Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique

It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this pr...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 4; p. 45005
Main Authors Fu, Wenlong, Jiang, Xiaohui, Li, Bailin, Tan, Chao, Chen, Baojia, Chen, Xiaoyue
Format Journal Article
LanguageEnglish
Published 01.04.2023
Online AccessGet full text

Cover

Loading…
Abstract It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this problem, a fault diagnosis method based on two-dimensional time-frequency images and data augmentation is proposed. To begin with, the original one-dimensional time series signal is converted into two-dimensional time-frequency images by continuous wavelet transform to obtain the input data suitable for two-dimensional convolutional neural network (CNN). Secondly, data augmentation technique is employed to expand labeled fault data. Finally, the generated and original fault data are served as training samples to train the fault diagnosis model based on CNNs. Experimental studies are conducted on standard and real-world datasets to validate the proposed method and demonstrate its superiority over the traditional methods in detecting bearing faults.
AbstractList It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this problem, a fault diagnosis method based on two-dimensional time-frequency images and data augmentation is proposed. To begin with, the original one-dimensional time series signal is converted into two-dimensional time-frequency images by continuous wavelet transform to obtain the input data suitable for two-dimensional convolutional neural network (CNN). Secondly, data augmentation technique is employed to expand labeled fault data. Finally, the generated and original fault data are served as training samples to train the fault diagnosis model based on CNNs. Experimental studies are conducted on standard and real-world datasets to validate the proposed method and demonstrate its superiority over the traditional methods in detecting bearing faults.
Author Jiang, Xiaohui
Li, Bailin
Chen, Baojia
Fu, Wenlong
Tan, Chao
Chen, Xiaoyue
Author_xml – sequence: 1
  givenname: Wenlong
  orcidid: 0000-0003-4084-1085
  surname: Fu
  fullname: Fu, Wenlong
– sequence: 2
  givenname: Xiaohui
  surname: Jiang
  fullname: Jiang, Xiaohui
– sequence: 3
  givenname: Bailin
  surname: Li
  fullname: Li, Bailin
– sequence: 4
  givenname: Chao
  orcidid: 0000-0002-8910-1689
  surname: Tan
  fullname: Tan, Chao
– sequence: 5
  givenname: Baojia
  orcidid: 0000-0003-4305-0051
  surname: Chen
  fullname: Chen, Baojia
– sequence: 6
  givenname: Xiaoyue
  surname: Chen
  fullname: Chen, Xiaoyue
BookMark eNp1kE1LAzEURYNUsK3uXeYPjE0mM2lmKfWjQkEQXQ8vL8kYmWY0SRf9985QcSG4uvC453E5CzILQ7CEXHN2w5lSKy4kL2TN-AoQtNFnZP57mpE5a-p1wUohLsgipQ_G2Jo1zZzAy9D3PnRUW4hTOjj0mRoPXRiST1RDsoYOgZZ3NPu9LVy0Xwcb8Ej9HjqbKARDDWSgcOj2NmTIfqxni-_Bj81Lcu6gT_bqJ5fk7eH-dbMtds-PT5vbXYFlJXKhuGs0ltYwNA6gRl4JVI1ZK6y0dMIIUStVW4NSNSibqnJOiNJVTjOpHIolYae_GIeUonXtZxwXxmPLWTspaicf7eSjPSkaEfkHQX-anyP4_n_wG2CycSc
CitedBy_id crossref_primary_10_3390_s24165285
crossref_primary_10_1088_1361_6501_acf598
crossref_primary_10_3390_e26121113
crossref_primary_10_1088_1361_6501_ad00cf
crossref_primary_10_1016_j_eswa_2024_123536
crossref_primary_10_3390_app15021001
crossref_primary_10_3389_fenrg_2023_1345004
crossref_primary_10_3390_su151411084
crossref_primary_10_1088_1361_6501_acf3ff
crossref_primary_10_1088_1361_6501_ad4ab8
crossref_primary_10_1088_1361_6501_ad0fd2
crossref_primary_10_1016_j_measurement_2025_117027
crossref_primary_10_3389_fenrg_2024_1345780
crossref_primary_10_3233_JIFS_233797
crossref_primary_10_3389_fenrg_2024_1327857
crossref_primary_10_1088_1361_6501_ace9f0
crossref_primary_10_1016_j_apenergy_2023_121587
crossref_primary_10_1155_2024_9071328
crossref_primary_10_3389_fenrg_2023_1303522
crossref_primary_10_3934_era_2024183
crossref_primary_10_3389_fenrg_2023_1247412
crossref_primary_10_1109_JSEN_2024_3415713
crossref_primary_10_1088_1361_6501_adbb0f
crossref_primary_10_3389_fenrg_2023_1280724
crossref_primary_10_3390_su15129544
crossref_primary_10_1631_jzus_A2300273
crossref_primary_10_1007_s40430_023_04426_0
crossref_primary_10_1109_TIM_2024_3378268
crossref_primary_10_1007_s11760_024_03456_y
crossref_primary_10_1109_JSEN_2024_3487209
crossref_primary_10_1088_1361_6501_ad5861
crossref_primary_10_1109_TII_2024_3470908
crossref_primary_10_1088_1361_6501_ace644
crossref_primary_10_1109_ACCESS_2024_3441232
crossref_primary_10_3390_su15119107
crossref_primary_10_1016_j_aei_2024_102976
crossref_primary_10_1088_1361_6501_ad42c4
crossref_primary_10_1088_1361_6501_ad282a
crossref_primary_10_3390_su15076208
crossref_primary_10_3390_electronics13183749
crossref_primary_10_3390_sym17020241
crossref_primary_10_3934_era_2024292
crossref_primary_10_1016_j_engappai_2024_108995
crossref_primary_10_3390_agriculture14081397
crossref_primary_10_1007_s12206_025_0204_7
crossref_primary_10_1088_1361_6501_ad0f07
crossref_primary_10_1007_s41230_024_3094_x
crossref_primary_10_1088_1361_6501_ad11c9
crossref_primary_10_1088_1361_6501_ad356d
crossref_primary_10_3389_fenrg_2023_1266252
crossref_primary_10_1109_JPHOT_2024_3392392
crossref_primary_10_1109_TIM_2024_3470060
crossref_primary_10_3390_a17030102
crossref_primary_10_3390_s23208509
crossref_primary_10_3390_sym16050512
crossref_primary_10_1016_j_ress_2024_110632
crossref_primary_10_3389_fenrg_2024_1415796
crossref_primary_10_1088_1361_6501_ad704b
Cites_doi 10.1016/j.mechmachtheory.2018.10.007
10.1016/j.ymssp.2018.02.016
10.1016/j.aei.2021.101406
10.1016/j.enconman.2021.115102
10.1016/j.compind.2020.103378
10.1016/j.knosys.2021.106796
10.1088/1361-6501/ac57ef
10.1016/j.measurement.2021.109885
10.1016/j.triboint.2021.107373
10.1109/TII.2019.2941486
10.1088/1361-6501/ac856c
10.1155/2019/3264969
10.1007/s11831-019-09344-w
10.1088/1361-6501/aba70c
10.1177/0142331219860279
10.1016/j.ymssp.2022.109040
10.1613/jair.1.11192
10.3390/app11030919
10.1016/j.robot.2011.10.003
10.1016/j.measurement.2021.109100
10.1016/j.measurement.2016.04.007
10.3390/s21227762
10.1109/JSEN.2022.3160762
10.1016/j.knosys.2021.107413
10.1155/2022/9079790
10.1088/1361-6501/ac8894
10.3390/app10165542
10.1109/ACCESS.2020.2966582
10.1016/j.measurement.2020.107539
10.1016/j.measurement.2021.109226
10.1016/j.neucom.2018.10.109
10.1119/1.18959
10.1038/nature14539
10.1145/3422622
10.1016/j.neucom.2018.07.034
10.1109/TIE.2015.2417501
10.1088/1361-6501/ab55f8
10.1088/1755-1315/769/4/042085
10.1109/TIE.2020.3028821
10.1016/j.measurement.2020.108580
10.1016/j.measurement.2020.107768
10.1109/TIM.2021.3139706
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/acabdb
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_acabdb
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-81f9bc2ed0cdfaa5c143c89d78c4b6f3d335885edc689c6944ff332f4fb068fc3
ISSN 0957-0233
IngestDate Tue Jul 01 03:54:23 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-81f9bc2ed0cdfaa5c143c89d78c4b6f3d335885edc689c6944ff332f4fb068fc3
ORCID 0000-0002-8910-1689
0000-0003-4084-1085
0000-0003-4305-0051
ParticipantIDs crossref_primary_10_1088_1361_6501_acabdb
crossref_citationtrail_10_1088_1361_6501_acabdb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Fu (mstacabdbbib14) 2019; 2019
Gao (mstacabdbbib40) 2021; 231
Shao (mstacabdbbib15) 2021; 173
Zhang (mstacabdbbib30) 2021; 68
Liu (mstacabdbbib3) 2022; 173
Lang (mstacabdbbib37) 1998; 66
Cheng (mstacabdbbib41) 2021; 216
Sun (mstacabdbbib22) 2016; 89
Zhu (mstacabdbbib13) 2022; 33
Fu (mstacabdbbib32) 2022; 22
Hua (mstacabdbbib17) 2022; 252
Goodfellow (mstacabdbbib29) 2020; 63
Liu (mstacabdbbib19) 2018; 108
He (mstacabdbbib27) 2008
LeCun (mstacabdbbib20) 2015; 521
Sun (mstacabdbbib9) 2021; 176
Liu (mstacabdbbib11) 2020; 131
Lu (mstacabdbbib18) 2021; 11
Fernandez (mstacabdbbib26) 2018; 61
Liu (mstacabdbbib4) 2022; 167
Xue (mstacabdbbib24) 2021; 176
Liu (mstacabdbbib1) 2022; 33
Gao (mstacabdbbib12) 2015; 62
Han (mstacabdbbib45) 2021; 21
Hu (mstacabdbbib28) 2020; 156
Hsiao (mstacabdbbib7) 2012; 60
Ko (mstacabdbbib44) 2020; 16
Jalayer (mstacabdbbib38) 2021; 125
Fu (mstacabdbbib16) 2019; 41
Zhao (mstacabdbbib8) 2019; 31
Jia (mstacabdbbib23) 2021; 769
Dargan (mstacabdbbib21) 2020; 27
Tang (mstacabdbbib39) 2021; 50
Li (mstacabdbbib2) 2022; 33
Fu (mstacabdbbib6) 2020; 8
Li (mstacabdbbib36) 2020; 10
Su (mstacabdbbib35) 2018
Yuan (mstacabdbbib34) 2022; 2022
Bai (mstacabdbbib5) 2021; 184
Shi (mstacabdbbib10) 2020; 31
Liang (mstacabdbbib43) 2020; 159
Taylor (mstacabdbbib25) 2018
Liu (mstacabdbbib31) 2018; 315
Gao (mstacabdbbib33) 2020; 396
Tran (mstacabdbbib42) 2022; 71
References_xml – volume: 131
  start-page: 336
  year: 2020
  ident: mstacabdbbib11
  article-title: A statistical feature investigation of the spalling propagation assessment for a ball bearing
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.10.007
– volume: 108
  start-page: 33
  year: 2018
  ident: mstacabdbbib19
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 50
  year: 2021
  ident: mstacabdbbib39
  article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101406
– volume: 252
  year: 2022
  ident: mstacabdbbib17
  article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.115102
– volume: 125
  year: 2021
  ident: mstacabdbbib38
  article-title: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103378
– volume: 216
  year: 2021
  ident: mstacabdbbib41
  article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network
  publication-title: Knowl-Based. Syst.
  doi: 10.1016/j.knosys.2021.106796
– volume: 33
  year: 2022
  ident: mstacabdbbib13
  article-title: A simulation-data-driven subdomain adaptation adversarial transfer learning network for rolling element bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac57ef
– volume: 184
  year: 2021
  ident: mstacabdbbib5
  article-title: Rolling bearing fault diagnosis based on multi-channel convolution neural network and multi-scale clipping fusion data augmentation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109885
– volume: 167
  year: 2022
  ident: mstacabdbbib4
  article-title: A simulation investigation of lubricating characteristics for a cylindrical roller bearing of a high-power gearbox
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2021.107373
– volume: 16
  start-page: 2868
  year: 2020
  ident: mstacabdbbib44
  article-title: Fault classification in high-dimensional complex processes using semi-supervised deep convolutional generative models
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2941486
– volume: 33
  year: 2022
  ident: mstacabdbbib2
  article-title: Adaptive single-mode variational mode decomposition and its applications in wheelset bearing fault diagnosisl
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac856c
– volume: 2019
  year: 2019
  ident: mstacabdbbib14
  article-title: Blind parameter identification of MAR model and mutation hybrid GWO-SCA optimized SVM for fault diagnosis of rotating machinery
  publication-title: Complexity
  doi: 10.1155/2019/3264969
– volume: 27
  start-page: 1071
  year: 2020
  ident: mstacabdbbib21
  article-title: A survey of deep learning and its applications: a new paradigm to machine learning
  publication-title: Arch. Comput. Method. Eng.
  doi: 10.1007/s11831-019-09344-w
– volume: 31
  year: 2020
  ident: mstacabdbbib10
  article-title: The VMD-scale space based hoyergram and its application in rolling bearing fault diagnosis
  publication-title: Meas. Sci. Technol
  doi: 10.1088/1361-6501/aba70c
– volume: 41
  start-page: 4436
  year: 2019
  ident: mstacabdbbib16
  article-title: A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331219860279
– volume: 173
  year: 2022
  ident: mstacabdbbib3
  article-title: Dynamic modelling of the defect extension and appearance in a cylindrical roller bearing
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109040
– volume: 61
  start-page: 863
  year: 2018
  ident: mstacabdbbib26
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11192
– volume: 11
  start-page: 919
  year: 2021
  ident: mstacabdbbib18
  article-title: Enhanced K-nearest neighbor for intelligent fault diagnosis of rotating machinery
  publication-title: Appl. Sci.
  doi: 10.3390/app11030919
– volume: 60
  start-page: 154
  year: 2012
  ident: mstacabdbbib7
  article-title: A hierarchical multiple-model approach for detection and isolation of robotic actuator faults
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2011.10.003
– volume: 176
  year: 2021
  ident: mstacabdbbib9
  article-title: Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109100
– volume: 89
  start-page: 171
  year: 2016
  ident: mstacabdbbib22
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 21
  start-page: 7762
  year: 2021
  ident: mstacabdbbib45
  article-title: Fault diagnosis method based on capsule network and Markov transition field/Gramian angular field
  publication-title: Sensors
  doi: 10.3390/s21227762
– volume: 22
  start-page: 8749
  year: 2022
  ident: mstacabdbbib32
  article-title: Rolling bearing fault diagnosis in limited data scenarios using feature enhanced generative adversarial networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3160762
– start-page: pp 1322
  year: 2008
  ident: mstacabdbbib27
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
– volume: 231
  year: 2021
  ident: mstacabdbbib40
  article-title: A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity
  publication-title: Knowl-Based. Syst.
  doi: 10.1016/j.knosys.2021.107413
– volume: 2022
  year: 2022
  ident: mstacabdbbib34
  article-title: A novel fault diagnosis approach for rolling bearing based on CWT and adaptive sparse representation
  publication-title: Shock Vibr.
  doi: 10.1155/2022/9079790
– volume: 33
  year: 2022
  ident: mstacabdbbib1
  article-title: Rolling bearing fault diagnosis method based on multi-sensor two-stage fusion
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac8894
– volume: 10
  start-page: 5542
  year: 2020
  ident: mstacabdbbib36
  article-title: Rolling bearings fault diagnosis based on improved complete ensemble empirical mode decomposition with adaptive noise, nonlinear entropy and ensemble SVM
  publication-title: Appl. Sci.
  doi: 10.3390/app10165542
– volume: 8
  start-page: 13086
  year: 2020
  ident: mstacabdbbib6
  article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and SVM with hybrid mutation SCA-HHO algorithm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966582
– volume: 156
  year: 2020
  ident: mstacabdbbib28
  article-title: A simple data augmentation algorithm and a self-adaptive convolutional architecture for few-shot fault diagnosis under different working conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107539
– volume: 176
  year: 2021
  ident: mstacabdbbib24
  article-title: A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109226
– volume: 396
  start-page: 487
  year: 2020
  ident: mstacabdbbib33
  article-title: Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.109
– year: 2018
  ident: mstacabdbbib35
  article-title: GAN-QP: a novel GAN framework without gradient vanishing and Lipschitz constraint
– volume: 66
  start-page: 794
  year: 1998
  ident: mstacabdbbib37
  article-title: Time-frequency analysis with the continuous wavelet transform
  publication-title: Am. J. Phys.
  doi: 10.1119/1.18959
– volume: 521
  start-page: 436
  year: 2015
  ident: mstacabdbbib20
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 63
  start-page: 139
  year: 2020
  ident: mstacabdbbib29
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– start-page: pp 1542
  year: 2018
  ident: mstacabdbbib25
  article-title: Improving deep learning with generic data augmentation
– volume: 315
  start-page: 412
  year: 2018
  ident: mstacabdbbib31
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.034
– volume: 62
  start-page: 3757
  year: 2015
  ident: mstacabdbbib12
  article-title: A survey of fault diagnosis and fault-tolerant techniques Part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– volume: 31
  year: 2019
  ident: mstacabdbbib8
  article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab55f8
– volume: 769
  year: 2021
  ident: mstacabdbbib23
  article-title: Rolling bearing fault classification based on stacked denoising auto encoders
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1755-1315/769/4/042085
– volume: 68
  start-page: 10130
  year: 2021
  ident: mstacabdbbib30
  article-title: Focused intelligent fault diagnosis scheme of machines via multimodules learning with gradient penalized generative adversarial networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3028821
– volume: 173
  year: 2021
  ident: mstacabdbbib15
  article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108580
– volume: 159
  year: 2020
  ident: mstacabdbbib43
  article-title: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107768
– volume: 71
  start-page: 1
  year: 2022
  ident: mstacabdbbib42
  article-title: Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3139706
SSID ssj0007099
Score 2.611899
Snippet It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 45005
Title Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQuqC0gSgvygQNVZHYTO4lzrFqqglTg0Ep7i_wRQ6RtgrrJgf4Afjce28kGSiXKJYqsZLS78zQzO_NmBqE3GWdKJ9QQIURFGNOSCC4MMdbX5nluaOxWJ5x_ys4u2cdlupzNfk5YS30n36mbv_aV_I9W7ZnVK3TJ3kOzo1B7YO-tfu3Vathe_0nHw0RtaeHqGJGiX3WQTgX2XL2OwEVpKAckJ26JPDHXnjn9I6qvBEx3gLQ5kEQj0X-9Cm1ITTQOdp2GruebbGI0NAMBbrpbyfnT3jH3qmbVBr8IFJ06ZKaXtWi_9fXIBKp92aNe1RtOsBioAO00K5HQCZllSC_mxJ5741V540qzmNiIMJ5a35DKrKepBWdKWbpwDdm3jbw1jJBvGKSBN1NCarlxaUMZ_w9PN_IPXeWd8xJklCCj9BIeoIcWoQlswvjw-cvo0fNFEWY2-u8Uyt1Wwnz8FHMvYRLeTOKUi230JPzBwEceLTtoVjW76JEj-qr1LtoJxnyN34aJ44dPkQhAwgFI2AEJj0DCDki4bXBygn8HEvZAwhZIGICEp0DCI5CeocvT9xfHZyTs3iAqYbQjPDaFVEmlF0obIVJl42rFC51zxWRmqKY05TyttMp4obKCMWMoTQwzcpFxo-hztNW0TfUC4UTFsay0EDb2ZJJTbmQRpxpm_UFfNN1D8-EnK1UYTA_7UVblXWraQ4fjG9_9UJY7n315j2f30eMNlg_QVnfdV69szNnJ1w4QvwBXiYNW
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rolling+bearing+fault+diagnosis+based+on+2D+time-frequency+images+and+data+augmentation+technique&rft.jtitle=Measurement+science+%26+technology&rft.au=Fu%2C+Wenlong&rft.au=Jiang%2C+Xiaohui&rft.au=Li%2C+Bailin&rft.au=Tan%2C+Chao&rft.date=2023-04-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=4&rft.spage=45005&rft_id=info:doi/10.1088%2F1361-6501%2Facabdb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acabdb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon