Detection of impact on aircraft composite structure using machine learning techniques
Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and dam...
Saved in:
Published in | Measurement science & technology Vol. 32; no. 8; p. 84013 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and damage quantification of impacts should be studied and considered to address flight safety and to reduce costs associated with a regularly scheduled visual inspection. Since the structural components of the aircraft are large scale, visual inspection and monitoring are challenging and subject to human error. This paper presents a promising solution that can automatically detect and localize an impact that may occur during flight. To achieve this goal, acoustic emission (AE) is employed as an impact monitoring approach. Random forest and deep learning were adopted for training the source location models. An AE dataset was collected by conducting an impact experiment on a full-size thermoplastic aircraft elevator in a laboratory environment. A dataset consisting of AE parametric features and a dataset consisting of AE waveforms were assigned to a random forest classifier and deep learning network for the investigation of their applicability of impact source localization. The results obtained were compared using the source localization approach in previous research using a conventional artificial neural network. The analysis of results shows the random forest and deep learning leads to better event localization performance. In addition, the random forest model can provide the importance of features. By deleting the least important features, the storage required to save the input and the computing time for the random forest is greatly reduced, and an acceptable localization performance can still be obtained. |
---|---|
AbstractList | Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and damage quantification of impacts should be studied and considered to address flight safety and to reduce costs associated with a regularly scheduled visual inspection. Since the structural components of the aircraft are large scale, visual inspection and monitoring are challenging and subject to human error. This paper presents a promising solution that can automatically detect and localize an impact that may occur during flight. To achieve this goal, acoustic emission (AE) is employed as an impact monitoring approach. Random forest and deep learning were adopted for training the source location models. An AE dataset was collected by conducting an impact experiment on a full-size thermoplastic aircraft elevator in a laboratory environment. A dataset consisting of AE parametric features and a dataset consisting of AE waveforms were assigned to a random forest classifier and deep learning network for the investigation of their applicability of impact source localization. The results obtained were compared using the source localization approach in previous research using a conventional artificial neural network. The analysis of results shows the random forest and deep learning leads to better event localization performance. In addition, the random forest model can provide the importance of features. By deleting the least important features, the storage required to save the input and the computing time for the random forest is greatly reduced, and an acceptable localization performance can still be obtained. |
Author | Bayat, Mahmoud Ziehl, Paul Van Tooren, Michel Ai, Li Soltangharaei, Vafa |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0003-2938-5533 surname: Ai fullname: Ai, Li – sequence: 2 givenname: Vafa surname: Soltangharaei fullname: Soltangharaei, Vafa – sequence: 3 givenname: Mahmoud orcidid: 0000-0002-0990-7077 surname: Bayat fullname: Bayat, Mahmoud – sequence: 4 givenname: Michel surname: Van Tooren fullname: Van Tooren, Michel – sequence: 5 givenname: Paul surname: Ziehl fullname: Ziehl, Paul |
BookMark | eNp1kD1PwzAQhi1UJNLCzug_EGrHtR2PqHxKlVjoHDnHmRo1TrCdgX9PoiIGJKbTPaf3le5ZkkXoAxJyzdkNZ3W95kLxUknG17ZFbdgZKX7RghTMSF2ySogLskzpgzGmmTEF2d9hRsi-D7R31HeDhUynxfoI0bpMoe-GPvmMNOU4Qh4j0jH58E47CwcfkB7RxjCDqegQ_OeI6ZKcO3tMePUzV2T_cP-6fSp3L4_P29tdCdVG5LKWWIOSlXRao6qNtMq1APxNi400m1YqMx2AK1GhFq6tnFCtqKQWGmszoRVRp16IfUoRXQM-2_mbHK0_Npw1s5xmNtHMJpqTnCnI_gSH6Dsbv_6PfAPWi2qn |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2022_129844 crossref_primary_10_1177_00219983211037048 crossref_primary_10_3390_app13116573 crossref_primary_10_3390_ma18020449 crossref_primary_10_1177_14759217241290260 crossref_primary_10_1016_j_cja_2023_11_022 crossref_primary_10_1088_1361_6501_aca041 crossref_primary_10_1109_JSEN_2024_3464684 crossref_primary_10_1177_13694332241286537 crossref_primary_10_1007_s10479_023_05299_1 crossref_primary_10_1088_1361_6501_ad9d6a crossref_primary_10_1088_1361_6501_ad44c7 crossref_primary_10_1088_1361_665X_adb405 crossref_primary_10_1016_j_dibe_2023_100294 crossref_primary_10_1007_s44196_024_00671_w crossref_primary_10_1088_1361_6501_aca3c4 crossref_primary_10_1016_j_nucengdes_2021_111328 crossref_primary_10_1080_09243046_2023_2215474 crossref_primary_10_26599_JIC_2025_9180083 crossref_primary_10_3390_ma17020357 crossref_primary_10_3390_polym14204403 crossref_primary_10_1063_5_0188125 crossref_primary_10_1016_j_ymssp_2024_111370 crossref_primary_10_1016_j_measurement_2024_114574 crossref_primary_10_1016_j_conbuildmat_2023_130709 crossref_primary_10_1016_j_measurement_2022_111563 crossref_primary_10_3390_s21186239 crossref_primary_10_1088_1361_6501_ac5d76 crossref_primary_10_1016_j_jairtraman_2023_102437 crossref_primary_10_1088_1361_6501_acb002 crossref_primary_10_1016_j_measurement_2023_112659 crossref_primary_10_3390_s24185944 crossref_primary_10_1016_j_ultras_2023_107014 crossref_primary_10_1016_j_ymssp_2023_110216 crossref_primary_10_1016_j_engstruct_2023_115866 crossref_primary_10_1016_j_ymssp_2022_108981 crossref_primary_10_1007_s42496_024_00206_8 crossref_primary_10_1177_13694332241289163 crossref_primary_10_3390_math11183837 crossref_primary_10_1016_j_istruc_2023_06_100 crossref_primary_10_1016_j_ymssp_2024_111586 crossref_primary_10_1088_1361_665X_ace868 crossref_primary_10_1016_j_matdes_2023_111686 crossref_primary_10_1088_2631_8695_aceb2e crossref_primary_10_1016_j_compstruct_2022_116170 crossref_primary_10_3390_app14198811 crossref_primary_10_1016_j_conbuildmat_2023_133062 |
Cites_doi | 10.1115/1.4045945 10.3390/app8060958 10.1016/j.ymssp.2016.02.007 10.1016/j.patrec.2010.03.014 10.1109/72.279181 10.1061/(ASCE)SC.1943-5576.0000550 10.1088/0957-0233/20/9/095402 10.3390/app8112148 10.1023/A:1010933404324 10.1016/j.addma.2017.11.012 10.3390/aerospace5020050 10.1088/1361-6501/ab1025 10.1088/0957-0233/6/2/010 10.1063/1.4864861 10.1109/TIA.2017.2661250 10.1080/09500349708231901 10.1016/j.measurement.2018.12.049 10.1126/science.1127647 10.1088/1361-6501/ab329c 10.1016/j.triboint.2019.106074 10.1016/S0167-9236(97)00040-7 10.1109/TII.2016.2635082 10.1016/j.ymssp.2019.04.050 10.1088/1361-6501/aa670d 10.2166/hydro.2013.141 10.1061/(ASCE)MT.1943-5533.0003353 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/abe790 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_abe790 |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c243t-85e8c6525f77e6895a6fbcc1d734594b56977ec1632e73fb2f36b325737e89e73 |
ISSN | 0957-0233 |
IngestDate | Thu Apr 24 23:05:03 EDT 2025 Tue Jul 01 03:54:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-85e8c6525f77e6895a6fbcc1d734594b56977ec1632e73fb2f36b325737e89e73 |
ORCID | 0000-0003-2938-5533 0000-0002-0990-7077 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_abe790 crossref_primary_10_1088_1361_6501_abe790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2021 |
References | Austin (mstabe790bib5) 2014; 1581 Drury (mstabe790bib1) 1990; vol 34 Ono (mstabe790bib7) 2018; 8 Hinton (mstabe790bib28) 2006; 313 Soltangharaei (mstabe790bib14) 2021; 26 Soltangharaei (mstabe790bib6) 2018; 8 Ai (mstabe790bib10) 2020 Ng (mstabe790bib36) 2011; 72 Santos-Leal (mstabe790bib15) 1995; 6 Du (mstabe790bib17) 2019; 30 Soltangharaei (mstabe790bib8) 2020; 75 He (mstabe790bib31) 2017; 53 Soltangharaei (mstabe790bib19) 2019 Sadoughi (mstabe790bib29) 2018 Raymer (mstabe790bib34) 1997; 44 Li (mstabe790bib16) 2017; 28 Ivantsiv (mstabe790bib2) 2009; 20 Austin (mstabe790bib3) 2011 Genuer (mstabe790bib40) 2010; 31 Ebrahimkhanlou (mstabe790bib41) 2019; 130 Li (mstabe790bib30) 2016; 76 Bengio (mstabe790bib37) 2007 Iquebal (mstabe790bib26) 2020; 143 Ai (mstabe790bib9) 2019; 2102 Soltangharaei (mstabe790bib11) 2020; 32 Han (mstabe790bib13) 2019; 30 Shevchik (mstabe790bib24) 2016; 13 Ebrahimkhanlou (mstabe790bib33) 2018; 5 Sexton (mstabe790bib20) 1998; 22 Breiman (mstabe790bib23) 2001; 45 Nourani (mstabe790bib22) 2013; 15 Bengio (mstabe790bib27) 2012; 1 Shevchik (mstabe790bib32) 2018; 21 Sandri (mstabe790bib35) 2006 Ono (mstabe790bib12) 2007; 25 Sun (mstabe790bib38) 2020; 91 Liu (mstabe790bib18) 2019; 136 Ono (mstabe790bib4) 2011; 29 Wang (mstabe790bib25) 2020; 142 Bengio (mstabe790bib21) 1994; 5 Laksimi (mstabe790bib39) 1999; vol 12 |
References_xml | – volume: 142 year: 2020 ident: mstabe790bib25 article-title: Acoustic emission characterization of natural fiber reinforced plastic composite machining using a random forest machine learning model publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4045945 – year: 2011 ident: mstabe790bib3 article-title: High temperature health monitoring of organic matrix composites for aircraft engine applications – volume: 8 start-page: 958 year: 2018 ident: mstabe790bib7 article-title: Review on structural health evaluation with acoustic emission publication-title: Appl. Sci. doi: 10.3390/app8060958 – volume: 76 start-page: 283 year: 2016 ident: mstabe790bib30 article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.02.007 – volume: 31 start-page: 2225 year: 2010 ident: mstabe790bib40 article-title: Variable selection using random forests publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.03.014 – volume: vol 34 start-page: 1181 year: 1990 ident: mstabe790bib1 article-title: Task analysis of aircraft inspection activities: methods and findings – volume: 5 start-page: 157 year: 1994 ident: mstabe790bib21 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – volume: 91 year: 2020 ident: mstabe790bib38 article-title: Hybrid electric buses fuel consumption prediction based on real-world driving data publication-title: Transp. Res. D – volume: 26 year: 2021 ident: mstabe790bib14 article-title: Implementation of information entropy, b-value, and regression analyses for temporal evaluation of acoustic emission data recorded during ASR cracking publication-title: Pract. Period. Struct. Des. Constr. doi: 10.1061/(ASCE)SC.1943-5576.0000550 – start-page: 153 year: 2007 ident: mstabe790bib37 – volume: 20 year: 2009 ident: mstabe790bib2 article-title: Mass flow rate measurement in abrasive jets using acoustic emission publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/9/095402 – volume: 8 start-page: 2148 year: 2018 ident: mstabe790bib6 article-title: Damage mechanism evaluation of large-scale concrete structures affected by alkali-silica reaction using acoustic emission publication-title: Appl. Sci. doi: 10.3390/app8112148 – volume: 45 start-page: 5 year: 2001 ident: mstabe790bib23 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 21 start-page: 598 year: 2018 ident: mstabe790bib32 article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.11.012 – volume: 5 start-page: 50 year: 2018 ident: mstabe790bib33 article-title: Single-sensor acoustic emission source localization in plate-like structures using deep learning publication-title: Aerospace doi: 10.3390/aerospace5020050 – volume: 30 year: 2019 ident: mstabe790bib13 article-title: Localization of CO2 gas leakages through acoustic emission multi-sensor fusion based on wavelet-RBFN modeling publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab1025 – volume: 6 start-page: 188 year: 1995 ident: mstabe790bib15 article-title: Simultaneous measurement of acoustic emission and electrical resistance variation in stress-corrosion cracking publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/6/2/010 – volume: 25 start-page: 179 year: 2007 ident: mstabe790bib12 article-title: Analysis of acoustic emission from impact and fracture of CFRP laminates publication-title: J. Acoust. Emission – volume: 1581 start-page: 501 year: 2014 ident: mstabe790bib5 article-title: Damage evaluation for high temperature CFRP components using acoustic emission monitoring publication-title: AIP Conf. Proc. doi: 10.1063/1.4864861 – volume: 53 start-page: 3057 year: 2017 ident: mstabe790bib31 article-title: Deep learning based approach for bearing fault diagnosis publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2017.2661250 – volume: 44 start-page: 2565 year: 1997 ident: mstabe790bib34 article-title: The Whittaker–Shannon sampling theorem for experimental reconstruction of free-space wave packets publication-title: J. Mod. Opt. doi: 10.1080/09500349708231901 – volume: vol 12 year: 1999 ident: mstabe790bib39 article-title: Monitoring acoustic emission during tensile loading of thermoplastic composites materials – volume: 29 start-page: 284 year: 2011 ident: mstabe790bib4 article-title: Acoustic emission in materials research—a review publication-title: J. Acoust. Emission – volume: 136 start-page: 122 year: 2019 ident: mstabe790bib18 article-title: Energy distribution and fractal characterization of acoustic emission (AE) during coal deformation and fracturing publication-title: Measurement doi: 10.1016/j.measurement.2018.12.049 – volume: 313 start-page: 504 year: 2006 ident: mstabe790bib28 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 30 year: 2019 ident: mstabe790bib17 article-title: Measurement and prediction of granite damage evolution in deep mine seams using acoustic emission publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab329c – volume: 143 year: 2020 ident: mstabe790bib26 article-title: Learning acoustic emission signatures from a nanoindentation-based lithography process: towards rapid microstructure characterization publication-title: Tribol. Int. doi: 10.1016/j.triboint.2019.106074 – volume: 22 start-page: 171 year: 1998 ident: mstabe790bib20 article-title: Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation publication-title: Decis. Support Syst. doi: 10.1016/S0167-9236(97)00040-7 – start-page: 1 year: 2020 ident: mstabe790bib10 article-title: Data-driven source localization of impact on aircraft control surfaces – volume: 75 start-page: 723 year: 2020 ident: mstabe790bib8 article-title: Acoustic emission technique to identify stress corrosion cracking damage publication-title: Struct. Eng. Mech. – volume: 13 start-page: 1541 year: 2016 ident: mstabe790bib24 article-title: Prediction of failure in lubricated surfaces using acoustic time–frequency features and random forest algorithm publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2635082 – start-page: 263 year: 2006 ident: mstabe790bib35 – start-page: 1 year: 2018 ident: mstabe790bib29 article-title: A deep learning-based approach for fault diagnosis of roller element bearings – volume: 130 start-page: 248 year: 2019 ident: mstabe790bib41 article-title: A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.04.050 – volume: 72 start-page: 1 year: 2011 ident: mstabe790bib36 article-title: Sparse autoencoder publication-title: CS294A Lect. Notes – volume: 28 year: 2017 ident: mstabe790bib16 article-title: Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa670d – start-page: p 1268 year: 2019 ident: mstabe790bib19 article-title: A minimally invasive impact event detection system for aircraft movables – volume: 15 start-page: 829 year: 2013 ident: mstabe790bib22 article-title: Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling publication-title: J. Hydroinform. doi: 10.2166/hydro.2013.141 – volume: 1 start-page: 2012 year: 2012 ident: mstabe790bib27 article-title: Unsupervised feature learning and deep learning: a review and new perspectives – volume: 32 year: 2020 ident: mstabe790bib11 article-title: Temporal evaluation of ASR cracking in concrete specimens using acoustic emission publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003353 – volume: 2102 start-page: 2 year: 2019 ident: mstabe790bib9 article-title: Finite element modeling of acoustic emission in dry cask storage systems generated by cosine bell sources publication-title: AIP Conf. Proc. |
SSID | ssj0007099 |
Score | 2.5453532 |
Snippet | Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 84013 |
Title | Detection of impact on aircraft composite structure using machine learning techniques |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiBYQ5aU9cKCKTGKv17s-VjxUkAockqo3a3c9LpXaGCXOAf4Af5tZ78MGWolysZKNM0o8n2a_mZ0HIS85FzWrU50gF4IkLwud6MaGw-p6bnTKQYEtFD7-VBwt84-n_HQy-TnKWtp2-rX5cWVdyf9oFddQr7ZK9gaajUJxAV-jfvGKGsbrP-n4LXRgAuUL9Y6rqTpfm7Vquj5f3CZl2S6ytk2sPSzY9sGByz6HEsLQiLNp7OW6GdPV4yGCOA0FQBYr3V8B-UNXZX0eIzbtBdLOM9sOGvqPTlQz-P7qu_KVQl8v220d1k_Q2Czadg0xo98n9PuwRJbGpLghvigSJATOeoGzrqxIE6SE6dj8DuHNbUjfdbZUWtfvSiuPltEGHII0u51pEG7s6O8ttf_Y6mICYn_0LmVlZVRWRuUk3CK3M_Q37CiMD5-_xC1dzEvftNH9J3_ejRJm8VfMnIQRvxkRlcV9cs97GPTQwWWXTGC1R-70mb5ms0d2vTXf0Fe-5fjBA7KMSKJtQx2SKL4JSKIRSTQiifZIoh5JNCCJDkh6SJbv3y3eHCV-4EZispx1ieQgTcEz3ggBhSy5KhptTFoLlvMy17xAbwEMUvgMBGt01rBCMzT6TIAscekR2Vm1K3hMKDMlY3UGaWYUbgtzqUrbynIuDTLIOlX7ZBYeU2V8N3o7FOWiuk41--QgfuOb68Ry7b1PbnDvU3J3wO8zsoNPEZ4j0ez0ix4EvwDs5XzY |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+impact+on+aircraft+composite+structure+using+machine+learning+techniques&rft.jtitle=Measurement+science+%26+technology&rft.au=Ai%2C+Li&rft.au=Soltangharaei%2C+Vafa&rft.au=Bayat%2C+Mahmoud&rft.au=Van+Tooren%2C+Michel&rft.date=2021-08-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=32&rft.issue=8&rft.spage=84013&rft_id=info:doi/10.1088%2F1361-6501%2Fabe790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_abe790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |