398
10.18653/v1/2022.deelio-1.10
10.18653/v1/2023.findings-emnlp.996
10.3390/ijgi13010026
10.1177/2053951716661366
10.1145/3589132.3625600
10.18653/v1/2021.acl-long.195
10.18653/v1/D18-1425
10.1016/j.knosys.2025.113624
10.14778/3641204.3641221
10.1145/3609956.3609974
10.18653/v1/2020.emnlp-main.562
10.1109/TKDE.2025.3592032
10.18653/v1/2020.acl-main.745
10.1007/s10707-023-00496-3
10.1007/978-981-99-7022-3_23
10.18653/v1/2021.emnlp-main.702
10.18653/v1/2023.findings-emnlp.227
10.1145/3347146.3359069
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/ijgi14080288
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_edb92bb99a22432092db6ba35ce2ac0f
A853691104
10_3390_ijgi14080288
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ZBA
PUEGO
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2441-f1864f84c4f78a7254d83c73bd63cbc52b64983de1a3b3338a3295e17395abfb3
IEDL.DBID BENPR
ISSN 2220-9964
IngestDate Mon Sep 01 19:40:19 EDT 2025
Thu Aug 28 04:06:51 EDT 2025
Tue Sep 02 03:58:17 EDT 2025
Thu Jul 31 00:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2441-f1864f84c4f78a7254d83c73bd63cbc52b64983de1a3b3338a3295e17395abfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3244039061?pq-origsite=%requestingapplication%&accountid=15518
PQID 3244039061
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_edb92bb99a22432092db6ba35ce2ac0f
proquest_journals_3244039061
gale_infotracacademiconefile_A853691104
crossref_primary_10_3390_ijgi14080288
PublicationCentury 2000
PublicationDate 2025-07-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-24
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_13
ref_12
ref_34
ref_11
ref_10
ref_32
Hou (ref_38) 2025; 319
ref_31
ref_30
ref_19
ref_18
ref_17
ref_39
ref_16
Gao (ref_33) 2024; 17
ref_15
Leszczynski (ref_1) 2016; 3
Hou (ref_37) 2025; 138
Wang (ref_27) 2024; 28
Choi (ref_21) 2021; 47
Wang (ref_4) 2023; 27
ref_25
ref_24
ref_23
ref_22
ref_20
Hou (ref_35) 2025; 18
ref_41
ref_40
ref_3
ref_2
ref_29
ref_28
ref_26
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_36
  doi: 10.1080/10095020.2025.2505556
– ident: ref_9
  doi: 10.3115/1117794.1117811
– volume: 27
  start-page: 427
  year: 2023
  ident: ref_4
  article-title: NALMO: Transforming Queries in Natural Language for Moving Objects Databases
  publication-title: GeoInformatica
  doi: 10.1007/s10707-023-00494-5
– ident: ref_13
  doi: 10.18653/v1/D19-1377
– ident: ref_17
  doi: 10.18653/v1/2021.acl-long.75
– ident: ref_11
– ident: ref_34
  doi: 10.3390/ijgi14070256
– volume: 18
  start-page: 2509812
  year: 2025
  ident: ref_35
  article-title: Chain-of-Programming (CoP): Empowering Large Language Models for Geospatial Code Generation Task
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2025.2509812
– ident: ref_18
– ident: ref_30
  doi: 10.1145/3737873
– ident: ref_24
  doi: 10.18653/v1/2020.acl-main.398
– ident: ref_5
  doi: 10.18653/v1/2022.deelio-1.10
– ident: ref_40
  doi: 10.18653/v1/2023.findings-emnlp.996
– ident: ref_39
  doi: 10.3390/ijgi13010026
– volume: 3
  start-page: 1
  year: 2016
  ident: ref_1
  article-title: Introduction: Spatial Big Data and Everyday Life
  publication-title: Big Data Soc.
  doi: 10.1177/2053951716661366
– ident: ref_3
  doi: 10.1145/3589132.3625600
– ident: ref_15
  doi: 10.18653/v1/2021.acl-long.195
– ident: ref_12
  doi: 10.18653/v1/D18-1425
– volume: 319
  start-page: 113624
  year: 2025
  ident: ref_38
  article-title: Geo-FuB: A Method for Constructing An Operator-Function Knowledge Base for Geospatial Code Generation with Large Language Models
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2025.113624
– volume: 17
  start-page: 1132
  year: 2024
  ident: ref_33
  article-title: Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation
  publication-title: Proc. Vldb Endow.
  doi: 10.14778/3641204.3641221
– ident: ref_8
– ident: ref_2
  doi: 10.1145/3609956.3609974
– ident: ref_14
  doi: 10.18653/v1/2020.emnlp-main.562
– ident: ref_25
– ident: ref_31
– ident: ref_29
  doi: 10.1109/TKDE.2025.3592032
– ident: ref_23
  doi: 10.18653/v1/2020.acl-main.745
– ident: ref_10
– volume: 47
  start-page: 309
  year: 2021
  ident: ref_21
  article-title: RYANSQL: Recursively Applying Sketch-Based Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases
  publication-title: Comput. Linguist.
– volume: 28
  start-page: 29
  year: 2024
  ident: ref_27
  article-title: Multilingual Spatial Domain Natural Language Interface to Databases
  publication-title: GeoInformatica
  doi: 10.1007/s10707-023-00496-3
– ident: ref_41
– volume: 138
  start-page: 104456
  year: 2025
  ident: ref_37
  article-title: GeoCode-GPT: A Large Language Model for Geospatial Code Generation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_6
  doi: 10.1007/978-981-99-7022-3_23
– ident: ref_16
  doi: 10.18653/v1/2021.emnlp-main.702
– ident: ref_19
– ident: ref_32
  doi: 10.18653/v1/2023.findings-emnlp.227
– ident: ref_22
– ident: ref_20
– ident: ref_26
  doi: 10.1145/3347146.3359069
SSID ssj0000913840
Score 2.3317118
Snippet Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 288
SubjectTerms Datasets
Deep learning
Design
Geometry
Geospatial data
GPT
Language
Machine learning
Methods
Natural language
Prompt engineering
Queries
Query languages
Questions
Relational data bases
Servers
Spatial data
spatial databases
Text-to-SQL
Training
Translating and interpreting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAUEAUCsoAYkBW44_G8dgCpUKAQLSom-WvQBla1KYD_55zkqIyIBbWyIpOd_G9e4r9HkKn0mZcaKKxcNxjLinBRnqHBfeOtYNBVSHiev-Q9If8dtQerVh9hTNhpTxwmbiWd0ZSY6TUADaMxpI6kxgd3kO1jbPQfWMZr5CpogdLwoC6lCfdGfD61vj9dQxkIgU8TX9gUCHV_1tDLlCmt422qvEw6pRh7aA1P6mj9cqp_O2zjjZfxvNFuWK-iy5uHge4C0DkokGgsPkUPz_dRTCIRsFrGL6t6ErnOkDVfA8Ne9eDyz6u7A-wBcwlOCNpwrOUW56JVAtgci5lVjDjEmaNbVOTcJky54lmhgHV1IzKtifh15s2mWH7qDaZTvwBilIrtKeJC7dOuSe2kOgBZuGJFLFjooHOlglRH6XKhQJ2EBKnVhPXQN2Qre81QZu6eAAVU1XF1F8Va6DzkGsVdlA-01ZXFwEg1KBFpTowQSTQg2PeQM1lOVS1teYKJkAeQ2AJOfyPaI7QBg2WvrHAlDdRLZ8t_DHMGbk5KT6pL8iFzW0
  priority: 102
  providerName: Directory of Open Access Journals
Title GPT-Based Text-to-SQL for Spatial Databases
URI https://www.proquest.com/docview/3244039061
https://doaj.org/article/edb92bb99a22432092db6ba35ce2ac0f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB71cQAOCAqIlBLtAcQBWV0_srYPCDXQtEIQFUhRb5ZfW8IhaZPtgX_PzGa3wAGuu9ZqNR7PzGd7vg_ghY210p57ppPKTFnBWbA5Ma1ykiMSqGpJXD9Nq9Nz9eFidLEF074Xhq5V9jGxDdRpGWmP_BATvyoRoFf87dU1I9UoOl3tJTR8J62Q3rQUY9uwiyHZoN_vjo-nZ19ud12IBRMhzeYGvMTPHc5_XM4RZBjMs-av3NRS-P8rULfZZ_IA7ndlY3G0meeHsJUXe3CnUzD__nMP7n2br282I9aP4PXJ2YyNMUGlYkbQtlmyr58_FligFqRBjD5XvPeNpxS2fgznk-PZu1PWySKwiDbgrOamUrVRUdXaeI0ILxkZtQypkjHEkQiVskamzL0MEiGol8KOMqcjOR_qIJ_AzmK5yE-hMFH7LKpE3agq89hS9yDiyNzqMkk9gJe9QdzVhv3CIWogw7k_DTeAMVnrdgxxVrcPlqtL1y0Bl1OwIgRrPZYNUpRWpFAFTx4hfCzrAbwiWztaWc3KR981COCvEkeVO8LKosLYXKoBHPTT4bolt3a_HWT__6-fwV1BIr6lZkIdwE6zusnPsbJowhC2zeRk2DnNsMXnvwACE8wz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2V9FA4ICggUgrsgYoDsrprO-v1oUINbUlpGhVIUW_GX1vSQ1KSrVD_HL-Nmc1ugQPcet21LGs89ptne-YBvNK-lMpmlqkgI5OaZ8zpGJiSMYgeCVTVRVyPR_ngVH44652twM82F4aeVbZ7Yr1Rh5mnM_JtBH6ZIkHPs7eX3xmpRtHtaiuhYRtphbBTlxhrEjuO4vUPpHCLncM9nO8tzg_2x-8GrFEZYB67zFiZFbksC-llqQqrkDCFQnglXMiFd77HXS51IULMrHACGZ0VXPdiRjdc1pVOYL93YFVShmsHVvv7o5NPN6c8VHUTKdTyxb3A4W9PLs4nSGoKxPXiLyysJQP-BQw12h08gPtNmJrsLv3qIazE6TqsNYrp367X4d6XyeJq2WLxCN68PxmzPgJiSMZEpasZ-_xxmGBAnJDmMfp4smcrS5C5eAynt2KgJ9CZzqbxKSSFVzbyPFD2q4yZr0sFIcOJmVZpEKoLW61BzOWy2oZBlkKGM38argt9stZNG6qRXX-Yzc9Ns-RMDE5z57S2GKYInmoeXO4seSC3Pi278JpsbWglV3PrbZOQgEOlmlhmFyOZHLEglV3YbKfDNEt8YX475Mb_f7-EtcH4eGiGh6OjZ3CXk4BwqhiXm9Cp5lfxOUY1lXvRuE4CX2_bW38BF0cGSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVOLjgKCACBTYAxUHZGXXdtbrQ4Ua0tDSEgVIq96Mv7ZND0nJboX6F_lVjDfeAge49bprWbvjsd882zMP4LW0JRc600Q47gmXNCNGekcE9471g0BVU8T10zjfO-IfT_ona_CzzYUJ1yrbNbFZqN3Chj3yHgI_T5Gg51mvjNciJsPRu4vvJChIhZPWVk5DR5kFt92UG4tJHgf-6gfSuWp7f4hjv0XpaHf6fo9ExQFisfuMlFmR87Lglpei0ALJkyuYFcy4nFlj-9TkXBbM-Uwzw5DdaUZl32fhtEub0jDs9xasC0RJ3oH1we548uV6xydU4EQ6tbp9z_BXerPz0xkSnAIxvvgLFxv5gH-BRIN8owdwP4asyc7Kxx7Cmp9vwJ2onn52tQH3jmfV5apF9QjefphMyQDB0SXTQKvrBfn6-TDB4DgJ-sfo78lQ1zrAZ_UYjm7EQE-gM1_M_VNICiu0p7kLmbDcZ7YpG4Rsx2dSpI6JLmy1BlEXq8obChlLMJz603BdGARrXbcJ9bKbB4vlqYrTT3lnJDVGSo0hC6OppM7kRgdvpNqmZRfeBFurMKvrpbY6Jifgp4b6WGoHo5occSHlXdhsh0PF6V6p38757P-vX8Ft9Fp1uD8-eA53adASTgWhfBM69fLSv8AApzYvo-ck8O2mnfUXMAQKdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPT-Based+Text-to-SQL+for+Spatial+Databases&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Wang%2C+Hui&rft.au=Guo%2C+Li&rft.au=Liang+Yubin&rft.au=Liu%2C+Le&rft.date=2025-07-24&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=14&rft.issue=8&rft.spage=288&rft_id=info:doi/10.3390%2Fijgi14080288&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon