Detection of impact on aircraft composite structure using machine learning techniques

Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and dam...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 32; no. 8; p. 84013
Main Authors Ai, Li, Soltangharaei, Vafa, Bayat, Mahmoud, Van Tooren, Michel, Ziehl, Paul
Format Journal Article
LanguageEnglish
Published 01.08.2021
Online AccessGet full text

Cover

Loading…
Abstract Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and damage quantification of impacts should be studied and considered to address flight safety and to reduce costs associated with a regularly scheduled visual inspection. Since the structural components of the aircraft are large scale, visual inspection and monitoring are challenging and subject to human error. This paper presents a promising solution that can automatically detect and localize an impact that may occur during flight. To achieve this goal, acoustic emission (AE) is employed as an impact monitoring approach. Random forest and deep learning were adopted for training the source location models. An AE dataset was collected by conducting an impact experiment on a full-size thermoplastic aircraft elevator in a laboratory environment. A dataset consisting of AE parametric features and a dataset consisting of AE waveforms were assigned to a random forest classifier and deep learning network for the investigation of their applicability of impact source localization. The results obtained were compared using the source localization approach in previous research using a conventional artificial neural network. The analysis of results shows the random forest and deep learning leads to better event localization performance. In addition, the random forest model can provide the importance of features. By deleting the least important features, the storage required to save the input and the computing time for the random forest is greatly reduced, and an acceptable localization performance can still be obtained.
AbstractList Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and damage quantification of impacts should be studied and considered to address flight safety and to reduce costs associated with a regularly scheduled visual inspection. Since the structural components of the aircraft are large scale, visual inspection and monitoring are challenging and subject to human error. This paper presents a promising solution that can automatically detect and localize an impact that may occur during flight. To achieve this goal, acoustic emission (AE) is employed as an impact monitoring approach. Random forest and deep learning were adopted for training the source location models. An AE dataset was collected by conducting an impact experiment on a full-size thermoplastic aircraft elevator in a laboratory environment. A dataset consisting of AE parametric features and a dataset consisting of AE waveforms were assigned to a random forest classifier and deep learning network for the investigation of their applicability of impact source localization. The results obtained were compared using the source localization approach in previous research using a conventional artificial neural network. The analysis of results shows the random forest and deep learning leads to better event localization performance. In addition, the random forest model can provide the importance of features. By deleting the least important features, the storage required to save the input and the computing time for the random forest is greatly reduced, and an acceptable localization performance can still be obtained.
Author Bayat, Mahmoud
Ziehl, Paul
Van Tooren, Michel
Ai, Li
Soltangharaei, Vafa
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0003-2938-5533
  surname: Ai
  fullname: Ai, Li
– sequence: 2
  givenname: Vafa
  surname: Soltangharaei
  fullname: Soltangharaei, Vafa
– sequence: 3
  givenname: Mahmoud
  orcidid: 0000-0002-0990-7077
  surname: Bayat
  fullname: Bayat, Mahmoud
– sequence: 4
  givenname: Michel
  surname: Van Tooren
  fullname: Van Tooren, Michel
– sequence: 5
  givenname: Paul
  surname: Ziehl
  fullname: Ziehl, Paul
BookMark eNp1kD1PwzAQhi1UJNLCzug_EGrHtR2PqHxKlVjoHDnHmRo1TrCdgX9PoiIGJKbTPaf3le5ZkkXoAxJyzdkNZ3W95kLxUknG17ZFbdgZKX7RghTMSF2ySogLskzpgzGmmTEF2d9hRsi-D7R31HeDhUynxfoI0bpMoe-GPvmMNOU4Qh4j0jH58E47CwcfkB7RxjCDqegQ_OeI6ZKcO3tMePUzV2T_cP-6fSp3L4_P29tdCdVG5LKWWIOSlXRao6qNtMq1APxNi400m1YqMx2AK1GhFq6tnFCtqKQWGmszoRVRp16IfUoRXQM-2_mbHK0_Npw1s5xmNtHMJpqTnCnI_gSH6Dsbv_6PfAPWi2qn
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_129844
crossref_primary_10_1177_00219983211037048
crossref_primary_10_3390_app13116573
crossref_primary_10_3390_ma18020449
crossref_primary_10_1177_14759217241290260
crossref_primary_10_1016_j_cja_2023_11_022
crossref_primary_10_1088_1361_6501_aca041
crossref_primary_10_1109_JSEN_2024_3464684
crossref_primary_10_1177_13694332241286537
crossref_primary_10_1007_s10479_023_05299_1
crossref_primary_10_1088_1361_6501_ad9d6a
crossref_primary_10_1088_1361_6501_ad44c7
crossref_primary_10_1088_1361_665X_adb405
crossref_primary_10_1016_j_dibe_2023_100294
crossref_primary_10_1007_s44196_024_00671_w
crossref_primary_10_1088_1361_6501_aca3c4
crossref_primary_10_1016_j_nucengdes_2021_111328
crossref_primary_10_1080_09243046_2023_2215474
crossref_primary_10_26599_JIC_2025_9180083
crossref_primary_10_3390_ma17020357
crossref_primary_10_3390_polym14204403
crossref_primary_10_1063_5_0188125
crossref_primary_10_1016_j_ymssp_2024_111370
crossref_primary_10_1016_j_measurement_2024_114574
crossref_primary_10_1016_j_conbuildmat_2023_130709
crossref_primary_10_1016_j_measurement_2022_111563
crossref_primary_10_3390_s21186239
crossref_primary_10_1088_1361_6501_ac5d76
crossref_primary_10_1016_j_jairtraman_2023_102437
crossref_primary_10_1088_1361_6501_acb002
crossref_primary_10_1016_j_measurement_2023_112659
crossref_primary_10_3390_s24185944
crossref_primary_10_1016_j_ultras_2023_107014
crossref_primary_10_1016_j_ymssp_2023_110216
crossref_primary_10_1016_j_engstruct_2023_115866
crossref_primary_10_1016_j_ymssp_2022_108981
crossref_primary_10_1007_s42496_024_00206_8
crossref_primary_10_1177_13694332241289163
crossref_primary_10_3390_math11183837
crossref_primary_10_1016_j_istruc_2023_06_100
crossref_primary_10_1016_j_ymssp_2024_111586
crossref_primary_10_1088_1361_665X_ace868
crossref_primary_10_1016_j_matdes_2023_111686
crossref_primary_10_1088_2631_8695_aceb2e
crossref_primary_10_1016_j_compstruct_2022_116170
crossref_primary_10_3390_app14198811
crossref_primary_10_1016_j_conbuildmat_2023_133062
Cites_doi 10.1115/1.4045945
10.3390/app8060958
10.1016/j.ymssp.2016.02.007
10.1016/j.patrec.2010.03.014
10.1109/72.279181
10.1061/(ASCE)SC.1943-5576.0000550
10.1088/0957-0233/20/9/095402
10.3390/app8112148
10.1023/A:1010933404324
10.1016/j.addma.2017.11.012
10.3390/aerospace5020050
10.1088/1361-6501/ab1025
10.1088/0957-0233/6/2/010
10.1063/1.4864861
10.1109/TIA.2017.2661250
10.1080/09500349708231901
10.1016/j.measurement.2018.12.049
10.1126/science.1127647
10.1088/1361-6501/ab329c
10.1016/j.triboint.2019.106074
10.1016/S0167-9236(97)00040-7
10.1109/TII.2016.2635082
10.1016/j.ymssp.2019.04.050
10.1088/1361-6501/aa670d
10.2166/hydro.2013.141
10.1061/(ASCE)MT.1943-5533.0003353
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/abe790
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_abe790
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-85e8c6525f77e6895a6fbcc1d734594b56977ec1632e73fb2f36b325737e89e73
ISSN 0957-0233
IngestDate Thu Apr 24 23:05:03 EDT 2025
Tue Jul 01 03:54:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-85e8c6525f77e6895a6fbcc1d734594b56977ec1632e73fb2f36b325737e89e73
ORCID 0000-0003-2938-5533
0000-0002-0990-7077
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_abe790
crossref_primary_10_1088_1361_6501_abe790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2021
References Austin (mstabe790bib5) 2014; 1581
Drury (mstabe790bib1) 1990; vol 34
Ono (mstabe790bib7) 2018; 8
Hinton (mstabe790bib28) 2006; 313
Soltangharaei (mstabe790bib14) 2021; 26
Soltangharaei (mstabe790bib6) 2018; 8
Ai (mstabe790bib10) 2020
Ng (mstabe790bib36) 2011; 72
Santos-Leal (mstabe790bib15) 1995; 6
Du (mstabe790bib17) 2019; 30
Soltangharaei (mstabe790bib8) 2020; 75
He (mstabe790bib31) 2017; 53
Soltangharaei (mstabe790bib19) 2019
Sadoughi (mstabe790bib29) 2018
Raymer (mstabe790bib34) 1997; 44
Li (mstabe790bib16) 2017; 28
Ivantsiv (mstabe790bib2) 2009; 20
Austin (mstabe790bib3) 2011
Genuer (mstabe790bib40) 2010; 31
Ebrahimkhanlou (mstabe790bib41) 2019; 130
Li (mstabe790bib30) 2016; 76
Bengio (mstabe790bib37) 2007
Iquebal (mstabe790bib26) 2020; 143
Ai (mstabe790bib9) 2019; 2102
Soltangharaei (mstabe790bib11) 2020; 32
Han (mstabe790bib13) 2019; 30
Shevchik (mstabe790bib24) 2016; 13
Ebrahimkhanlou (mstabe790bib33) 2018; 5
Sexton (mstabe790bib20) 1998; 22
Breiman (mstabe790bib23) 2001; 45
Nourani (mstabe790bib22) 2013; 15
Bengio (mstabe790bib27) 2012; 1
Shevchik (mstabe790bib32) 2018; 21
Sandri (mstabe790bib35) 2006
Ono (mstabe790bib12) 2007; 25
Sun (mstabe790bib38) 2020; 91
Liu (mstabe790bib18) 2019; 136
Ono (mstabe790bib4) 2011; 29
Wang (mstabe790bib25) 2020; 142
Bengio (mstabe790bib21) 1994; 5
Laksimi (mstabe790bib39) 1999; vol 12
References_xml – volume: 142
  year: 2020
  ident: mstabe790bib25
  article-title: Acoustic emission characterization of natural fiber reinforced plastic composite machining using a random forest machine learning model
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4045945
– year: 2011
  ident: mstabe790bib3
  article-title: High temperature health monitoring of organic matrix composites for aircraft engine applications
– volume: 8
  start-page: 958
  year: 2018
  ident: mstabe790bib7
  article-title: Review on structural health evaluation with acoustic emission
  publication-title: Appl. Sci.
  doi: 10.3390/app8060958
– volume: 76
  start-page: 283
  year: 2016
  ident: mstabe790bib30
  article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.02.007
– volume: 31
  start-page: 2225
  year: 2010
  ident: mstabe790bib40
  article-title: Variable selection using random forests
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: vol 34
  start-page: 1181
  year: 1990
  ident: mstabe790bib1
  article-title: Task analysis of aircraft inspection activities: methods and findings
– volume: 5
  start-page: 157
  year: 1994
  ident: mstabe790bib21
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 91
  year: 2020
  ident: mstabe790bib38
  article-title: Hybrid electric buses fuel consumption prediction based on real-world driving data
  publication-title: Transp. Res. D
– volume: 26
  year: 2021
  ident: mstabe790bib14
  article-title: Implementation of information entropy, b-value, and regression analyses for temporal evaluation of acoustic emission data recorded during ASR cracking
  publication-title: Pract. Period. Struct. Des. Constr.
  doi: 10.1061/(ASCE)SC.1943-5576.0000550
– start-page: 153
  year: 2007
  ident: mstabe790bib37
– volume: 20
  year: 2009
  ident: mstabe790bib2
  article-title: Mass flow rate measurement in abrasive jets using acoustic emission
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/9/095402
– volume: 8
  start-page: 2148
  year: 2018
  ident: mstabe790bib6
  article-title: Damage mechanism evaluation of large-scale concrete structures affected by alkali-silica reaction using acoustic emission
  publication-title: Appl. Sci.
  doi: 10.3390/app8112148
– volume: 45
  start-page: 5
  year: 2001
  ident: mstabe790bib23
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 21
  start-page: 598
  year: 2018
  ident: mstabe790bib32
  article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.11.012
– volume: 5
  start-page: 50
  year: 2018
  ident: mstabe790bib33
  article-title: Single-sensor acoustic emission source localization in plate-like structures using deep learning
  publication-title: Aerospace
  doi: 10.3390/aerospace5020050
– volume: 30
  year: 2019
  ident: mstabe790bib13
  article-title: Localization of CO2 gas leakages through acoustic emission multi-sensor fusion based on wavelet-RBFN modeling
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab1025
– volume: 6
  start-page: 188
  year: 1995
  ident: mstabe790bib15
  article-title: Simultaneous measurement of acoustic emission and electrical resistance variation in stress-corrosion cracking
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/6/2/010
– volume: 25
  start-page: 179
  year: 2007
  ident: mstabe790bib12
  article-title: Analysis of acoustic emission from impact and fracture of CFRP laminates
  publication-title: J. Acoust. Emission
– volume: 1581
  start-page: 501
  year: 2014
  ident: mstabe790bib5
  article-title: Damage evaluation for high temperature CFRP components using acoustic emission monitoring
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4864861
– volume: 53
  start-page: 3057
  year: 2017
  ident: mstabe790bib31
  article-title: Deep learning based approach for bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2017.2661250
– volume: 44
  start-page: 2565
  year: 1997
  ident: mstabe790bib34
  article-title: The Whittaker–Shannon sampling theorem for experimental reconstruction of free-space wave packets
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349708231901
– volume: vol 12
  year: 1999
  ident: mstabe790bib39
  article-title: Monitoring acoustic emission during tensile loading of thermoplastic composites materials
– volume: 29
  start-page: 284
  year: 2011
  ident: mstabe790bib4
  article-title: Acoustic emission in materials research—a review
  publication-title: J. Acoust. Emission
– volume: 136
  start-page: 122
  year: 2019
  ident: mstabe790bib18
  article-title: Energy distribution and fractal characterization of acoustic emission (AE) during coal deformation and fracturing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.049
– volume: 313
  start-page: 504
  year: 2006
  ident: mstabe790bib28
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 30
  year: 2019
  ident: mstabe790bib17
  article-title: Measurement and prediction of granite damage evolution in deep mine seams using acoustic emission
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab329c
– volume: 143
  year: 2020
  ident: mstabe790bib26
  article-title: Learning acoustic emission signatures from a nanoindentation-based lithography process: towards rapid microstructure characterization
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2019.106074
– volume: 22
  start-page: 171
  year: 1998
  ident: mstabe790bib20
  article-title: Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation
  publication-title: Decis. Support Syst.
  doi: 10.1016/S0167-9236(97)00040-7
– start-page: 1
  year: 2020
  ident: mstabe790bib10
  article-title: Data-driven source localization of impact on aircraft control surfaces
– volume: 75
  start-page: 723
  year: 2020
  ident: mstabe790bib8
  article-title: Acoustic emission technique to identify stress corrosion cracking damage
  publication-title: Struct. Eng. Mech.
– volume: 13
  start-page: 1541
  year: 2016
  ident: mstabe790bib24
  article-title: Prediction of failure in lubricated surfaces using acoustic time–frequency features and random forest algorithm
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2635082
– start-page: 263
  year: 2006
  ident: mstabe790bib35
– start-page: 1
  year: 2018
  ident: mstabe790bib29
  article-title: A deep learning-based approach for fault diagnosis of roller element bearings
– volume: 130
  start-page: 248
  year: 2019
  ident: mstabe790bib41
  article-title: A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.04.050
– volume: 72
  start-page: 1
  year: 2011
  ident: mstabe790bib36
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Notes
– volume: 28
  year: 2017
  ident: mstabe790bib16
  article-title: Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa670d
– start-page: p 1268
  year: 2019
  ident: mstabe790bib19
  article-title: A minimally invasive impact event detection system for aircraft movables
– volume: 15
  start-page: 829
  year: 2013
  ident: mstabe790bib22
  article-title: Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2013.141
– volume: 1
  start-page: 2012
  year: 2012
  ident: mstabe790bib27
  article-title: Unsupervised feature learning and deep learning: a review and new perspectives
– volume: 32
  year: 2020
  ident: mstabe790bib11
  article-title: Temporal evaluation of ASR cracking in concrete specimens using acoustic emission
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003353
– volume: 2102
  start-page: 2
  year: 2019
  ident: mstabe790bib9
  article-title: Finite element modeling of acoustic emission in dry cask storage systems generated by cosine bell sources
  publication-title: AIP Conf. Proc.
SSID ssj0007099
Score 2.5453532
Snippet Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 84013
Title Detection of impact on aircraft composite structure using machine learning techniques
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiBYQ5aU9cKCKTGKv17s-VjxUkAockqo3a3c9LpXaGCXOAf4Af5tZ78MGWolysZKNM0o8n2a_mZ0HIS85FzWrU50gF4IkLwud6MaGw-p6bnTKQYEtFD7-VBwt84-n_HQy-TnKWtp2-rX5cWVdyf9oFddQr7ZK9gaajUJxAV-jfvGKGsbrP-n4LXRgAuUL9Y6rqTpfm7Vquj5f3CZl2S6ytk2sPSzY9sGByz6HEsLQiLNp7OW6GdPV4yGCOA0FQBYr3V8B-UNXZX0eIzbtBdLOM9sOGvqPTlQz-P7qu_KVQl8v220d1k_Q2Czadg0xo98n9PuwRJbGpLghvigSJATOeoGzrqxIE6SE6dj8DuHNbUjfdbZUWtfvSiuPltEGHII0u51pEG7s6O8ttf_Y6mICYn_0LmVlZVRWRuUk3CK3M_Q37CiMD5-_xC1dzEvftNH9J3_ejRJm8VfMnIQRvxkRlcV9cs97GPTQwWWXTGC1R-70mb5ms0d2vTXf0Fe-5fjBA7KMSKJtQx2SKL4JSKIRSTQiifZIoh5JNCCJDkh6SJbv3y3eHCV-4EZispx1ieQgTcEz3ggBhSy5KhptTFoLlvMy17xAbwEMUvgMBGt01rBCMzT6TIAscekR2Vm1K3hMKDMlY3UGaWYUbgtzqUrbynIuDTLIOlX7ZBYeU2V8N3o7FOWiuk41--QgfuOb68Ry7b1PbnDvU3J3wO8zsoNPEZ4j0ez0ix4EvwDs5XzY
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+impact+on+aircraft+composite+structure+using+machine+learning+techniques&rft.jtitle=Measurement+science+%26+technology&rft.au=Ai%2C+Li&rft.au=Soltangharaei%2C+Vafa&rft.au=Bayat%2C+Mahmoud&rft.au=Van+Tooren%2C+Michel&rft.date=2021-08-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=32&rft.issue=8&rft.spage=84013&rft_id=info:doi/10.1088%2F1361-6501%2Fabe790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_abe790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon