A gas–solid flow pattern identification algorithm based on cross-rod electrostatic sensor array
The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array stru...
Saved in:
Published in | Measurement science & technology Vol. 34; no. 1; p. 15104 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array structure was designed to measure the flow pattern signals. The experiment used Geldart D particles to verify the feasibility of the designed sensor array. Three types of feature vectors were extracted: the mean value, variance, and energy ratio. To identify the flow pattern accurately, the sine–cosine algorithm (SCA) is exploited to optimise the smoothing factor critical for a probabilistic neural network (PNN), namely SCA-PNN. The identification results show that the identification accuracy of the proposed algorithm outperforms the traditional PNN, the back propagation neural network (BPNN) and the support vector machine (SVM). |
---|---|
AbstractList | The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array structure was designed to measure the flow pattern signals. The experiment used Geldart D particles to verify the feasibility of the designed sensor array. Three types of feature vectors were extracted: the mean value, variance, and energy ratio. To identify the flow pattern accurately, the sine–cosine algorithm (SCA) is exploited to optimise the smoothing factor critical for a probabilistic neural network (PNN), namely SCA-PNN. The identification results show that the identification accuracy of the proposed algorithm outperforms the traditional PNN, the back propagation neural network (BPNN) and the support vector machine (SVM). |
Author | Wang, Yuang Cheng, Xuezhen Li, Jiming |
Author_xml | – sequence: 1 givenname: Yuang surname: Wang fullname: Wang, Yuang – sequence: 2 givenname: Xuezhen surname: Cheng fullname: Cheng, Xuezhen – sequence: 3 givenname: Jiming orcidid: 0000-0002-5570-9952 surname: Li fullname: Li, Jiming |
BookMark | eNp1kM1KAzEUhYNUsK3uXeYFxt5MOslkWYp_UHCj6yE_d2pkOilJQLrzHXxDn8SZVlwIri73cM7lnm9GJn3okZBrBjcM6nrBuGCFqIAttFWV4Wdk-itNyBRUJQsoOb8gs5TeAECCUlOiV3Sr09fHZwqdd7Ttwjvd65wx9tQ77LNvvdXZh57qbhuiz687anRCRwfJxpBSEYOj2KHNw5YHr6UJ-xQi1THqwyU5b3WX8OpnzsnL3e3z-qHYPN0_rlebwpZLnotWOuOMRQvcWKkkolF15WqDGhWaSgi0TMglCmRVCShlOxQtDbhS1dxIPidwunt8KmLb7KPf6XhoGDQjombk0Yw8mhOiISL-RKzPx7I5at_9H_wGy0lx2A |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3276986 |
Cites_doi | 10.1016/j.flowmeasinst.2011.07.004 10.1109/TIM.2021.3072138 10.1016/j.powtec.2012.09.025 10.1088/1361-6501/aaf901 10.1016/j.partic.2020.03.008 10.1007/978-90-481-3609-4 10.1016/j.ijmultiphaseflow.2010.12.007 10.1088/0957-0233/24/7/074003 10.1016/j.elstat.2011.10.004 10.1016/j.expthermflusci.2013.07.012 10.1016/j.powtec.2014.05.061 10.1088/0957-0233/23/8/085307 10.1007/s00170-016-9076-4 10.1002/aic.12469 10.1016/j.flowmeasinst.2012.03.003 10.1080/10739149.2010.545852 10.1007/s00521-008-0221-3 10.1016/j.swevo.2019.05.010 10.1016/j.flowmeasinst.2017.01.006 10.1016/j.powtec.2019.10.045 10.1016/j.powtec.2020.06.053 10.1016/j.flowmeasinst.2020.101860 10.1016/j.cej.2019.02.187 10.1016/j.measurement.2020.108506 10.3390/s18103522 10.1002/aic.17118 10.1016/j.knosys.2015.12.022 10.1214/aoms/1177704472 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/ac95b3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_ac95b3 |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c243t-f7dbdbcec03bc797eeb985d8beae9eb566ec1674e6e1520e77fac92b0d2983b73 |
ISSN | 0957-0233 |
IngestDate | Tue Jul 01 03:54:22 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-f7dbdbcec03bc797eeb985d8beae9eb566ec1674e6e1520e77fac92b0d2983b73 |
ORCID | 0000-0002-5570-9952 |
ParticipantIDs | crossref_primary_10_1088_1361_6501_ac95b3 crossref_citationtrail_10_1088_1361_6501_ac95b3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2023 |
References | Gao (mstac95b3bib18) 2019; 30 Mirjalili (mstac95b3bib28) 2016; 96 Zhang (mstac95b3bib14) 2012; 24 Heydarianasl (mstac95b3bib25) 2017; 89 Zhou (mstac95b3bib5) 2020; 373 Yan (mstac95b3bib13) 2021; 169 Zhou (mstac95b3bib2) 2013; 24 Kang (mstac95b3bib8) 2020; 53 Zhou (mstac95b3bib3) 2013; 235 Lu (mstac95b3bib4) 2013; 51 Ma (mstac95b3bib12) 2019; 368 Junior (mstac95b3bib23) 2019; 49 Askarishahi (mstac95b3bib6) 2014; 264 Parzen (mstac95b3bib27) 1962; 33 Xu (mstac95b3bib24) 2012; 70 Sheng (mstac95b3bib7) 2021; 67 Aradhya (mstac95b3bib10) 2017; 55 Hu (mstac95b3bib16) 2011; 39 Hu (mstac95b3bib15) 2011; 22 Fu (mstac95b3bib20) 2018; 18 Li (mstac95b3bib17) 2021; 77 Chen (mstac95b3bib21) 2019; 31 Van Ommen (mstac95b3bib11) 2011; 37 Li (mstac95b3bib26) 2020; 361 Gao (mstac95b3bib22) 2021; 70 Klinzing (mstac95b3bib1) 2011 Mudde (mstac95b3bib9) 2011; 57 Qian (mstac95b3bib19) 2012; 23 |
References_xml | – volume: 22 start-page: 482 year: 2011 ident: mstac95b3bib15 article-title: Identification of gas/solid two-phase flow regimes using electrostatic sensors and neural-network techniques publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2011.07.004 – volume: 70 start-page: 1 year: 2021 ident: mstac95b3bib22 article-title: Rolling bearing fault diagnosis based on CEEMDAN and refined composite multiscale fuzzy entropy publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3072138 – volume: 235 start-page: 9 year: 2013 ident: mstac95b3bib3 article-title: Effect of hydrodynamic behavior on electrostatic potential distribution in gas–solid fluidized bed publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.09.025 – volume: 30 year: 2019 ident: mstac95b3bib18 article-title: Particle velocity measurement method of dense-phase gas–solid flow based on an electrostatic sensor array publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aaf901 – volume: 53 start-page: 134 year: 2020 ident: mstac95b3bib8 article-title: Nonlinear characteristics analyses of particle motion for predicting flow regimes publication-title: Particuology doi: 10.1016/j.partic.2020.03.008 – year: 2011 ident: mstac95b3bib1 doi: 10.1007/978-90-481-3609-4 – volume: 37 start-page: 403 year: 2011 ident: mstac95b3bib11 article-title: Time-series analysis of pressure fluctuations in gas–solid fluidized beds–a review publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2010.12.007 – volume: 24 year: 2013 ident: mstac95b3bib2 article-title: A novel ECT–EST combined method for gas–solids flow pattern and charge distribution visualization publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/7/074003 – volume: 70 start-page: 60 year: 2012 ident: mstac95b3bib24 article-title: Investigations into sensing characteristics of electrostatic sensor arrays through computational modelling and practical experimentation publication-title: J. Electrostat. doi: 10.1016/j.elstat.2011.10.004 – volume: 51 start-page: 174 year: 2013 ident: mstac95b3bib4 article-title: Experimental study on flow patterns of high-pressure gas–solid flow and Hilbert–Huang transform based analysis publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2013.07.012 – volume: 264 start-page: 466 year: 2014 ident: mstac95b3bib6 article-title: Numerical investigation on the solid flow pattern in bubbling gas–solid fluidized beds: effects of particle size and time averaging publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.05.061 – volume: 23 year: 2012 ident: mstac95b3bib19 article-title: Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/8/085307 – volume: 89 start-page: 905 year: 2017 ident: mstac95b3bib25 article-title: Optimization of electrostatic sensor electrodes using particle swarm optimization technique publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9076-4 – volume: 57 start-page: 2684 year: 2011 ident: mstac95b3bib9 article-title: Bubbles in a fluidized bed: a fast x-ray scanner publication-title: AIChE J. doi: 10.1002/aic.12469 – volume: 24 start-page: 43 year: 2012 ident: mstac95b3bib14 article-title: Concentration measurement of biomass/coal/air three-phase flow by integrating electrostatic and capacitive sensors publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2012.03.003 – volume: 39 start-page: 198 year: 2011 ident: mstac95b3bib16 article-title: Identification of gas–solid two-phase flow regimes using Hilbert–Huang transform and neural-network techniques publication-title: Instrum. Sci. Technol. doi: 10.1080/10739149.2010.545852 – volume: 31 start-page: 693 year: 2019 ident: mstac95b3bib21 article-title: An adaptive PNN-DS approach to classification using multi-sensor information fusion publication-title: Neural Comput. Appl. doi: 10.1007/s00521-008-0221-3 – volume: 49 start-page: 62 year: 2019 ident: mstac95b3bib23 article-title: Particle swarm optimization of deep neural networks architectures for image classification publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.05.010 – volume: 55 start-page: 67 year: 2017 ident: mstac95b3bib10 article-title: Flow regime identification in spouted beds using gamma-ray densitometry publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2017.01.006 – volume: 361 start-page: 74 year: 2020 ident: mstac95b3bib26 article-title: Numerical study of gas-solid flow behaviors in the air reactor of coal-direct chemical looping combustion with Geldart D particles publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.10.045 – volume: 373 start-page: 174 year: 2020 ident: mstac95b3bib5 article-title: Monitoring the hydrodynamics and critical variation of separation efficiency of cyclone separator via acoustic emission technique with multiple analysis methods publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.06.053 – volume: 77 year: 2021 ident: mstac95b3bib17 article-title: An adaptive CEEMD-ANN algorithm and its application in pneumatic conveying flow pattern identification publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2020.101860 – volume: 368 start-page: 627 year: 2019 ident: mstac95b3bib12 article-title: Fluidization dynamics of cohesive Geldart B particles. Part II: pressure fluctuation analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.187 – volume: 169 year: 2021 ident: mstac95b3bib13 article-title: Electrostatic sensors—their principles and applications publication-title: Measurement doi: 10.1016/j.measurement.2020.108506 – volume: 18 start-page: 3522 year: 2018 ident: mstac95b3bib20 article-title: Gas–solid two-phase flow pattern identification based on artificial neural network and electrostatic sensor array publication-title: Sensors doi: 10.3390/s18103522 – volume: 67 year: 2021 ident: mstac95b3bib7 article-title: The screened waveguide for intrusive acoustic emission detection and its application in circulating fluidized bed publication-title: AIChE J. doi: 10.1002/aic.17118 – volume: 96 start-page: 120 year: 2016 ident: mstac95b3bib28 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 33 start-page: 1065 year: 1962 ident: mstac95b3bib27 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 |
SSID | ssj0007099 |
Score | 2.384784 |
Snippet | The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 15104 |
Title | A gas–solid flow pattern identification algorithm based on cross-rod electrostatic sensor array |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuFS0gykt74EBlLXG8Sew9RghUKgocWimcLO_uOI2UJihxVNET_4F_yC9hZnftONBKlIsVbZxJ4vk07wdjr9BoszZWWmSypwX6G0pkZc8Kl3WiyZMDTb3DJ5-GR2f94_Fg3Ol8b1UtrSv9xlxd21fyP1zFM-QrdcnegrMNUTzA18hfvCKH8fpPPB5Fk2JVlytI_K6pjcrZ4pKmpVKgL5raUAzk2VzMJovltDq_iEh5WUoUOC0pUIpGYSEOdRhNTbRC95bqK5fLYivxe7KJKUZ1SxChp7omRO_FyNd1EbSjqyIAfzpew9X5pg3toysqOKYVY5N2ICKRrUBEHVFMBZ57eQVensphT6AR2GsL3BC9bAPLS0-0Pvwu4r_kOspCCjHU1EiBGTXQcqPF6sz9H8qtKTl0yfYsy4lGTjRyT-EOu5ugh0HLLz58_tIo8TRWYUyj_08hw40Uus2v6HoKLYumZZqcPmC7wafgIw-QPdaB-T6752p7zWqf7QX5veKvw5Dxw4esGHHEzq8fPx1qOKGGB9TwbdTwBjXcoYbjUYMavoUa7lHDHWoesbP3707fHomwbkOYpC8rUaZWW23AxFKbVKUAWmUDm2koQIFGux8M9azAENDoiyFNS3wAiY5tojKpU_mY7cwXc3jCeIJ-J3riMb5NiXcosqRQSQmp6YNGAgesWz-y3IRZ9LQSZZbfxKYDdth84pufw3LjvU9vce8zdn-D5edsp1qu4QWamZV-6QDxG10xfMA |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gas%E2%80%93solid+flow+pattern+identification+algorithm+based+on+cross-rod+electrostatic+sensor+array&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Yuang&rft.au=Cheng%2C+Xuezhen&rft.au=Li%2C+Jiming&rft.date=2023-01-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=1&rft.spage=15104&rft_id=info:doi/10.1088%2F1361-6501%2Fac95b3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ac95b3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |