A gas–solid flow pattern identification algorithm based on cross-rod electrostatic sensor array

The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array stru...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 1; p. 15104
Main Authors Wang, Yuang, Cheng, Xuezhen, Li, Jiming
Format Journal Article
LanguageEnglish
Published 01.01.2023
Online AccessGet full text

Cover

Loading…
Abstract The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array structure was designed to measure the flow pattern signals. The experiment used Geldart D particles to verify the feasibility of the designed sensor array. Three types of feature vectors were extracted: the mean value, variance, and energy ratio. To identify the flow pattern accurately, the sine–cosine algorithm (SCA) is exploited to optimise the smoothing factor critical for a probabilistic neural network (PNN), namely SCA-PNN. The identification results show that the identification accuracy of the proposed algorithm outperforms the traditional PNN, the back propagation neural network (BPNN) and the support vector machine (SVM).
AbstractList The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the sensitivity deficiencies of a single electrode were analysed via finite element analysis and a more sensitive cross-rod electrostatic sensor array structure was designed to measure the flow pattern signals. The experiment used Geldart D particles to verify the feasibility of the designed sensor array. Three types of feature vectors were extracted: the mean value, variance, and energy ratio. To identify the flow pattern accurately, the sine–cosine algorithm (SCA) is exploited to optimise the smoothing factor critical for a probabilistic neural network (PNN), namely SCA-PNN. The identification results show that the identification accuracy of the proposed algorithm outperforms the traditional PNN, the back propagation neural network (BPNN) and the support vector machine (SVM).
Author Wang, Yuang
Cheng, Xuezhen
Li, Jiming
Author_xml – sequence: 1
  givenname: Yuang
  surname: Wang
  fullname: Wang, Yuang
– sequence: 2
  givenname: Xuezhen
  surname: Cheng
  fullname: Cheng, Xuezhen
– sequence: 3
  givenname: Jiming
  orcidid: 0000-0002-5570-9952
  surname: Li
  fullname: Li, Jiming
BookMark eNp1kM1KAzEUhYNUsK3uXeYFxt5MOslkWYp_UHCj6yE_d2pkOilJQLrzHXxDn8SZVlwIri73cM7lnm9GJn3okZBrBjcM6nrBuGCFqIAttFWV4Wdk-itNyBRUJQsoOb8gs5TeAECCUlOiV3Sr09fHZwqdd7Ttwjvd65wx9tQ77LNvvdXZh57qbhuiz687anRCRwfJxpBSEYOj2KHNw5YHr6UJ-xQi1THqwyU5b3WX8OpnzsnL3e3z-qHYPN0_rlebwpZLnotWOuOMRQvcWKkkolF15WqDGhWaSgi0TMglCmRVCShlOxQtDbhS1dxIPidwunt8KmLb7KPf6XhoGDQjombk0Yw8mhOiISL-RKzPx7I5at_9H_wGy0lx2A
CitedBy_id crossref_primary_10_1109_JSEN_2023_3276986
Cites_doi 10.1016/j.flowmeasinst.2011.07.004
10.1109/TIM.2021.3072138
10.1016/j.powtec.2012.09.025
10.1088/1361-6501/aaf901
10.1016/j.partic.2020.03.008
10.1007/978-90-481-3609-4
10.1016/j.ijmultiphaseflow.2010.12.007
10.1088/0957-0233/24/7/074003
10.1016/j.elstat.2011.10.004
10.1016/j.expthermflusci.2013.07.012
10.1016/j.powtec.2014.05.061
10.1088/0957-0233/23/8/085307
10.1007/s00170-016-9076-4
10.1002/aic.12469
10.1016/j.flowmeasinst.2012.03.003
10.1080/10739149.2010.545852
10.1007/s00521-008-0221-3
10.1016/j.swevo.2019.05.010
10.1016/j.flowmeasinst.2017.01.006
10.1016/j.powtec.2019.10.045
10.1016/j.powtec.2020.06.053
10.1016/j.flowmeasinst.2020.101860
10.1016/j.cej.2019.02.187
10.1016/j.measurement.2020.108506
10.3390/s18103522
10.1002/aic.17118
10.1016/j.knosys.2015.12.022
10.1214/aoms/1177704472
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/ac95b3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_ac95b3
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-f7dbdbcec03bc797eeb985d8beae9eb566ec1674e6e1520e77fac92b0d2983b73
ISSN 0957-0233
IngestDate Tue Jul 01 03:54:22 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-f7dbdbcec03bc797eeb985d8beae9eb566ec1674e6e1520e77fac92b0d2983b73
ORCID 0000-0002-5570-9952
ParticipantIDs crossref_primary_10_1088_1361_6501_ac95b3
crossref_citationtrail_10_1088_1361_6501_ac95b3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Gao (mstac95b3bib18) 2019; 30
Mirjalili (mstac95b3bib28) 2016; 96
Zhang (mstac95b3bib14) 2012; 24
Heydarianasl (mstac95b3bib25) 2017; 89
Zhou (mstac95b3bib5) 2020; 373
Yan (mstac95b3bib13) 2021; 169
Zhou (mstac95b3bib2) 2013; 24
Kang (mstac95b3bib8) 2020; 53
Zhou (mstac95b3bib3) 2013; 235
Lu (mstac95b3bib4) 2013; 51
Ma (mstac95b3bib12) 2019; 368
Junior (mstac95b3bib23) 2019; 49
Askarishahi (mstac95b3bib6) 2014; 264
Parzen (mstac95b3bib27) 1962; 33
Xu (mstac95b3bib24) 2012; 70
Sheng (mstac95b3bib7) 2021; 67
Aradhya (mstac95b3bib10) 2017; 55
Hu (mstac95b3bib16) 2011; 39
Hu (mstac95b3bib15) 2011; 22
Fu (mstac95b3bib20) 2018; 18
Li (mstac95b3bib17) 2021; 77
Chen (mstac95b3bib21) 2019; 31
Van Ommen (mstac95b3bib11) 2011; 37
Li (mstac95b3bib26) 2020; 361
Gao (mstac95b3bib22) 2021; 70
Klinzing (mstac95b3bib1) 2011
Mudde (mstac95b3bib9) 2011; 57
Qian (mstac95b3bib19) 2012; 23
References_xml – volume: 22
  start-page: 482
  year: 2011
  ident: mstac95b3bib15
  article-title: Identification of gas/solid two-phase flow regimes using electrostatic sensors and neural-network techniques
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2011.07.004
– volume: 70
  start-page: 1
  year: 2021
  ident: mstac95b3bib22
  article-title: Rolling bearing fault diagnosis based on CEEMDAN and refined composite multiscale fuzzy entropy
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3072138
– volume: 235
  start-page: 9
  year: 2013
  ident: mstac95b3bib3
  article-title: Effect of hydrodynamic behavior on electrostatic potential distribution in gas–solid fluidized bed
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.09.025
– volume: 30
  year: 2019
  ident: mstac95b3bib18
  article-title: Particle velocity measurement method of dense-phase gas–solid flow based on an electrostatic sensor array
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaf901
– volume: 53
  start-page: 134
  year: 2020
  ident: mstac95b3bib8
  article-title: Nonlinear characteristics analyses of particle motion for predicting flow regimes
  publication-title: Particuology
  doi: 10.1016/j.partic.2020.03.008
– year: 2011
  ident: mstac95b3bib1
  doi: 10.1007/978-90-481-3609-4
– volume: 37
  start-page: 403
  year: 2011
  ident: mstac95b3bib11
  article-title: Time-series analysis of pressure fluctuations in gas–solid fluidized beds–a review
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2010.12.007
– volume: 24
  year: 2013
  ident: mstac95b3bib2
  article-title: A novel ECT–EST combined method for gas–solids flow pattern and charge distribution visualization
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/7/074003
– volume: 70
  start-page: 60
  year: 2012
  ident: mstac95b3bib24
  article-title: Investigations into sensing characteristics of electrostatic sensor arrays through computational modelling and practical experimentation
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2011.10.004
– volume: 51
  start-page: 174
  year: 2013
  ident: mstac95b3bib4
  article-title: Experimental study on flow patterns of high-pressure gas–solid flow and Hilbert–Huang transform based analysis
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2013.07.012
– volume: 264
  start-page: 466
  year: 2014
  ident: mstac95b3bib6
  article-title: Numerical investigation on the solid flow pattern in bubbling gas–solid fluidized beds: effects of particle size and time averaging
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.05.061
– volume: 23
  year: 2012
  ident: mstac95b3bib19
  article-title: Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/8/085307
– volume: 89
  start-page: 905
  year: 2017
  ident: mstac95b3bib25
  article-title: Optimization of electrostatic sensor electrodes using particle swarm optimization technique
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9076-4
– volume: 57
  start-page: 2684
  year: 2011
  ident: mstac95b3bib9
  article-title: Bubbles in a fluidized bed: a fast x-ray scanner
  publication-title: AIChE J.
  doi: 10.1002/aic.12469
– volume: 24
  start-page: 43
  year: 2012
  ident: mstac95b3bib14
  article-title: Concentration measurement of biomass/coal/air three-phase flow by integrating electrostatic and capacitive sensors
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2012.03.003
– volume: 39
  start-page: 198
  year: 2011
  ident: mstac95b3bib16
  article-title: Identification of gas–solid two-phase flow regimes using Hilbert–Huang transform and neural-network techniques
  publication-title: Instrum. Sci. Technol.
  doi: 10.1080/10739149.2010.545852
– volume: 31
  start-page: 693
  year: 2019
  ident: mstac95b3bib21
  article-title: An adaptive PNN-DS approach to classification using multi-sensor information fusion
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-008-0221-3
– volume: 49
  start-page: 62
  year: 2019
  ident: mstac95b3bib23
  article-title: Particle swarm optimization of deep neural networks architectures for image classification
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.05.010
– volume: 55
  start-page: 67
  year: 2017
  ident: mstac95b3bib10
  article-title: Flow regime identification in spouted beds using gamma-ray densitometry
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2017.01.006
– volume: 361
  start-page: 74
  year: 2020
  ident: mstac95b3bib26
  article-title: Numerical study of gas-solid flow behaviors in the air reactor of coal-direct chemical looping combustion with Geldart D particles
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.10.045
– volume: 373
  start-page: 174
  year: 2020
  ident: mstac95b3bib5
  article-title: Monitoring the hydrodynamics and critical variation of separation efficiency of cyclone separator via acoustic emission technique with multiple analysis methods
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.06.053
– volume: 77
  year: 2021
  ident: mstac95b3bib17
  article-title: An adaptive CEEMD-ANN algorithm and its application in pneumatic conveying flow pattern identification
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2020.101860
– volume: 368
  start-page: 627
  year: 2019
  ident: mstac95b3bib12
  article-title: Fluidization dynamics of cohesive Geldart B particles. Part II: pressure fluctuation analysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.187
– volume: 169
  year: 2021
  ident: mstac95b3bib13
  article-title: Electrostatic sensors—their principles and applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108506
– volume: 18
  start-page: 3522
  year: 2018
  ident: mstac95b3bib20
  article-title: Gas–solid two-phase flow pattern identification based on artificial neural network and electrostatic sensor array
  publication-title: Sensors
  doi: 10.3390/s18103522
– volume: 67
  year: 2021
  ident: mstac95b3bib7
  article-title: The screened waveguide for intrusive acoustic emission detection and its application in circulating fluidized bed
  publication-title: AIChE J.
  doi: 10.1002/aic.17118
– volume: 96
  start-page: 120
  year: 2016
  ident: mstac95b3bib28
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 33
  start-page: 1065
  year: 1962
  ident: mstac95b3bib27
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
SSID ssj0007099
Score 2.384784
Snippet The accurate identification of gas–solid two-phase flow patterns is an important but challenging subject for pneumatic conveying. In this study, the...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 15104
Title A gas–solid flow pattern identification algorithm based on cross-rod electrostatic sensor array
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuFS0gykt74EBlLXG8Sew9RghUKgocWimcLO_uOI2UJihxVNET_4F_yC9hZnftONBKlIsVbZxJ4vk07wdjr9BoszZWWmSypwX6G0pkZc8Kl3WiyZMDTb3DJ5-GR2f94_Fg3Ol8b1UtrSv9xlxd21fyP1zFM-QrdcnegrMNUTzA18hfvCKH8fpPPB5Fk2JVlytI_K6pjcrZ4pKmpVKgL5raUAzk2VzMJovltDq_iEh5WUoUOC0pUIpGYSEOdRhNTbRC95bqK5fLYivxe7KJKUZ1SxChp7omRO_FyNd1EbSjqyIAfzpew9X5pg3toysqOKYVY5N2ICKRrUBEHVFMBZ57eQVensphT6AR2GsL3BC9bAPLS0-0Pvwu4r_kOspCCjHU1EiBGTXQcqPF6sz9H8qtKTl0yfYsy4lGTjRyT-EOu5ugh0HLLz58_tIo8TRWYUyj_08hw40Uus2v6HoKLYumZZqcPmC7wafgIw-QPdaB-T6752p7zWqf7QX5veKvw5Dxw4esGHHEzq8fPx1qOKGGB9TwbdTwBjXcoYbjUYMavoUa7lHDHWoesbP3707fHomwbkOYpC8rUaZWW23AxFKbVKUAWmUDm2koQIFGux8M9azAENDoiyFNS3wAiY5tojKpU_mY7cwXc3jCeIJ-J3riMb5NiXcosqRQSQmp6YNGAgesWz-y3IRZ9LQSZZbfxKYDdth84pufw3LjvU9vce8zdn-D5edsp1qu4QWamZV-6QDxG10xfMA
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gas%E2%80%93solid+flow+pattern+identification+algorithm+based+on+cross-rod+electrostatic+sensor+array&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Yuang&rft.au=Cheng%2C+Xuezhen&rft.au=Li%2C+Jiming&rft.date=2023-01-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=1&rft.spage=15104&rft_id=info:doi/10.1088%2F1361-6501%2Fac95b3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ac95b3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon