VMD based trigonometric entropy measure: a simple and effective tool for dynamic degradation monitoring of rolling element bearing

Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and effective dynamic degradation monitoring method using variational mode decomposition (VMD) based trigonometric entropy measure is developed. Fi...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 33; no. 1; p. 14005
Main Authors Kumar, Anil, Gandhi, C P, Vashishtha, Govind, Kundu, Pradeep, Tang, Hesheng, Glowacz, Adam, Shukla, Rajendra Kumar, Xiang, Jiawei
Format Journal Article
LanguageEnglish
Published 01.01.2022
Online AccessGet full text

Cover

Loading…
Abstract Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and effective dynamic degradation monitoring method using variational mode decomposition (VMD) based trigonometric entropy measure is developed. First, vibration signals are obtained and are further decomposed using VMD to obtain various frequency modes. Second, a trigonometric entropy measure is developed to monitor the dynamic change occurring in the health of bearing. Third, trigonometric entropy measure of various VMD modes is computed. Fourth, the variance of measure is computed and two modes having the highest variance are selected for principal component analysis (PCA). Thereafter, PCA of selected measures is carried out. Finally, dynamic degradation monitoring is carried out by observing the trend in the principal component having the highest diverse information. The testing of newly developed VMD based trigonometric entropy measure is carried out on the two different types of data set. One is from XJTU-SY Bearing datasets and another is from the Centre for Intelligent Maintenance Systems. The experimental study reveals that the proposed method is capable of raising the alarm about the initiation of defects at a very early stage. Compared to existing indicators such as kurtosis, RMS, and Shannon entropy, the proposed method is superior while carrying out defect degradation monitoring.
AbstractList Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and effective dynamic degradation monitoring method using variational mode decomposition (VMD) based trigonometric entropy measure is developed. First, vibration signals are obtained and are further decomposed using VMD to obtain various frequency modes. Second, a trigonometric entropy measure is developed to monitor the dynamic change occurring in the health of bearing. Third, trigonometric entropy measure of various VMD modes is computed. Fourth, the variance of measure is computed and two modes having the highest variance are selected for principal component analysis (PCA). Thereafter, PCA of selected measures is carried out. Finally, dynamic degradation monitoring is carried out by observing the trend in the principal component having the highest diverse information. The testing of newly developed VMD based trigonometric entropy measure is carried out on the two different types of data set. One is from XJTU-SY Bearing datasets and another is from the Centre for Intelligent Maintenance Systems. The experimental study reveals that the proposed method is capable of raising the alarm about the initiation of defects at a very early stage. Compared to existing indicators such as kurtosis, RMS, and Shannon entropy, the proposed method is superior while carrying out defect degradation monitoring.
Author Gandhi, C P
Kundu, Pradeep
Tang, Hesheng
Vashishtha, Govind
Glowacz, Adam
Shukla, Rajendra Kumar
Xiang, Jiawei
Kumar, Anil
Author_xml – sequence: 1
  givenname: Anil
  orcidid: 0000-0001-6675-1657
  surname: Kumar
  fullname: Kumar, Anil
– sequence: 2
  givenname: C P
  orcidid: 0000-0003-1746-5894
  surname: Gandhi
  fullname: Gandhi, C P
– sequence: 3
  givenname: Govind
  orcidid: 0000-0002-5160-9647
  surname: Vashishtha
  fullname: Vashishtha, Govind
– sequence: 4
  givenname: Pradeep
  orcidid: 0000-0002-8336-5878
  surname: Kundu
  fullname: Kundu, Pradeep
– sequence: 5
  givenname: Hesheng
  orcidid: 0000-0001-9810-9415
  surname: Tang
  fullname: Tang, Hesheng
– sequence: 6
  givenname: Adam
  orcidid: 0000-0003-0546-7083
  surname: Glowacz
  fullname: Glowacz, Adam
– sequence: 7
  givenname: Rajendra Kumar
  surname: Shukla
  fullname: Shukla, Rajendra Kumar
– sequence: 8
  givenname: Jiawei
  orcidid: 0000-0003-4028-985X
  surname: Xiang
  fullname: Xiang, Jiawei
BookMark eNp1kM1OwzAQhC1UJNrCneO-QOg6adKYGyq_UhEX4Bo59roySuzKNki98uQkFHFA4rSjHX2j3ZmxifOOGDvneMGxrhe8qHhWlcgXUuWG6iM2_V1N2BRFucowL4oTNovxDRFXKMSUfb4-XkMrI2lIwW698z0NQgG5FPxuDz3J-B7oEiRE2-86Auk0kDGkkv0gSN53YHwAvXeyH0BN2yC1TNY76L2zyQfrtuANBN91o6SO-iEeWpKjdcqOjewinf3MOXu5vXle32ebp7uH9dUmU_mySJlBpeuWtGy15q00teA0vKBK0VZciEJxNXim0mZJIse8LiuulhzNANWoV8WcVYdcFXyMgUyjbPq-MwVpu4ZjMzbZjLU1Y23NockBxD_gLthehv3_yBdGI31K
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105794
crossref_primary_10_1109_TDEI_2023_3271958
crossref_primary_10_1007_s11356_023_25194_3
crossref_primary_10_1016_j_jare_2025_02_029
crossref_primary_10_1109_TII_2023_3321095
crossref_primary_10_3390_s24123762
crossref_primary_10_1016_j_ymssp_2023_110249
crossref_primary_10_1155_js_8869808
crossref_primary_10_1155_2022_5266054
crossref_primary_10_1088_1361_6501_ac6001
crossref_primary_10_1088_1361_6501_ada632
crossref_primary_10_1016_j_measurement_2024_114191
crossref_primary_10_1088_1361_6501_aca8c1
crossref_primary_10_3390_pr12102153
crossref_primary_10_1016_j_engappai_2023_106093
crossref_primary_10_1049_smt2_12157
crossref_primary_10_1063_5_0187651
crossref_primary_10_1109_TII_2023_3293840
crossref_primary_10_1109_ACCESS_2023_3269288
crossref_primary_10_1177_09544062241253691
crossref_primary_10_1016_j_measurement_2024_114177
crossref_primary_10_1109_TII_2023_3333844
crossref_primary_10_1109_TR_2023_3335899
crossref_primary_10_1080_03772063_2022_2083707
crossref_primary_10_1109_ACCESS_2024_3354794
crossref_primary_10_1109_TII_2023_3278869
crossref_primary_10_3390_s23010488
crossref_primary_10_1109_TII_2022_3230669
crossref_primary_10_1155_2023_2504170
crossref_primary_10_1007_s11668_022_01445_2
crossref_primary_10_3390_s24216801
crossref_primary_10_1088_1361_6501_ada461
crossref_primary_10_1109_JESTIE_2023_3323253
crossref_primary_10_1109_TII_2023_3240601
crossref_primary_10_3390_en16052367
crossref_primary_10_1063_5_0165430
crossref_primary_10_1109_TII_2024_3452229
crossref_primary_10_3390_app13010192
crossref_primary_10_1177_10775463251314238
crossref_primary_10_1109_TII_2023_3300455
crossref_primary_10_1109_TII_2023_3264111
crossref_primary_10_3389_fenrg_2023_1335227
crossref_primary_10_1016_j_energy_2023_129005
crossref_primary_10_1109_TII_2023_3252407
crossref_primary_10_1007_s11356_022_23454_2
crossref_primary_10_1016_j_aei_2022_101844
crossref_primary_10_1177_09544089241272791
crossref_primary_10_1088_1361_6501_ace19c
crossref_primary_10_1088_1361_6501_ad5223
crossref_primary_10_1016_j_engappai_2023_107479
crossref_primary_10_1088_1361_6501_ad0691
crossref_primary_10_1016_j_engappai_2023_106507
crossref_primary_10_1016_j_measurement_2022_111855
crossref_primary_10_3390_s24082470
crossref_primary_10_1088_1361_6501_ac6a44
crossref_primary_10_1109_JSEN_2022_3179165
crossref_primary_10_1109_TII_2022_3220905
crossref_primary_10_1007_s42417_022_00705_7
crossref_primary_10_1109_TEC_2023_3338447
crossref_primary_10_1007_s11804_022_00296_5
crossref_primary_10_1088_1361_6501_ac9153
crossref_primary_10_1109_TII_2022_3204554
crossref_primary_10_1016_j_asoc_2022_109630
crossref_primary_10_1016_j_engappai_2022_105522
crossref_primary_10_1109_ACCESS_2024_3484533
crossref_primary_10_1016_j_apacoust_2023_109389
crossref_primary_10_1080_10589759_2024_2389935
crossref_primary_10_3233_JIFS_223575
crossref_primary_10_1049_smt2_12170
crossref_primary_10_1088_1361_6501_ad3be1
crossref_primary_10_1109_TR_2022_3180273
crossref_primary_10_1016_j_dsp_2022_103884
crossref_primary_10_1088_1361_6501_ac656a
crossref_primary_10_1007_s42417_024_01555_1
crossref_primary_10_1016_j_measurement_2022_111728
crossref_primary_10_1109_JSEN_2023_3285531
crossref_primary_10_1016_j_engappai_2024_109372
crossref_primary_10_1155_2022_8054801
crossref_primary_10_1016_j_ymssp_2022_109987
crossref_primary_10_1007_s40430_023_04042_y
crossref_primary_10_1016_j_molstruc_2024_138587
crossref_primary_10_1007_s13369_022_07422_z
Cites_doi 10.1016/j.ymssp.2008.06.009
10.1016/j.measurement.2020.107557
10.1016/j.ymssp.2014.07.011
10.1016/j.measurement.2018.12.028
10.1109/TII.2014.2300753
10.1016/j.ress.2014.09.014
10.1007/s11831-018-9286-z
10.1152/ajpheart.2000.278.6.H2039
10.1007/s12206-019-0101-z
10.1016/j.wear.2010.08.013
10.1109/TSP.2013.2288675
10.1109/ACCESS.2018.2886343
10.1016/j.jsv.2005.03.007
10.1016/j.measurement.2020.108891
10.1088/1361-6501/ab9412
10.1109/TR.2018.2882682
10.1109/TIM.2020.2978966
10.1177/1475921720962419
10.1088/1361-6501/abeea7
10.1016/j.ymssp.2011.02.006
10.1016/j.isatra.2020.06.011
10.1088/1361-6501/aab945
10.1016/j.ymssp.2015.11.014
10.1016/j.jmapro.2019.05.046
10.1088/1361-6501/ab6db9
10.1016/j.measurement.2013.06.038
10.1103/PhysRevLett.89.068102
10.1007/s00521-017-3123-4
10.1109/TSMC.2017.2697842
10.1016/j.ymssp.2016.04.019
10.1016/j.cja.2020.12.037
10.1088/0957-0233/26/11/115002
10.1177/1350650117727976
10.1016/j.ress.2017.02.007
10.1109/TIM.2021.3051717
10.1109/TII.2019.2912428
10.1177/107754630000600303
10.1088/1361-6501/ab0352
10.1016/j.mechmachtheory.2020.103786
10.1016/j.ymssp.2020.106899
10.1109/TR.2017.2691730
10.1016/j.engfailanal.2015.08.013
10.1073/pnas.88.6.2297
10.1016/j.measurement.2012.01.047
10.1016/j.ymssp.2020.106891
10.1109/TII.2018.2881543
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/ac2fe8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_ac2fe8
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-f0cd8bedabdd1baf891e099c59b61993c1cdabf6df4e92028561c410f8be80d73
ISSN 0957-0233
IngestDate Tue Jul 01 03:54:19 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-f0cd8bedabdd1baf891e099c59b61993c1cdabf6df4e92028561c410f8be80d73
ORCID 0000-0002-8336-5878
0000-0003-0546-7083
0000-0001-6675-1657
0000-0003-1746-5894
0000-0002-5160-9647
0000-0003-4028-985X
0000-0001-9810-9415
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_ac2fe8
crossref_primary_10_1088_1361_6501_ac2fe8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2022
References Tao (mstac2fe8bib2) 2020; 155
Zhao (mstac2fe8bib32) 2017; 164
Kumar (mstac2fe8bib14) 2021
Cai (mstac2fe8bib6) 2016; 80
An (mstac2fe8bib24) 2015; 133
Deutsch (mstac2fe8bib37) 2017; 48
Choudhary (mstac2fe8bib1) 2019; 26
Mauricio (mstac2fe8bib10) 2020; 144
Guo (mstac2fe8bib12) 2021; 70
Jiang (mstac2fe8bib27) 2018; 29
Noman (mstac2fe8bib43) 2020; 31
Kumar (mstac2fe8bib8) 2018; 29
D. xu (mstac2fe8bib20) 2014; 10
Shao (mstac2fe8bib26) 2015; 26
Qingjun (mstac2fe8bib25) 2020; 31
Wang (mstac2fe8bib47) 2020
Yu (mstac2fe8bib33) 2011; 25
Chauhan (mstac2fe8bib29) 2020
Ma (mstac2fe8bib35) 2019; 15
Richman (mstac2fe8bib39) 2000; 278
Rai (mstac2fe8bib41) 2020; 69
Wang (mstac2fe8bib46) 2020; 69
Tyagi (mstac2fe8bib4) 2011; 270
Zheng (mstac2fe8bib11) 2020; 106
Meng (mstac2fe8bib5) 2020; 148
Kumar (mstac2fe8bib17) 2018; 232
Heng (mstac2fe8bib22) 2009; 23
Dong (mstac2fe8bib30) 2013; 46
Pincus (mstac2fe8bib38) 1991; 88
Vashishtha (mstac2fe8bib15) 2021; 32
Boškoski (mstac2fe8bib42) 2015; 52–53
El-Thalji (mstac2fe8bib3) 2015; 57
Xi (mstac2fe8bib28) 2000; 6
Dragomiretskiy (mstac2fe8bib44) 2014; 62
Gan (mstac2fe8bib16) 2016; 72–73
Chen (mstac2fe8bib23) 2012
Cui (mstac2fe8bib31) 2019; 135
Lee (mstac2fe8bib48) 2007
Noman (mstac2fe8bib19) 2021; 172
Han (mstac2fe8bib13) 2019; 33
Patel (mstac2fe8bib9) 2012; 45
Huang (mstac2fe8bib34) 2018; 7
García Plaza (mstac2fe8bib18) 2019; 44
Pan (mstac2fe8bib7) 2020; 144
Sun (mstac2fe8bib36) 2019; 15
Costa (mstac2fe8bib40) 2002; 89
Wei (mstac2fe8bib45) 2019; 30
Ma (mstac2fe8bib21) 2017; 66
Qiu (mstac2fe8bib49) 2006; 289
References_xml – volume: 23
  start-page: 724
  year: 2009
  ident: mstac2fe8bib22
  article-title: Rotating machinery prognostics : state of the art, challenges and opportunities
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2008.06.009
– volume: 155
  year: 2020
  ident: mstac2fe8bib2
  article-title: Bearings fault detection using wavelet transform and generalized Gaussian density modeling
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107557
– volume: 52–53
  start-page: 327
  year: 2015
  ident: mstac2fe8bib42
  article-title: Bearing fault prognostics using Rényi entropy based features and Gaussian process models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.07.011
– volume: 135
  start-page: 678
  year: 2019
  ident: mstac2fe8bib31
  article-title: A novel switching unscented Kalman filter method for remaining useful life prediction of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.028
– volume: 10
  start-page: 2233
  year: 2014
  ident: mstac2fe8bib20
  article-title: Internet of things in industries: a survey
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2300753
– volume: 133
  start-page: 223
  year: 2015
  ident: mstac2fe8bib24
  article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2014.09.014
– volume: 26
  start-page: 1221
  year: 2019
  ident: mstac2fe8bib1
  article-title: Condition monitoring and fault diagnosis of induction motors: a review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-018-9286-z
– volume: 278
  start-page: H2039
  year: 2000
  ident: mstac2fe8bib39
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart. Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 33
  start-page: 487
  year: 2019
  ident: mstac2fe8bib13
  article-title: Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-0101-z
– volume: 270
  start-page: 423
  year: 2011
  ident: mstac2fe8bib4
  article-title: Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites
  publication-title: Wear
  doi: 10.1016/j.wear.2010.08.013
– volume: 62
  start-page: 531
  year: 2014
  ident: mstac2fe8bib44
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 7
  start-page: 1848
  year: 2018
  ident: mstac2fe8bib34
  article-title: Deep decoupling convolutional neural network for intelligent compound fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886343
– volume: 289
  start-page: 1066
  year: 2006
  ident: mstac2fe8bib49
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.03.007
– volume: 172
  year: 2021
  ident: mstac2fe8bib19
  article-title: Oscillation based permutation entropy calculation as a dynamic nonlinear feature for health monitoring of rolling element bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108891
– volume: 31
  year: 2020
  ident: mstac2fe8bib43
  article-title: A scale independent flexible bearing health monitoring index based on time frequency manifold energy & entropy
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab9412
– volume: 69
  start-page: 401
  year: 2020
  ident: mstac2fe8bib46
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2882682
– volume: 69
  start-page: 6982
  year: 2020
  ident: mstac2fe8bib41
  article-title: A novel health indicator based on information theory features for assessing rotating machinery performance degradation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2978966
– year: 2020
  ident: mstac2fe8bib29
  article-title: An effective health indicator for bearing using corrected conditional entropy through diversity-driven multi-parent evolutionary algorithm
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720962419
– volume: 32
  year: 2021
  ident: mstac2fe8bib15
  article-title: An effective health indicator for Pelton wheel using levy flight mutated genetic algorithm
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abeea7
– volume: 25
  start-page: 2573
  year: 2011
  ident: mstac2fe8bib33
  article-title: Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.02.006
– volume: 106
  start-page: 392
  year: 2020
  ident: mstac2fe8bib11
  article-title: Mean-optimized mode decomposition : an improved EMD approach for non-stationary signal processing
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.06.011
– volume: 29
  year: 2018
  ident: mstac2fe8bib27
  article-title: Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aab945
– volume: 72–73
  start-page: 92
  year: 2016
  ident: mstac2fe8bib16
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.014
– volume: 44
  start-page: 145
  year: 2019
  ident: mstac2fe8bib18
  article-title: Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.05.046
– volume: 31
  year: 2020
  ident: mstac2fe8bib25
  article-title: Bearing performance degradation assessment based on information-theoretic metric learning and fuzzy c-means clustering
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab6db9
– volume: 46
  start-page: 3143
  year: 2013
  ident: mstac2fe8bib30
  article-title: Bearing degradation process prediction based on the PCA and optimized LS-SVM model
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.06.038
– volume: 89
  year: 2002
  ident: mstac2fe8bib40
  article-title: Multiscale entropy analysis of complex physiologic time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.068102
– volume: 29
  start-page: 277
  year: 2018
  ident: mstac2fe8bib8
  article-title: Adaptive artificial intelligence for automatic identification of defect in the angular contact bearing
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3123-4
– year: 2012
  ident: mstac2fe8bib23
– volume: 48
  start-page: 11
  year: 2017
  ident: mstac2fe8bib37
  article-title: Using deep learning-based approach to predict remaining useful life of rotating components
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2017.2697842
– volume: 80
  start-page: 31
  year: 2016
  ident: mstac2fe8bib6
  article-title: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.04.019
– year: 2021
  ident: mstac2fe8bib14
  article-title: Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.12.037
– volume: 26
  year: 2015
  ident: mstac2fe8bib26
  article-title: Rolling bearing fault diagnosis using an optimization deep belief network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/11/115002
– year: 2020
  ident: mstac2fe8bib47
– volume: 232
  start-page: 757
  year: 2018
  ident: mstac2fe8bib17
  article-title: Oscillatory behavior-based wavelet decomposition for the monitoring of bearing condition in centrifugal pumps
  publication-title: Proc. Inst. Mech. Eng. J
  doi: 10.1177/1350650117727976
– year: 2007
  ident: mstac2fe8bib48
– volume: 164
  start-page: 74
  year: 2017
  ident: mstac2fe8bib32
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.02.007
– volume: 70
  year: 2021
  ident: mstac2fe8bib12
  article-title: Remaining useful life prediction for rolling bearings using EMD-RISI-LSTM
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3051717
– volume: 15
  start-page: 6415
  year: 2019
  ident: mstac2fe8bib35
  article-title: A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2912428
– volume: 6
  start-page: 375
  year: 2000
  ident: mstac2fe8bib28
  article-title: Bearing diagnostics based on pattern recognition of statistical parameters
  publication-title: J. Vib. Control
  doi: 10.1177/107754630000600303
– volume: 30
  year: 2019
  ident: mstac2fe8bib45
  article-title: An optimal variational mode decomposition for rolling bearing fault feature extraction
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab0352
– volume: 148
  year: 2020
  ident: mstac2fe8bib5
  article-title: Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103786
– volume: 144
  year: 2020
  ident: mstac2fe8bib7
  article-title: A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106899
– volume: 66
  start-page: 467
  year: 2017
  ident: mstac2fe8bib21
  article-title: Locally linear embedding on grassmann manifold for performance degradation assessment of bearings
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2017.2691730
– volume: 57
  start-page: 470
  year: 2015
  ident: mstac2fe8bib3
  article-title: Fault analysis of the wear fault development in rolling bearings
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2015.08.013
– volume: 88
  start-page: 2297
  year: 1991
  ident: mstac2fe8bib38
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.88.6.2297
– volume: 45
  start-page: 960
  year: 2012
  ident: mstac2fe8bib9
  article-title: Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.047
– volume: 144
  year: 2020
  ident: mstac2fe8bib10
  article-title: Improved envelope spectrum via feature optimisation-gram (IESFOgram): a novel tool for rolling element bearing diagnostics under non-stationary operating conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106891
– volume: 15
  start-page: 2416
  year: 2019
  ident: mstac2fe8bib36
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2881543
SSID ssj0007099
Score 2.6013088
Snippet Early identification of rolling element defects is always a topic of interest for researchers and the industry. For early fault identification, a simple and...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 14005
Title VMD based trigonometric entropy measure: a simple and effective tool for dynamic degradation monitoring of rolling element bearing
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEG0NQUhcEAkgQgDVgQORZcZL225zi1gSIQU4JFFult2LQCKe0YznQI78Ej9IVXd7gRCJcLFGHrvUdj3X1rUw9oLzrKizsg6TtCQHJc7CptA8TAr0mBtVF2lKhcLHH_OjU_7hPDufzX5OspY2XfNKXv61ruR_uIrnkK9UJXsDzg5E8QT-Rv7iETmMx3_i8dnx24DUkAo6dLKpPIHmY8mAIraL5ffgwgUAXUHz-is1ArabBS6Jg3KGOmrBSZmGyk2mDxQ1j3BzloIL-72vfF70yrfv1i7hPGjwG-n1Xj8Sagw4Bn29EEGruxK_HzK7D9oxx-MQ12ZnDAeTsrMzmva0_tK5jalDCoCokUqrNtYOxjVrvZyGMJJkEsLoY5FFiMaDk3TaSeI0j0M0H-OpqPZXTCHp5C66ibZ6-6pGQClKwYmeGqk-mRgtRv3X7_n_oRaHZEW7TS9ERTQqolE5CrfY7QR9E1s1-unzoP6LqPQNHt0z-b1xpDAfVjF3FCa20MSoObnP7nlvBA4ctLbZTLc77I7NCpbrHbbtJf8aXvr25PsP2A9EHVjUwW-oA4868Kh7DTU4zAHyFQbMAWEOEHPgMQcTzMGIOVgY8JgDjznwmHvITt-_O3lzFPpJHqFMeNqFJpJKNFrVjVJxUxtRxhpfk8zKJqcMUhlL_M_kynBdIkIEWvWSx5HBm0SkivQR22oXrX7MoM7qOFYiVykvOPoCAuWL4jKTxuQiNdEum_fvtJK-zT1NW_lWXcfHXbY_3LF0LV6uvfbJDa7dY3dHsD9lW91qo5-hBds1zy1ifgE_256m
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VMD+based+trigonometric+entropy+measure%3A+a+simple+and+effective+tool+for+dynamic+degradation+monitoring+of+rolling+element+bearing&rft.jtitle=Measurement+science+%26+technology&rft.au=Kumar%2C+Anil&rft.au=Gandhi%2C+C+P&rft.au=Vashishtha%2C+Govind&rft.au=Kundu%2C+Pradeep&rft.date=2022-01-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=33&rft.issue=1&rft.spage=14005&rft_id=info:doi/10.1088%2F1361-6501%2Fac2fe8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ac2fe8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon