VMD based trigonometric entropy measure: a simple and effective tool for dynamic degradation monitoring of rolling element bearing
Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and effective dynamic degradation monitoring method using variational mode decomposition (VMD) based trigonometric entropy measure is developed. Fi...
Saved in:
Published in | Measurement science & technology Vol. 33; no. 1; p. 14005 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and effective dynamic degradation monitoring method using variational mode decomposition (VMD) based trigonometric entropy measure is developed. First, vibration signals are obtained and are further decomposed using VMD to obtain various frequency modes. Second, a trigonometric entropy measure is developed to monitor the dynamic change occurring in the health of bearing. Third, trigonometric entropy measure of various VMD modes is computed. Fourth, the variance of measure is computed and two modes having the highest variance are selected for principal component analysis (PCA). Thereafter, PCA of selected measures is carried out. Finally, dynamic degradation monitoring is carried out by observing the trend in the principal component having the highest diverse information. The testing of newly developed VMD based trigonometric entropy measure is carried out on the two different types of data set. One is from XJTU-SY Bearing datasets and another is from the Centre for Intelligent Maintenance Systems. The experimental study reveals that the proposed method is capable of raising the alarm about the initiation of defects at a very early stage. Compared to existing indicators such as kurtosis, RMS, and Shannon entropy, the proposed method is superior while carrying out defect degradation monitoring. |
---|---|
AbstractList | Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and effective dynamic degradation monitoring method using variational mode decomposition (VMD) based trigonometric entropy measure is developed. First, vibration signals are obtained and are further decomposed using VMD to obtain various frequency modes. Second, a trigonometric entropy measure is developed to monitor the dynamic change occurring in the health of bearing. Third, trigonometric entropy measure of various VMD modes is computed. Fourth, the variance of measure is computed and two modes having the highest variance are selected for principal component analysis (PCA). Thereafter, PCA of selected measures is carried out. Finally, dynamic degradation monitoring is carried out by observing the trend in the principal component having the highest diverse information. The testing of newly developed VMD based trigonometric entropy measure is carried out on the two different types of data set. One is from XJTU-SY Bearing datasets and another is from the Centre for Intelligent Maintenance Systems. The experimental study reveals that the proposed method is capable of raising the alarm about the initiation of defects at a very early stage. Compared to existing indicators such as kurtosis, RMS, and Shannon entropy, the proposed method is superior while carrying out defect degradation monitoring. |
Author | Gandhi, C P Kundu, Pradeep Tang, Hesheng Vashishtha, Govind Glowacz, Adam Shukla, Rajendra Kumar Xiang, Jiawei Kumar, Anil |
Author_xml | – sequence: 1 givenname: Anil orcidid: 0000-0001-6675-1657 surname: Kumar fullname: Kumar, Anil – sequence: 2 givenname: C P orcidid: 0000-0003-1746-5894 surname: Gandhi fullname: Gandhi, C P – sequence: 3 givenname: Govind orcidid: 0000-0002-5160-9647 surname: Vashishtha fullname: Vashishtha, Govind – sequence: 4 givenname: Pradeep orcidid: 0000-0002-8336-5878 surname: Kundu fullname: Kundu, Pradeep – sequence: 5 givenname: Hesheng orcidid: 0000-0001-9810-9415 surname: Tang fullname: Tang, Hesheng – sequence: 6 givenname: Adam orcidid: 0000-0003-0546-7083 surname: Glowacz fullname: Glowacz, Adam – sequence: 7 givenname: Rajendra Kumar surname: Shukla fullname: Shukla, Rajendra Kumar – sequence: 8 givenname: Jiawei orcidid: 0000-0003-4028-985X surname: Xiang fullname: Xiang, Jiawei |
BookMark | eNp1kM1OwzAQhC1UJNrCneO-QOg6adKYGyq_UhEX4Bo59roySuzKNki98uQkFHFA4rSjHX2j3ZmxifOOGDvneMGxrhe8qHhWlcgXUuWG6iM2_V1N2BRFucowL4oTNovxDRFXKMSUfb4-XkMrI2lIwW698z0NQgG5FPxuDz3J-B7oEiRE2-86Auk0kDGkkv0gSN53YHwAvXeyH0BN2yC1TNY76L2zyQfrtuANBN91o6SO-iEeWpKjdcqOjewinf3MOXu5vXle32ebp7uH9dUmU_mySJlBpeuWtGy15q00teA0vKBK0VZciEJxNXim0mZJIse8LiuulhzNANWoV8WcVYdcFXyMgUyjbPq-MwVpu4ZjMzbZjLU1Y23NockBxD_gLthehv3_yBdGI31K |
CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105794 crossref_primary_10_1109_TDEI_2023_3271958 crossref_primary_10_1007_s11356_023_25194_3 crossref_primary_10_1016_j_jare_2025_02_029 crossref_primary_10_1109_TII_2023_3321095 crossref_primary_10_3390_s24123762 crossref_primary_10_1016_j_ymssp_2023_110249 crossref_primary_10_1155_js_8869808 crossref_primary_10_1155_2022_5266054 crossref_primary_10_1088_1361_6501_ac6001 crossref_primary_10_1088_1361_6501_ada632 crossref_primary_10_1016_j_measurement_2024_114191 crossref_primary_10_1088_1361_6501_aca8c1 crossref_primary_10_3390_pr12102153 crossref_primary_10_1016_j_engappai_2023_106093 crossref_primary_10_1049_smt2_12157 crossref_primary_10_1063_5_0187651 crossref_primary_10_1109_TII_2023_3293840 crossref_primary_10_1109_ACCESS_2023_3269288 crossref_primary_10_1177_09544062241253691 crossref_primary_10_1016_j_measurement_2024_114177 crossref_primary_10_1109_TII_2023_3333844 crossref_primary_10_1109_TR_2023_3335899 crossref_primary_10_1080_03772063_2022_2083707 crossref_primary_10_1109_ACCESS_2024_3354794 crossref_primary_10_1109_TII_2023_3278869 crossref_primary_10_3390_s23010488 crossref_primary_10_1109_TII_2022_3230669 crossref_primary_10_1155_2023_2504170 crossref_primary_10_1007_s11668_022_01445_2 crossref_primary_10_3390_s24216801 crossref_primary_10_1088_1361_6501_ada461 crossref_primary_10_1109_JESTIE_2023_3323253 crossref_primary_10_1109_TII_2023_3240601 crossref_primary_10_3390_en16052367 crossref_primary_10_1063_5_0165430 crossref_primary_10_1109_TII_2024_3452229 crossref_primary_10_3390_app13010192 crossref_primary_10_1177_10775463251314238 crossref_primary_10_1109_TII_2023_3300455 crossref_primary_10_1109_TII_2023_3264111 crossref_primary_10_3389_fenrg_2023_1335227 crossref_primary_10_1016_j_energy_2023_129005 crossref_primary_10_1109_TII_2023_3252407 crossref_primary_10_1007_s11356_022_23454_2 crossref_primary_10_1016_j_aei_2022_101844 crossref_primary_10_1177_09544089241272791 crossref_primary_10_1088_1361_6501_ace19c crossref_primary_10_1088_1361_6501_ad5223 crossref_primary_10_1016_j_engappai_2023_107479 crossref_primary_10_1088_1361_6501_ad0691 crossref_primary_10_1016_j_engappai_2023_106507 crossref_primary_10_1016_j_measurement_2022_111855 crossref_primary_10_3390_s24082470 crossref_primary_10_1088_1361_6501_ac6a44 crossref_primary_10_1109_JSEN_2022_3179165 crossref_primary_10_1109_TII_2022_3220905 crossref_primary_10_1007_s42417_022_00705_7 crossref_primary_10_1109_TEC_2023_3338447 crossref_primary_10_1007_s11804_022_00296_5 crossref_primary_10_1088_1361_6501_ac9153 crossref_primary_10_1109_TII_2022_3204554 crossref_primary_10_1016_j_asoc_2022_109630 crossref_primary_10_1016_j_engappai_2022_105522 crossref_primary_10_1109_ACCESS_2024_3484533 crossref_primary_10_1016_j_apacoust_2023_109389 crossref_primary_10_1080_10589759_2024_2389935 crossref_primary_10_3233_JIFS_223575 crossref_primary_10_1049_smt2_12170 crossref_primary_10_1088_1361_6501_ad3be1 crossref_primary_10_1109_TR_2022_3180273 crossref_primary_10_1016_j_dsp_2022_103884 crossref_primary_10_1088_1361_6501_ac656a crossref_primary_10_1007_s42417_024_01555_1 crossref_primary_10_1016_j_measurement_2022_111728 crossref_primary_10_1109_JSEN_2023_3285531 crossref_primary_10_1016_j_engappai_2024_109372 crossref_primary_10_1155_2022_8054801 crossref_primary_10_1016_j_ymssp_2022_109987 crossref_primary_10_1007_s40430_023_04042_y crossref_primary_10_1016_j_molstruc_2024_138587 crossref_primary_10_1007_s13369_022_07422_z |
Cites_doi | 10.1016/j.ymssp.2008.06.009 10.1016/j.measurement.2020.107557 10.1016/j.ymssp.2014.07.011 10.1016/j.measurement.2018.12.028 10.1109/TII.2014.2300753 10.1016/j.ress.2014.09.014 10.1007/s11831-018-9286-z 10.1152/ajpheart.2000.278.6.H2039 10.1007/s12206-019-0101-z 10.1016/j.wear.2010.08.013 10.1109/TSP.2013.2288675 10.1109/ACCESS.2018.2886343 10.1016/j.jsv.2005.03.007 10.1016/j.measurement.2020.108891 10.1088/1361-6501/ab9412 10.1109/TR.2018.2882682 10.1109/TIM.2020.2978966 10.1177/1475921720962419 10.1088/1361-6501/abeea7 10.1016/j.ymssp.2011.02.006 10.1016/j.isatra.2020.06.011 10.1088/1361-6501/aab945 10.1016/j.ymssp.2015.11.014 10.1016/j.jmapro.2019.05.046 10.1088/1361-6501/ab6db9 10.1016/j.measurement.2013.06.038 10.1103/PhysRevLett.89.068102 10.1007/s00521-017-3123-4 10.1109/TSMC.2017.2697842 10.1016/j.ymssp.2016.04.019 10.1016/j.cja.2020.12.037 10.1088/0957-0233/26/11/115002 10.1177/1350650117727976 10.1016/j.ress.2017.02.007 10.1109/TIM.2021.3051717 10.1109/TII.2019.2912428 10.1177/107754630000600303 10.1088/1361-6501/ab0352 10.1016/j.mechmachtheory.2020.103786 10.1016/j.ymssp.2020.106899 10.1109/TR.2017.2691730 10.1016/j.engfailanal.2015.08.013 10.1073/pnas.88.6.2297 10.1016/j.measurement.2012.01.047 10.1016/j.ymssp.2020.106891 10.1109/TII.2018.2881543 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/ac2fe8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_ac2fe8 |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c243t-f0cd8bedabdd1baf891e099c59b61993c1cdabf6df4e92028561c410f8be80d73 |
ISSN | 0957-0233 |
IngestDate | Tue Jul 01 03:54:19 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-f0cd8bedabdd1baf891e099c59b61993c1cdabf6df4e92028561c410f8be80d73 |
ORCID | 0000-0002-8336-5878 0000-0003-0546-7083 0000-0001-6675-1657 0000-0003-1746-5894 0000-0002-5160-9647 0000-0003-4028-985X 0000-0001-9810-9415 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_ac2fe8 crossref_primary_10_1088_1361_6501_ac2fe8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2022 |
References | Tao (mstac2fe8bib2) 2020; 155 Zhao (mstac2fe8bib32) 2017; 164 Kumar (mstac2fe8bib14) 2021 Cai (mstac2fe8bib6) 2016; 80 An (mstac2fe8bib24) 2015; 133 Deutsch (mstac2fe8bib37) 2017; 48 Choudhary (mstac2fe8bib1) 2019; 26 Mauricio (mstac2fe8bib10) 2020; 144 Guo (mstac2fe8bib12) 2021; 70 Jiang (mstac2fe8bib27) 2018; 29 Noman (mstac2fe8bib43) 2020; 31 Kumar (mstac2fe8bib8) 2018; 29 D. xu (mstac2fe8bib20) 2014; 10 Shao (mstac2fe8bib26) 2015; 26 Qingjun (mstac2fe8bib25) 2020; 31 Wang (mstac2fe8bib47) 2020 Yu (mstac2fe8bib33) 2011; 25 Chauhan (mstac2fe8bib29) 2020 Ma (mstac2fe8bib35) 2019; 15 Richman (mstac2fe8bib39) 2000; 278 Rai (mstac2fe8bib41) 2020; 69 Wang (mstac2fe8bib46) 2020; 69 Tyagi (mstac2fe8bib4) 2011; 270 Zheng (mstac2fe8bib11) 2020; 106 Meng (mstac2fe8bib5) 2020; 148 Kumar (mstac2fe8bib17) 2018; 232 Heng (mstac2fe8bib22) 2009; 23 Dong (mstac2fe8bib30) 2013; 46 Pincus (mstac2fe8bib38) 1991; 88 Vashishtha (mstac2fe8bib15) 2021; 32 Boškoski (mstac2fe8bib42) 2015; 52–53 El-Thalji (mstac2fe8bib3) 2015; 57 Xi (mstac2fe8bib28) 2000; 6 Dragomiretskiy (mstac2fe8bib44) 2014; 62 Gan (mstac2fe8bib16) 2016; 72–73 Chen (mstac2fe8bib23) 2012 Cui (mstac2fe8bib31) 2019; 135 Lee (mstac2fe8bib48) 2007 Noman (mstac2fe8bib19) 2021; 172 Han (mstac2fe8bib13) 2019; 33 Patel (mstac2fe8bib9) 2012; 45 Huang (mstac2fe8bib34) 2018; 7 García Plaza (mstac2fe8bib18) 2019; 44 Pan (mstac2fe8bib7) 2020; 144 Sun (mstac2fe8bib36) 2019; 15 Costa (mstac2fe8bib40) 2002; 89 Wei (mstac2fe8bib45) 2019; 30 Ma (mstac2fe8bib21) 2017; 66 Qiu (mstac2fe8bib49) 2006; 289 |
References_xml | – volume: 23 start-page: 724 year: 2009 ident: mstac2fe8bib22 article-title: Rotating machinery prognostics : state of the art, challenges and opportunities publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2008.06.009 – volume: 155 year: 2020 ident: mstac2fe8bib2 article-title: Bearings fault detection using wavelet transform and generalized Gaussian density modeling publication-title: Measurement doi: 10.1016/j.measurement.2020.107557 – volume: 52–53 start-page: 327 year: 2015 ident: mstac2fe8bib42 article-title: Bearing fault prognostics using Rényi entropy based features and Gaussian process models publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.07.011 – volume: 135 start-page: 678 year: 2019 ident: mstac2fe8bib31 article-title: A novel switching unscented Kalman filter method for remaining useful life prediction of rolling bearing publication-title: Measurement doi: 10.1016/j.measurement.2018.12.028 – volume: 10 start-page: 2233 year: 2014 ident: mstac2fe8bib20 article-title: Internet of things in industries: a survey publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2014.2300753 – volume: 133 start-page: 223 year: 2015 ident: mstac2fe8bib24 article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2014.09.014 – volume: 26 start-page: 1221 year: 2019 ident: mstac2fe8bib1 article-title: Condition monitoring and fault diagnosis of induction motors: a review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-018-9286-z – volume: 278 start-page: H2039 year: 2000 ident: mstac2fe8bib39 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart. Circ. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 33 start-page: 487 year: 2019 ident: mstac2fe8bib13 article-title: Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-0101-z – volume: 270 start-page: 423 year: 2011 ident: mstac2fe8bib4 article-title: Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites publication-title: Wear doi: 10.1016/j.wear.2010.08.013 – volume: 62 start-page: 531 year: 2014 ident: mstac2fe8bib44 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 7 start-page: 1848 year: 2018 ident: mstac2fe8bib34 article-title: Deep decoupling convolutional neural network for intelligent compound fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886343 – volume: 289 start-page: 1066 year: 2006 ident: mstac2fe8bib49 article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.03.007 – volume: 172 year: 2021 ident: mstac2fe8bib19 article-title: Oscillation based permutation entropy calculation as a dynamic nonlinear feature for health monitoring of rolling element bearing publication-title: Measurement doi: 10.1016/j.measurement.2020.108891 – volume: 31 year: 2020 ident: mstac2fe8bib43 article-title: A scale independent flexible bearing health monitoring index based on time frequency manifold energy & entropy publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab9412 – volume: 69 start-page: 401 year: 2020 ident: mstac2fe8bib46 article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2882682 – volume: 69 start-page: 6982 year: 2020 ident: mstac2fe8bib41 article-title: A novel health indicator based on information theory features for assessing rotating machinery performance degradation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2978966 – year: 2020 ident: mstac2fe8bib29 article-title: An effective health indicator for bearing using corrected conditional entropy through diversity-driven multi-parent evolutionary algorithm publication-title: Struct. Health Monit. doi: 10.1177/1475921720962419 – volume: 32 year: 2021 ident: mstac2fe8bib15 article-title: An effective health indicator for Pelton wheel using levy flight mutated genetic algorithm publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abeea7 – volume: 25 start-page: 2573 year: 2011 ident: mstac2fe8bib33 article-title: Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.02.006 – volume: 106 start-page: 392 year: 2020 ident: mstac2fe8bib11 article-title: Mean-optimized mode decomposition : an improved EMD approach for non-stationary signal processing publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.06.011 – volume: 29 year: 2018 ident: mstac2fe8bib27 article-title: Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aab945 – volume: 72–73 start-page: 92 year: 2016 ident: mstac2fe8bib16 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.11.014 – volume: 44 start-page: 145 year: 2019 ident: mstac2fe8bib18 article-title: Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.05.046 – volume: 31 year: 2020 ident: mstac2fe8bib25 article-title: Bearing performance degradation assessment based on information-theoretic metric learning and fuzzy c-means clustering publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab6db9 – volume: 46 start-page: 3143 year: 2013 ident: mstac2fe8bib30 article-title: Bearing degradation process prediction based on the PCA and optimized LS-SVM model publication-title: Measurement doi: 10.1016/j.measurement.2013.06.038 – volume: 89 year: 2002 ident: mstac2fe8bib40 article-title: Multiscale entropy analysis of complex physiologic time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.068102 – volume: 29 start-page: 277 year: 2018 ident: mstac2fe8bib8 article-title: Adaptive artificial intelligence for automatic identification of defect in the angular contact bearing publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3123-4 – year: 2012 ident: mstac2fe8bib23 – volume: 48 start-page: 11 year: 2017 ident: mstac2fe8bib37 article-title: Using deep learning-based approach to predict remaining useful life of rotating components publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2017.2697842 – volume: 80 start-page: 31 year: 2016 ident: mstac2fe8bib6 article-title: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.04.019 – year: 2021 ident: mstac2fe8bib14 article-title: Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.12.037 – volume: 26 year: 2015 ident: mstac2fe8bib26 article-title: Rolling bearing fault diagnosis using an optimization deep belief network publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/26/11/115002 – year: 2020 ident: mstac2fe8bib47 – volume: 232 start-page: 757 year: 2018 ident: mstac2fe8bib17 article-title: Oscillatory behavior-based wavelet decomposition for the monitoring of bearing condition in centrifugal pumps publication-title: Proc. Inst. Mech. Eng. J doi: 10.1177/1350650117727976 – year: 2007 ident: mstac2fe8bib48 – volume: 164 start-page: 74 year: 2017 ident: mstac2fe8bib32 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.02.007 – volume: 70 year: 2021 ident: mstac2fe8bib12 article-title: Remaining useful life prediction for rolling bearings using EMD-RISI-LSTM publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3051717 – volume: 15 start-page: 6415 year: 2019 ident: mstac2fe8bib35 article-title: A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2912428 – volume: 6 start-page: 375 year: 2000 ident: mstac2fe8bib28 article-title: Bearing diagnostics based on pattern recognition of statistical parameters publication-title: J. Vib. Control doi: 10.1177/107754630000600303 – volume: 30 year: 2019 ident: mstac2fe8bib45 article-title: An optimal variational mode decomposition for rolling bearing fault feature extraction publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab0352 – volume: 148 year: 2020 ident: mstac2fe8bib5 article-title: Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103786 – volume: 144 year: 2020 ident: mstac2fe8bib7 article-title: A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106899 – volume: 66 start-page: 467 year: 2017 ident: mstac2fe8bib21 article-title: Locally linear embedding on grassmann manifold for performance degradation assessment of bearings publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2017.2691730 – volume: 57 start-page: 470 year: 2015 ident: mstac2fe8bib3 article-title: Fault analysis of the wear fault development in rolling bearings publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2015.08.013 – volume: 88 start-page: 2297 year: 1991 ident: mstac2fe8bib38 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.88.6.2297 – volume: 45 start-page: 960 year: 2012 ident: mstac2fe8bib9 article-title: Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator publication-title: Measurement doi: 10.1016/j.measurement.2012.01.047 – volume: 144 year: 2020 ident: mstac2fe8bib10 article-title: Improved envelope spectrum via feature optimisation-gram (IESFOgram): a novel tool for rolling element bearing diagnostics under non-stationary operating conditions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106891 – volume: 15 start-page: 2416 year: 2019 ident: mstac2fe8bib36 article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2881543 |
SSID | ssj0007099 |
Score | 2.6013088 |
Snippet | Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 14005 |
Title | VMD based trigonometric entropy measure: a simple and effective tool for dynamic degradation monitoring of rolling element bearing |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEG0NQUhcEAkgQgDVgQORZcZL225zi1gSIQU4JFFult2LQCKe0YznQI78Ej9IVXd7gRCJcLFGHrvUdj3X1rUw9oLzrKizsg6TtCQHJc7CptA8TAr0mBtVF2lKhcLHH_OjU_7hPDufzX5OspY2XfNKXv61ruR_uIrnkK9UJXsDzg5E8QT-Rv7iETmMx3_i8dnx24DUkAo6dLKpPIHmY8mAIraL5ffgwgUAXUHz-is1ArabBS6Jg3KGOmrBSZmGyk2mDxQ1j3BzloIL-72vfF70yrfv1i7hPGjwG-n1Xj8Sagw4Bn29EEGruxK_HzK7D9oxx-MQ12ZnDAeTsrMzmva0_tK5jalDCoCokUqrNtYOxjVrvZyGMJJkEsLoY5FFiMaDk3TaSeI0j0M0H-OpqPZXTCHp5C66ibZ6-6pGQClKwYmeGqk-mRgtRv3X7_n_oRaHZEW7TS9ERTQqolE5CrfY7QR9E1s1-unzoP6LqPQNHt0z-b1xpDAfVjF3FCa20MSoObnP7nlvBA4ctLbZTLc77I7NCpbrHbbtJf8aXvr25PsP2A9EHVjUwW-oA4868Kh7DTU4zAHyFQbMAWEOEHPgMQcTzMGIOVgY8JgDjznwmHvITt-_O3lzFPpJHqFMeNqFJpJKNFrVjVJxUxtRxhpfk8zKJqcMUhlL_M_kynBdIkIEWvWSx5HBm0SkivQR22oXrX7MoM7qOFYiVykvOPoCAuWL4jKTxuQiNdEum_fvtJK-zT1NW_lWXcfHXbY_3LF0LV6uvfbJDa7dY3dHsD9lW91qo5-hBds1zy1ifgE_256m |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VMD+based+trigonometric+entropy+measure%3A+a+simple+and+effective+tool+for+dynamic+degradation+monitoring+of+rolling+element+bearing&rft.jtitle=Measurement+science+%26+technology&rft.au=Kumar%2C+Anil&rft.au=Gandhi%2C+C+P&rft.au=Vashishtha%2C+Govind&rft.au=Kundu%2C+Pradeep&rft.date=2022-01-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=33&rft.issue=1&rft.spage=14005&rft_id=info:doi/10.1088%2F1361-6501%2Fac2fe8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ac2fe8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |