Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique
It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this pr...
Saved in:
Published in | Measurement science & technology Vol. 34; no. 4; p. 45005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this problem, a fault diagnosis method based on two-dimensional time-frequency images and data augmentation is proposed. To begin with, the original one-dimensional time series signal is converted into two-dimensional time-frequency images by continuous wavelet transform to obtain the input data suitable for two-dimensional convolutional neural network (CNN). Secondly, data augmentation technique is employed to expand labeled fault data. Finally, the generated and original fault data are served as training samples to train the fault diagnosis model based on CNNs. Experimental studies are conducted on standard and real-world datasets to validate the proposed method and demonstrate its superiority over the traditional methods in detecting bearing faults. |
---|---|
AbstractList | It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis under complex operating conditions, and obtaining numerous fault data under real operating conditions is difficult and costly. To address this problem, a fault diagnosis method based on two-dimensional time-frequency images and data augmentation is proposed. To begin with, the original one-dimensional time series signal is converted into two-dimensional time-frequency images by continuous wavelet transform to obtain the input data suitable for two-dimensional convolutional neural network (CNN). Secondly, data augmentation technique is employed to expand labeled fault data. Finally, the generated and original fault data are served as training samples to train the fault diagnosis model based on CNNs. Experimental studies are conducted on standard and real-world datasets to validate the proposed method and demonstrate its superiority over the traditional methods in detecting bearing faults. |
Author | Jiang, Xiaohui Li, Bailin Chen, Baojia Fu, Wenlong Tan, Chao Chen, Xiaoyue |
Author_xml | – sequence: 1 givenname: Wenlong orcidid: 0000-0003-4084-1085 surname: Fu fullname: Fu, Wenlong – sequence: 2 givenname: Xiaohui surname: Jiang fullname: Jiang, Xiaohui – sequence: 3 givenname: Bailin surname: Li fullname: Li, Bailin – sequence: 4 givenname: Chao orcidid: 0000-0002-8910-1689 surname: Tan fullname: Tan, Chao – sequence: 5 givenname: Baojia orcidid: 0000-0003-4305-0051 surname: Chen fullname: Chen, Baojia – sequence: 6 givenname: Xiaoyue surname: Chen fullname: Chen, Xiaoyue |
BookMark | eNp1kE1LAzEURYNUsK3uXeYPjE0mM2lmKfWjQkEQXQ8vL8kYmWY0SRf9985QcSG4uvC453E5CzILQ7CEXHN2w5lSKy4kL2TN-AoQtNFnZP57mpE5a-p1wUohLsgipQ_G2Jo1zZzAy9D3PnRUW4hTOjj0mRoPXRiST1RDsoYOgZZ3NPu9LVy0Xwcb8Ej9HjqbKARDDWSgcOj2NmTIfqxni-_Bj81Lcu6gT_bqJ5fk7eH-dbMtds-PT5vbXYFlJXKhuGs0ltYwNA6gRl4JVI1ZK6y0dMIIUStVW4NSNSibqnJOiNJVTjOpHIolYae_GIeUonXtZxwXxmPLWTspaicf7eSjPSkaEfkHQX-anyP4_n_wG2CycSc |
CitedBy_id | crossref_primary_10_3390_s24165285 crossref_primary_10_1088_1361_6501_acf598 crossref_primary_10_3390_e26121113 crossref_primary_10_1088_1361_6501_ad00cf crossref_primary_10_1016_j_eswa_2024_123536 crossref_primary_10_3390_app15021001 crossref_primary_10_3389_fenrg_2023_1345004 crossref_primary_10_3390_su151411084 crossref_primary_10_1088_1361_6501_acf3ff crossref_primary_10_1088_1361_6501_ad4ab8 crossref_primary_10_1088_1361_6501_ad0fd2 crossref_primary_10_1016_j_measurement_2025_117027 crossref_primary_10_3389_fenrg_2024_1345780 crossref_primary_10_3233_JIFS_233797 crossref_primary_10_3389_fenrg_2024_1327857 crossref_primary_10_1088_1361_6501_ace9f0 crossref_primary_10_1016_j_apenergy_2023_121587 crossref_primary_10_1155_2024_9071328 crossref_primary_10_3389_fenrg_2023_1303522 crossref_primary_10_3934_era_2024183 crossref_primary_10_3389_fenrg_2023_1247412 crossref_primary_10_1109_JSEN_2024_3415713 crossref_primary_10_1088_1361_6501_adbb0f crossref_primary_10_3389_fenrg_2023_1280724 crossref_primary_10_3390_su15129544 crossref_primary_10_1631_jzus_A2300273 crossref_primary_10_1007_s40430_023_04426_0 crossref_primary_10_1109_TIM_2024_3378268 crossref_primary_10_1007_s11760_024_03456_y crossref_primary_10_1109_JSEN_2024_3487209 crossref_primary_10_1088_1361_6501_ad5861 crossref_primary_10_1109_TII_2024_3470908 crossref_primary_10_1088_1361_6501_ace644 crossref_primary_10_1109_ACCESS_2024_3441232 crossref_primary_10_3390_su15119107 crossref_primary_10_1016_j_aei_2024_102976 crossref_primary_10_1088_1361_6501_ad42c4 crossref_primary_10_1088_1361_6501_ad282a crossref_primary_10_3390_su15076208 crossref_primary_10_3390_electronics13183749 crossref_primary_10_3390_sym17020241 crossref_primary_10_3934_era_2024292 crossref_primary_10_1016_j_engappai_2024_108995 crossref_primary_10_3390_agriculture14081397 crossref_primary_10_1007_s12206_025_0204_7 crossref_primary_10_1088_1361_6501_ad0f07 crossref_primary_10_1007_s41230_024_3094_x crossref_primary_10_1088_1361_6501_ad11c9 crossref_primary_10_1088_1361_6501_ad356d crossref_primary_10_3389_fenrg_2023_1266252 crossref_primary_10_1109_JPHOT_2024_3392392 crossref_primary_10_1109_TIM_2024_3470060 crossref_primary_10_3390_a17030102 crossref_primary_10_3390_s23208509 crossref_primary_10_3390_sym16050512 crossref_primary_10_1016_j_ress_2024_110632 crossref_primary_10_3389_fenrg_2024_1415796 crossref_primary_10_1088_1361_6501_ad704b |
Cites_doi | 10.1016/j.mechmachtheory.2018.10.007 10.1016/j.ymssp.2018.02.016 10.1016/j.aei.2021.101406 10.1016/j.enconman.2021.115102 10.1016/j.compind.2020.103378 10.1016/j.knosys.2021.106796 10.1088/1361-6501/ac57ef 10.1016/j.measurement.2021.109885 10.1016/j.triboint.2021.107373 10.1109/TII.2019.2941486 10.1088/1361-6501/ac856c 10.1155/2019/3264969 10.1007/s11831-019-09344-w 10.1088/1361-6501/aba70c 10.1177/0142331219860279 10.1016/j.ymssp.2022.109040 10.1613/jair.1.11192 10.3390/app11030919 10.1016/j.robot.2011.10.003 10.1016/j.measurement.2021.109100 10.1016/j.measurement.2016.04.007 10.3390/s21227762 10.1109/JSEN.2022.3160762 10.1016/j.knosys.2021.107413 10.1155/2022/9079790 10.1088/1361-6501/ac8894 10.3390/app10165542 10.1109/ACCESS.2020.2966582 10.1016/j.measurement.2020.107539 10.1016/j.measurement.2021.109226 10.1016/j.neucom.2018.10.109 10.1119/1.18959 10.1038/nature14539 10.1145/3422622 10.1016/j.neucom.2018.07.034 10.1109/TIE.2015.2417501 10.1088/1361-6501/ab55f8 10.1088/1755-1315/769/4/042085 10.1109/TIE.2020.3028821 10.1016/j.measurement.2020.108580 10.1016/j.measurement.2020.107768 10.1109/TIM.2021.3139706 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/acabdb |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_acabdb |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c243t-81f9bc2ed0cdfaa5c143c89d78c4b6f3d335885edc689c6944ff332f4fb068fc3 |
ISSN | 0957-0233 |
IngestDate | Tue Jul 01 03:54:23 EDT 2025 Thu Apr 24 22:57:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-81f9bc2ed0cdfaa5c143c89d78c4b6f3d335885edc689c6944ff332f4fb068fc3 |
ORCID | 0000-0002-8910-1689 0000-0003-4084-1085 0000-0003-4305-0051 |
ParticipantIDs | crossref_primary_10_1088_1361_6501_acabdb crossref_citationtrail_10_1088_1361_6501_acabdb |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2023 |
References | Fu (mstacabdbbib14) 2019; 2019 Gao (mstacabdbbib40) 2021; 231 Shao (mstacabdbbib15) 2021; 173 Zhang (mstacabdbbib30) 2021; 68 Liu (mstacabdbbib3) 2022; 173 Lang (mstacabdbbib37) 1998; 66 Cheng (mstacabdbbib41) 2021; 216 Sun (mstacabdbbib22) 2016; 89 Zhu (mstacabdbbib13) 2022; 33 Fu (mstacabdbbib32) 2022; 22 Hua (mstacabdbbib17) 2022; 252 Goodfellow (mstacabdbbib29) 2020; 63 Liu (mstacabdbbib19) 2018; 108 He (mstacabdbbib27) 2008 LeCun (mstacabdbbib20) 2015; 521 Sun (mstacabdbbib9) 2021; 176 Liu (mstacabdbbib11) 2020; 131 Lu (mstacabdbbib18) 2021; 11 Fernandez (mstacabdbbib26) 2018; 61 Liu (mstacabdbbib4) 2022; 167 Xue (mstacabdbbib24) 2021; 176 Liu (mstacabdbbib1) 2022; 33 Gao (mstacabdbbib12) 2015; 62 Han (mstacabdbbib45) 2021; 21 Hu (mstacabdbbib28) 2020; 156 Hsiao (mstacabdbbib7) 2012; 60 Ko (mstacabdbbib44) 2020; 16 Jalayer (mstacabdbbib38) 2021; 125 Fu (mstacabdbbib16) 2019; 41 Zhao (mstacabdbbib8) 2019; 31 Jia (mstacabdbbib23) 2021; 769 Dargan (mstacabdbbib21) 2020; 27 Tang (mstacabdbbib39) 2021; 50 Li (mstacabdbbib2) 2022; 33 Fu (mstacabdbbib6) 2020; 8 Li (mstacabdbbib36) 2020; 10 Su (mstacabdbbib35) 2018 Yuan (mstacabdbbib34) 2022; 2022 Bai (mstacabdbbib5) 2021; 184 Shi (mstacabdbbib10) 2020; 31 Liang (mstacabdbbib43) 2020; 159 Taylor (mstacabdbbib25) 2018 Liu (mstacabdbbib31) 2018; 315 Gao (mstacabdbbib33) 2020; 396 Tran (mstacabdbbib42) 2022; 71 |
References_xml | – volume: 131 start-page: 336 year: 2020 ident: mstacabdbbib11 article-title: A statistical feature investigation of the spalling propagation assessment for a ball bearing publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.10.007 – volume: 108 start-page: 33 year: 2018 ident: mstacabdbbib19 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016 – volume: 50 year: 2021 ident: mstacabdbbib39 article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101406 – volume: 252 year: 2022 ident: mstacabdbbib17 article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.115102 – volume: 125 year: 2021 ident: mstacabdbbib38 article-title: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103378 – volume: 216 year: 2021 ident: mstacabdbbib41 article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network publication-title: Knowl-Based. Syst. doi: 10.1016/j.knosys.2021.106796 – volume: 33 year: 2022 ident: mstacabdbbib13 article-title: A simulation-data-driven subdomain adaptation adversarial transfer learning network for rolling element bearing fault diagnosis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac57ef – volume: 184 year: 2021 ident: mstacabdbbib5 article-title: Rolling bearing fault diagnosis based on multi-channel convolution neural network and multi-scale clipping fusion data augmentation publication-title: Measurement doi: 10.1016/j.measurement.2021.109885 – volume: 167 year: 2022 ident: mstacabdbbib4 article-title: A simulation investigation of lubricating characteristics for a cylindrical roller bearing of a high-power gearbox publication-title: Tribol. Int. doi: 10.1016/j.triboint.2021.107373 – volume: 16 start-page: 2868 year: 2020 ident: mstacabdbbib44 article-title: Fault classification in high-dimensional complex processes using semi-supervised deep convolutional generative models publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2941486 – volume: 33 year: 2022 ident: mstacabdbbib2 article-title: Adaptive single-mode variational mode decomposition and its applications in wheelset bearing fault diagnosisl publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac856c – volume: 2019 year: 2019 ident: mstacabdbbib14 article-title: Blind parameter identification of MAR model and mutation hybrid GWO-SCA optimized SVM for fault diagnosis of rotating machinery publication-title: Complexity doi: 10.1155/2019/3264969 – volume: 27 start-page: 1071 year: 2020 ident: mstacabdbbib21 article-title: A survey of deep learning and its applications: a new paradigm to machine learning publication-title: Arch. Comput. Method. Eng. doi: 10.1007/s11831-019-09344-w – volume: 31 year: 2020 ident: mstacabdbbib10 article-title: The VMD-scale space based hoyergram and its application in rolling bearing fault diagnosis publication-title: Meas. Sci. Technol doi: 10.1088/1361-6501/aba70c – volume: 41 start-page: 4436 year: 2019 ident: mstacabdbbib16 article-title: A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331219860279 – volume: 173 year: 2022 ident: mstacabdbbib3 article-title: Dynamic modelling of the defect extension and appearance in a cylindrical roller bearing publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109040 – volume: 61 start-page: 863 year: 2018 ident: mstacabdbbib26 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.11192 – volume: 11 start-page: 919 year: 2021 ident: mstacabdbbib18 article-title: Enhanced K-nearest neighbor for intelligent fault diagnosis of rotating machinery publication-title: Appl. Sci. doi: 10.3390/app11030919 – volume: 60 start-page: 154 year: 2012 ident: mstacabdbbib7 article-title: A hierarchical multiple-model approach for detection and isolation of robotic actuator faults publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2011.10.003 – volume: 176 year: 2021 ident: mstacabdbbib9 article-title: Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image publication-title: Measurement doi: 10.1016/j.measurement.2021.109100 – volume: 89 start-page: 171 year: 2016 ident: mstacabdbbib22 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 21 start-page: 7762 year: 2021 ident: mstacabdbbib45 article-title: Fault diagnosis method based on capsule network and Markov transition field/Gramian angular field publication-title: Sensors doi: 10.3390/s21227762 – volume: 22 start-page: 8749 year: 2022 ident: mstacabdbbib32 article-title: Rolling bearing fault diagnosis in limited data scenarios using feature enhanced generative adversarial networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3160762 – start-page: pp 1322 year: 2008 ident: mstacabdbbib27 article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning – volume: 231 year: 2021 ident: mstacabdbbib40 article-title: A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity publication-title: Knowl-Based. Syst. doi: 10.1016/j.knosys.2021.107413 – volume: 2022 year: 2022 ident: mstacabdbbib34 article-title: A novel fault diagnosis approach for rolling bearing based on CWT and adaptive sparse representation publication-title: Shock Vibr. doi: 10.1155/2022/9079790 – volume: 33 year: 2022 ident: mstacabdbbib1 article-title: Rolling bearing fault diagnosis method based on multi-sensor two-stage fusion publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac8894 – volume: 10 start-page: 5542 year: 2020 ident: mstacabdbbib36 article-title: Rolling bearings fault diagnosis based on improved complete ensemble empirical mode decomposition with adaptive noise, nonlinear entropy and ensemble SVM publication-title: Appl. Sci. doi: 10.3390/app10165542 – volume: 8 start-page: 13086 year: 2020 ident: mstacabdbbib6 article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and SVM with hybrid mutation SCA-HHO algorithm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966582 – volume: 156 year: 2020 ident: mstacabdbbib28 article-title: A simple data augmentation algorithm and a self-adaptive convolutional architecture for few-shot fault diagnosis under different working conditions publication-title: Measurement doi: 10.1016/j.measurement.2020.107539 – volume: 176 year: 2021 ident: mstacabdbbib24 article-title: A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network publication-title: Measurement doi: 10.1016/j.measurement.2021.109226 – volume: 396 start-page: 487 year: 2020 ident: mstacabdbbib33 article-title: Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.109 – year: 2018 ident: mstacabdbbib35 article-title: GAN-QP: a novel GAN framework without gradient vanishing and Lipschitz constraint – volume: 66 start-page: 794 year: 1998 ident: mstacabdbbib37 article-title: Time-frequency analysis with the continuous wavelet transform publication-title: Am. J. Phys. doi: 10.1119/1.18959 – volume: 521 start-page: 436 year: 2015 ident: mstacabdbbib20 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 63 start-page: 139 year: 2020 ident: mstacabdbbib29 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – start-page: pp 1542 year: 2018 ident: mstacabdbbib25 article-title: Improving deep learning with generic data augmentation – volume: 315 start-page: 412 year: 2018 ident: mstacabdbbib31 article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.034 – volume: 62 start-page: 3757 year: 2015 ident: mstacabdbbib12 article-title: A survey of fault diagnosis and fault-tolerant techniques Part I: fault diagnosis with model-based and signal-based approaches publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2417501 – volume: 31 year: 2019 ident: mstacabdbbib8 article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab55f8 – volume: 769 year: 2021 ident: mstacabdbbib23 article-title: Rolling bearing fault classification based on stacked denoising auto encoders publication-title: Meas. Sci. Technol. doi: 10.1088/1755-1315/769/4/042085 – volume: 68 start-page: 10130 year: 2021 ident: mstacabdbbib30 article-title: Focused intelligent fault diagnosis scheme of machines via multimodules learning with gradient penalized generative adversarial networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3028821 – volume: 173 year: 2021 ident: mstacabdbbib15 article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing publication-title: Measurement doi: 10.1016/j.measurement.2020.108580 – volume: 159 year: 2020 ident: mstacabdbbib43 article-title: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network publication-title: Measurement doi: 10.1016/j.measurement.2020.107768 – volume: 71 start-page: 1 year: 2022 ident: mstacabdbbib42 article-title: Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3139706 |
SSID | ssj0007099 |
Score | 2.611899 |
Snippet | It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods to adaptively extract features conducive to fault diagnosis... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 45005 |
Title | Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQuqC0gSgvygQNVZHYTO4lzrFqqglTg0Ep7i_wRQ6RtgrrJgf4Afjce28kGSiXKJYqsZLS78zQzO_NmBqE3GWdKJ9QQIURFGNOSCC4MMdbX5nluaOxWJ5x_ys4u2cdlupzNfk5YS30n36mbv_aV_I9W7ZnVK3TJ3kOzo1B7YO-tfu3Vathe_0nHw0RtaeHqGJGiX3WQTgX2XL2OwEVpKAckJ26JPDHXnjn9I6qvBEx3gLQ5kEQj0X-9Cm1ITTQOdp2GruebbGI0NAMBbrpbyfnT3jH3qmbVBr8IFJ06ZKaXtWi_9fXIBKp92aNe1RtOsBioAO00K5HQCZllSC_mxJ5741V540qzmNiIMJ5a35DKrKepBWdKWbpwDdm3jbw1jJBvGKSBN1NCarlxaUMZ_w9PN_IPXeWd8xJklCCj9BIeoIcWoQlswvjw-cvo0fNFEWY2-u8Uyt1Wwnz8FHMvYRLeTOKUi230JPzBwEceLTtoVjW76JEj-qr1LtoJxnyN34aJ44dPkQhAwgFI2AEJj0DCDki4bXBygn8HEvZAwhZIGICEp0DCI5CeocvT9xfHZyTs3iAqYbQjPDaFVEmlF0obIVJl42rFC51zxWRmqKY05TyttMp4obKCMWMoTQwzcpFxo-hztNW0TfUC4UTFsay0EDb2ZJJTbmQRpxpm_UFfNN1D8-EnK1UYTA_7UVblXWraQ4fjG9_9UJY7n315j2f30eMNlg_QVnfdV69szNnJ1w4QvwBXiYNW |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rolling+bearing+fault+diagnosis+based+on+2D+time-frequency+images+and+data+augmentation+technique&rft.jtitle=Measurement+science+%26+technology&rft.au=Fu%2C+Wenlong&rft.au=Jiang%2C+Xiaohui&rft.au=Li%2C+Bailin&rft.au=Tan%2C+Chao&rft.date=2023-04-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=4&rft.spage=45005&rft_id=info:doi/10.1088%2F1361-6501%2Facabdb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acabdb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |