A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
A local refinement hybrid scheme (LRCSPH-FDM) is proposed to solve the two-dimensional (2D) time fractional nonlinear Schrödinger equation (TF-NLSE) in regularly or irregularly shaped domains, and extends the scheme to predict the quantum mechanical properties governed by the time fractional Gross–P...
Saved in:
Published in | Chinese physics B Vol. 30; no. 2; p. 20202 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | A local refinement hybrid scheme (LRCSPH-FDM) is proposed to solve the two-dimensional (2D) time fractional nonlinear Schrödinger equation (TF-NLSE) in regularly or irregularly shaped domains, and extends the scheme to predict the quantum mechanical properties governed by the time fractional Gross–Pitaevskii equation (TF-GPE) with the rotating Bose–Einstein condensate. It is the first application of the purely meshless method to the TF-NLSE to the author’s knowledge. The proposed LRCSPH-FDM (which is based on a local refinement corrected SPH method combined with FDM) is derived by using the finite difference scheme (FDM) to discretize the Caputo TF term, followed by using a corrected smoothed particle hydrodynamics (CSPH) scheme continuously without using the kernel derivative to approximate the spatial derivatives. Meanwhile, the local refinement technique is adopted to reduce the numerical error. In numerical simulations, the complex irregular geometry is considered to show the flexibility of the purely meshless particle method and its advantages over the grid-based method. The numerical convergence rate and merits of the proposed LRCSPH-FDM are illustrated by solving several 1D/2D (where 1D stands for one-dimensional) analytical TF-NLSEs in a rectangular region (with regular or irregular particle distribution) or in a region with irregular geometry. The proposed method is then used to predict the complex nonlinear dynamic characters of 2D TF-NLSE/TF-GPE in a complex irregular domain, and the results from the posed method are compared with those from the FDM. All the numerical results show that the present method has a good accuracy and flexible application capacity for the TF-NLSE/GPE in regions of a complex shape. |
---|---|
AbstractList | A local refinement hybrid scheme (LRCSPH-FDM) is proposed to solve the two-dimensional (2D) time fractional nonlinear Schrödinger equation (TF-NLSE) in regularly or irregularly shaped domains, and extends the scheme to predict the quantum mechanical properties governed by the time fractional Gross–Pitaevskii equation (TF-GPE) with the rotating Bose–Einstein condensate. It is the first application of the purely meshless method to the TF-NLSE to the author’s knowledge. The proposed LRCSPH-FDM (which is based on a local refinement corrected SPH method combined with FDM) is derived by using the finite difference scheme (FDM) to discretize the Caputo TF term, followed by using a corrected smoothed particle hydrodynamics (CSPH) scheme continuously without using the kernel derivative to approximate the spatial derivatives. Meanwhile, the local refinement technique is adopted to reduce the numerical error. In numerical simulations, the complex irregular geometry is considered to show the flexibility of the purely meshless particle method and its advantages over the grid-based method. The numerical convergence rate and merits of the proposed LRCSPH-FDM are illustrated by solving several 1D/2D (where 1D stands for one-dimensional) analytical TF-NLSEs in a rectangular region (with regular or irregular particle distribution) or in a region with irregular geometry. The proposed method is then used to predict the complex nonlinear dynamic characters of 2D TF-NLSE/TF-GPE in a complex irregular domain, and the results from the posed method are compared with those from the FDM. All the numerical results show that the present method has a good accuracy and flexible application capacity for the TF-NLSE/GPE in regions of a complex shape. |
Author | Huang, Jin-Jing Ding, Jiu Jiang, Tao Jiang, Rong-Rong Ren, Jin-Lian |
Author_xml | – sequence: 1 givenname: Tao surname: Jiang fullname: Jiang, Tao – sequence: 2 givenname: Rong-Rong surname: Jiang fullname: Jiang, Rong-Rong – sequence: 3 givenname: Jin-Jing surname: Huang fullname: Huang, Jin-Jing – sequence: 4 givenname: Jiu surname: Ding fullname: Ding, Jiu – sequence: 5 givenname: Jin-Lian surname: Ren fullname: Ren, Jin-Lian |
BookMark | eNo9UMtOwzAQ9KFItIU7R_9AqJ3EjnusKl5SJQ7AOXI36zTISco6PYQP4wf4MRwVVVppVzszO9pZsFnXd8jYnRT3UhizkrrIEymUXtk9CBQzNr-srtkihE8htBRpNmffG-57sJ4TuqbDFruBH0-EfuQthoPHEHiAQwS464kPzTSQhaHpu6iKxj7KLPE3ONDvT9V0NRLHr5OdGLyJRYT1yUdKjX2LA43Rq47gDbty1ge8_e9L9vH48L59TnavTy_bzS6BNM-GpNDpukixspVDUJCiUSpXTlVFoZzca1eA2ZscJEiJazRgTa5zHcs4mwmVLZk43wXqQ4h_lkdqWktjKUU55VVO4ZRTOOU5r-wPcgJmyA |
CitedBy_id | crossref_primary_10_1016_j_enganabound_2024_105838 |
Cites_doi | 10.1186/s13662-018-1743-3 10.1016/j.cpc.2014.10.004 10.1155/2013/290216 10.5402/2012/197068 10.1016/j.jcp.2007.02.001 10.1002/(ISSN)1097-0207 10.1142/5340 10.1103/PhysRevE.66.056108 10.1088/1674-1056/24/10/100201 10.1063/1.1769611 10.1115/1.1431547 10.1007/s11071-011-0014-6 10.1016/j.jcp.2018.12.043 10.1016/j.cnsns.2018.11.013 10.1016/j.jcp.2004.11.001 10.3970/cmes.2014.100.399 10.1016/j.amc.2018.04.019 10.1016/j.jcp.2017.11.003 10.1016/0010-4655(94)00174-Z 10.1137/080714130 10.1007/s11831-010-9040-7 10.1016/j.cpc.2016.04.014 10.1016/j.cpc.2018.05.007 10.1137/1018042 10.1016/j.apm.2012.01.012 10.1088/1674-1056/25/4/040204 10.1137/16M1103622 10.1016/j.jcp.2013.03.007 10.1088/1674-1056/ab3af3 10.1016/j.aml.2018.05.007 10.1016/j.jmaa.2008.03.061 10.1016/j.apm.2018.03.043 10.4208/cicp.OA-2017-0195 10.1016/j.cpc.2018.02.013 10.1016/S0375-9601(00)00201-2 10.26713%2Fcma.v7i1.327 10.4310/CMS.2005.v3.n1.a5 10.1016/j.apm.2005.05.003 10.1016/j.amc.2004.10.066 10.1016/j.jcp.2017.03.061 10.1016/j.cma.2016.10.028 10.1016/j.jcp.2006.01.020 10.1016/j.cnsns.2017.06.018 10.1016/j.jcp.2014.09.023 10.1002/nme.4960 10.12691/ajma-1-1-3 10.1016/j.camwa.2016.07.036 10.1016/S0021-9991(03)00102-5 10.1002/nme.v88.13 10.1016/S0034-4877(16)30002-7 10.1016/j.jcp.2016.10.022 10.1016/S0045-7825(99)00422-3 10.1063/1.5006955 10.1002/num.22126 10.1016/j.chaos.2011.03.005 10.1007/s00466-013-0943-7 10.1016/j.apm.2014.08.011 10.1016/j.jcp.2015.03.063 10.1016/j.jcp.2013.11.017 10.1103/PhysRevLett.120.130402 10.1016/j.cam.2008.07.008 10.1016/j.apm.2013.12.001 10.1016/j.enganabound.2012.12.002 10.1006/jcph.1997.5776 10.1016/j.physa.2016.10.071 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/abc0e0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1088_1674_1056_abc0e0 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM AAYXX ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT M45 N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 |
ID | FETCH-LOGICAL-c243t-762972edadfec5c2e85545f5d775f1b6f7c8b84c1c11e9e8ca846466468fa3053 |
ISSN | 1674-1056 |
IngestDate | Fri Aug 23 01:26:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-762972edadfec5c2e85545f5d775f1b6f7c8b84c1c11e9e8ca846466468fa3053 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_abc0e0 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationYear | 2021 |
References | Basic (cpb_30_2_020202bib45) 2018; 354 Shivanian (cpb_30_2_020202bib44) 2015; 105 Gao (cpb_30_2_020202bib66) 2014; 259 Bao (cpb_30_2_020202bib12) 2005; 3 Narahari Achar (cpb_30_2_020202bib5) 2013; 2013 Chen (cpb_30_2_020202bib21) 2019; 71 Liu (cpb_30_2_020202bib56) 2010; 17 Chen (cpb_30_2_020202bib39) 2017; 468 Xu (cpb_30_2_020202bib30) 2005; 205 Sulem (cpb_30_2_020202bib13) 1990 Iomin (cpb_30_2_020202bib20) 2011; 44 Sun (cpb_30_2_020202bib58) 2017; 315 Ozkan (cpb_30_2_020202bib26) 2015; 24 Deng (cpb_30_2_020202bib9) 2009; 47 Quinlan (cpb_30_2_020202bib49) 2016; 66 Zhang (cpb_30_2_020202bib8) 2018; 335 Azzouzi (cpb_30_2_020202bib34) 2015; 39 Liu (cpb_30_2_020202bib64) 2005; 29 Wang (cpb_30_2_020202bib10) 2005; 170 Liu (cpb_30_2_020202bib47) 2003 Aboelenen (cpb_30_2_020202bib31) 2018; 54 Liu (cpb_30_2_020202bib55) 2019; 384 Zhuang (cpb_30_2_020202bib43) 2011; 88 Chen (cpb_30_2_020202bib25) 2018; 84 Zhou (cpb_30_2_020202bib67) 2018; 120 Li (cpb_30_2_020202bib23) 2018; 318 Abdel-Salam (cpb_30_2_020202bib29) 2016; 77 Zhang (cpb_30_2_020202bib37) 2019; 25 Morris (cpb_30_2_020202bib61) 1997; 136 Li (cpb_30_2_020202bib52) 2002; 55 Mohebbi (cpb_30_2_020202bib46) 2013; 37 Wang (cpb_30_2_020202bib68) 2013; 243 Jiang (cpb_30_2_020202bib62) 2014; 53 Gong (cpb_30_2_020202bib41) 2017; 328 Laskin (cpb_30_2_020202bib17) 2000; 268 Chen (cpb_30_2_020202bib33) 2018; 28 Shivanian (cpb_30_2_020202bib32) 2017; 33 Mohebbi (cpb_30_2_020202bib28) 2009; 225 Dong (cpb_30_2_020202bib22) 2008; 344 Naber (cpb_30_2_020202bib19) 2004; 45 Wilson (cpb_30_2_020202bib16) 2019; 235 Crespo (cpb_30_2_020202bib57) 2015; 187 Garrappa (cpb_30_2_020202bib42) 2015; 293 Tayebi (cpb_30_2_020202bib54) 2017; 340 Laskin (cpb_30_2_020202bib18) 2002; 66 Podlubny (cpb_30_2_020202bib2) 1999 Hicdurmaz (cpb_30_2_020202bib24) 2016; 72 Dehghan (cpb_30_2_020202bib53) 2014; 100 Bhrawy (cpb_30_2_020202bib36) 2015; 294 Ray (cpb_30_2_020202bib6) 2016; 25 Herzallah (cpb_30_2_020202bib35) 2012; 36 Chen (cpb_30_2_020202bib48) 2000; 190 Mao (cpb_30_2_020202bib3) 2018; 56 Alzaidy (cpb_30_2_020202bib7) 2013; 1 Lin (cpb_30_2_020202bib40) 2007; 225 Hu (cpb_30_2_020202bib4) 2019; 28 Edeki (cpb_30_2_020202bib27) 2016; 7 Bao (cpb_30_2_020202bib11) 2003; 187 Monaghan (cpb_30_2_020202bib60) 1995; 87 Khan (cpb_30_2_020202bib38) 2012; 2012 Jiang (cpb_30_2_020202bib50) 2018; 231 Lavoie (cpb_30_2_020202bib1) 1976; 18 Bao (cpb_30_2_020202bib14) 2006; 217 Yang (cpb_30_2_020202bib63) 2014; 38 Ren (cpb_30_2_020202bib59) 2016; 205 Ei-Danaf (cpb_30_2_020202bib15) 2012; 67 Jiang (cpb_30_2_020202bib51) 2019; 68 Zhang (cpb_30_2_020202bib65) 2018; 60 |
References_xml | – volume: 318 start-page: 1687 year: 2018 ident: cpb_30_2_020202bib23 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1743-3 contributor: fullname: Li – volume: 187 start-page: 204 year: 2015 ident: cpb_30_2_020202bib57 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.10.004 contributor: fullname: Crespo – volume: 2013 year: 2013 ident: cpb_30_2_020202bib5 publication-title: Adv. Math. Phys. doi: 10.1155/2013/290216 contributor: fullname: Narahari Achar – volume: 2012 year: 2012 ident: cpb_30_2_020202bib38 publication-title: ISRN Math. Phys. doi: 10.5402/2012/197068 contributor: fullname: Khan – volume: 225 start-page: 1533 year: 2007 ident: cpb_30_2_020202bib40 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.001 contributor: fullname: Lin – volume: 66 start-page: 2064 year: 2016 ident: cpb_30_2_020202bib49 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(ISSN)1097-0207 contributor: fullname: Quinlan – year: 2003 ident: cpb_30_2_020202bib47 doi: 10.1142/5340 contributor: fullname: Liu – volume: 66 year: 2002 ident: cpb_30_2_020202bib18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.056108 contributor: fullname: Laskin – volume: 24 year: 2015 ident: cpb_30_2_020202bib26 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/10/100201 contributor: fullname: Ozkan – volume: 45 start-page: 3339 year: 2004 ident: cpb_30_2_020202bib19 publication-title: J. Math. Phys. doi: 10.1063/1.1769611 contributor: fullname: Naber – volume: 55 start-page: 1 year: 2002 ident: cpb_30_2_020202bib52 publication-title: Appl. Mech. Rev. doi: 10.1115/1.1431547 contributor: fullname: Li – volume: 67 start-page: 619 year: 2012 ident: cpb_30_2_020202bib15 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-011-0014-6 contributor: fullname: Ei-Danaf – volume: 384 start-page: 222 year: 2019 ident: cpb_30_2_020202bib55 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.12.043 contributor: fullname: Liu – volume: 71 start-page: 73 year: 2019 ident: cpb_30_2_020202bib21 publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2018.11.013 contributor: fullname: Chen – volume: 205 start-page: 72 year: 2005 ident: cpb_30_2_020202bib30 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.001 contributor: fullname: Xu – volume: 68 year: 2019 ident: cpb_30_2_020202bib51 publication-title: Acta Phys. Sin. doi: 10.3970/cmes.2014.100.399 contributor: fullname: Jiang – volume: 335 start-page: 305 year: 2018 ident: cpb_30_2_020202bib8 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.04.019 contributor: fullname: Zhang – volume: 354 start-page: 269 year: 2018 ident: cpb_30_2_020202bib45 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.003 contributor: fullname: Basic – volume: 87 start-page: 225 year: 1995 ident: cpb_30_2_020202bib60 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(94)00174-Z contributor: fullname: Monaghan – volume: 47 start-page: 204 year: 2009 ident: cpb_30_2_020202bib9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080714130 contributor: fullname: Deng – volume: 17 start-page: 25 year: 2010 ident: cpb_30_2_020202bib56 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 contributor: fullname: Liu – volume: 205 start-page: 87 year: 2016 ident: cpb_30_2_020202bib59 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.04.014 contributor: fullname: Ren – volume: 231 start-page: 19 year: 2018 ident: cpb_30_2_020202bib50 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.05.007 contributor: fullname: Jiang – year: 1999 ident: cpb_30_2_020202bib2 contributor: fullname: Podlubny – volume: 18 start-page: 240 year: 1976 ident: cpb_30_2_020202bib1 publication-title: SIAM Rev. doi: 10.1137/1018042 contributor: fullname: Lavoie – volume: 36 start-page: 5678 year: 2012 ident: cpb_30_2_020202bib35 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.01.012 contributor: fullname: Herzallah – volume: 25 year: 2016 ident: cpb_30_2_020202bib6 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/4/040204 contributor: fullname: Ray – volume: 56 start-page: 24 year: 2018 ident: cpb_30_2_020202bib3 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1103622 contributor: fullname: Mao – volume: 243 start-page: 382 year: 2013 ident: cpb_30_2_020202bib68 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.03.007 contributor: fullname: Wang – volume: 28 year: 2019 ident: cpb_30_2_020202bib4 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab3af3 contributor: fullname: Hu – volume: 84 start-page: 160 year: 2018 ident: cpb_30_2_020202bib25 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.05.007 contributor: fullname: Chen – volume: 344 start-page: 1005 year: 2008 ident: cpb_30_2_020202bib22 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.03.061 contributor: fullname: Dong – volume: 60 start-page: 606 year: 2018 ident: cpb_30_2_020202bib65 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.03.043 contributor: fullname: Zhang – volume: 25 start-page: 218 year: 2019 ident: cpb_30_2_020202bib37 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2017-0195 contributor: fullname: Zhang – volume: 235 start-page: 279 year: 2019 ident: cpb_30_2_020202bib16 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.02.013 contributor: fullname: Wilson – volume: 268 start-page: 298 year: 2000 ident: cpb_30_2_020202bib17 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(00)00201-2 contributor: fullname: Laskin – volume: 7 start-page: 1 year: 2016 ident: cpb_30_2_020202bib27 publication-title: Commun. Math. Appl. doi: 10.26713%2Fcma.v7i1.327 contributor: fullname: Edeki – volume: 3 start-page: 57 year: 2005 ident: cpb_30_2_020202bib12 publication-title: Commun. Math. Sci doi: 10.4310/CMS.2005.v3.n1.a5 contributor: fullname: Bao – volume: 29 start-page: 1252 year: 2005 ident: cpb_30_2_020202bib64 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2005.05.003 contributor: fullname: Liu – volume: 170 start-page: 17 year: 2005 ident: cpb_30_2_020202bib10 publication-title: Appl. Math. Comput doi: 10.1016/j.amc.2004.10.066 contributor: fullname: Wang – volume: 340 start-page: 655 year: 2017 ident: cpb_30_2_020202bib54 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.061 contributor: fullname: Tayebi – volume: 315 start-page: 25 year: 2017 ident: cpb_30_2_020202bib58 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2016.10.028 contributor: fullname: Sun – volume: 217 start-page: 612 year: 2006 ident: cpb_30_2_020202bib14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.020 contributor: fullname: Bao – volume: 54 start-page: 428 year: 2018 ident: cpb_30_2_020202bib31 publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2017.06.018 contributor: fullname: Aboelenen – volume: 293 start-page: 115 year: 2015 ident: cpb_30_2_020202bib42 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.023 contributor: fullname: Garrappa – volume: 105 start-page: 83 year: 2015 ident: cpb_30_2_020202bib44 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4960 contributor: fullname: Shivanian – volume: 1 start-page: 14 year: 2013 ident: cpb_30_2_020202bib7 publication-title: Amer. J. Math. Anal. doi: 10.12691/ajma-1-1-3 contributor: fullname: Alzaidy – volume: 72 start-page: 1703 year: 2016 ident: cpb_30_2_020202bib24 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.07.036 contributor: fullname: Hicdurmaz – volume: 187 start-page: 318 year: 2003 ident: cpb_30_2_020202bib11 publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00102-5 contributor: fullname: Bao – volume: 88 start-page: 1346 year: 2011 ident: cpb_30_2_020202bib43 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.v88.13 contributor: fullname: Zhuang – volume: 77 start-page: 19 year: 2016 ident: cpb_30_2_020202bib29 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(16)30002-7 contributor: fullname: Abdel-Salam – volume: 328 start-page: 354 year: 2017 ident: cpb_30_2_020202bib41 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.022 contributor: fullname: Gong – volume: 190 start-page: 225 year: 2000 ident: cpb_30_2_020202bib48 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00422-3 contributor: fullname: Chen – volume: 28 year: 2018 ident: cpb_30_2_020202bib33 publication-title: Chaos doi: 10.1063/1.5006955 contributor: fullname: Chen – volume: 33 start-page: 1043 year: 2017 ident: cpb_30_2_020202bib32 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22126 contributor: fullname: Shivanian – volume: 44 start-page: 348 year: 2011 ident: cpb_30_2_020202bib20 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2011.03.005 contributor: fullname: Iomin – volume: 53 start-page: 977 year: 2014 ident: cpb_30_2_020202bib62 publication-title: Comput. Mech. doi: 10.1007/s00466-013-0943-7 contributor: fullname: Jiang – volume: 39 start-page: 1300 year: 2015 ident: cpb_30_2_020202bib34 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.08.011 contributor: fullname: Azzouzi – volume: 294 start-page: 462 year: 2015 ident: cpb_30_2_020202bib36 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.03.063 contributor: fullname: Bhrawy – volume: 259 start-page: 33 year: 2014 ident: cpb_30_2_020202bib66 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.11.017 contributor: fullname: Gao – year: 1990 ident: cpb_30_2_020202bib13 contributor: fullname: Sulem – volume: 120 year: 2018 ident: cpb_30_2_020202bib67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.130402 contributor: fullname: Zhou – volume: 225 start-page: 124 year: 2009 ident: cpb_30_2_020202bib28 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.07.008 contributor: fullname: Mohebbi – volume: 38 start-page: 3822 year: 2014 ident: cpb_30_2_020202bib63 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.12.001 contributor: fullname: Yang – volume: 37 start-page: 475 year: 2013 ident: cpb_30_2_020202bib46 publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2012.12.002 contributor: fullname: Mohebbi – volume: 100 start-page: 399 year: 2014 ident: cpb_30_2_020202bib53 publication-title: Cmes-Comp. Model. Eng. doi: 10.3970/cmes.2014.100.399 contributor: fullname: Dehghan – volume: 136 start-page: 214 year: 1997 ident: cpb_30_2_020202bib61 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 contributor: fullname: Morris – volume: 468 start-page: 532 year: 2017 ident: cpb_30_2_020202bib39 publication-title: Physica A doi: 10.1016/j.physa.2016.10.071 contributor: fullname: Chen |
SSID | ssj0061023 |
Score | 2.2803984 |
Snippet | A local refinement hybrid scheme (LRCSPH-FDM) is proposed to solve the two-dimensional (2D) time fractional nonlinear Schrödinger equation (TF-NLSE) in... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 20202 |
Title | A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiPIQz8oHLigyzdNJjgu0KisBFdpKvUWOM2kj0d2SZg_tmd_EH-CPMRPbSQRFokgrKxpnJ6udLzPjGXuGsVelH1Wgy0CoylciRodC5DVIoQMNCKIy1YoOOH_8JA-O4sVxcjybfZ_sWtp05Rt9de25kv-RKtJQrnRK9gaSHZgiAa9RvjiihHH8JxnPvd4UeWjl0Fns0_rnVCD50juDi9OvpMRw8YoTZjNhQxetOcmA31qZKhmqpVKcfcb8raxMXUL4ZiqAUzSkadu-X33rncD6DLr20qNuDlacrsjBad_K0gZKLsZezovGBqSXav0H7ct6dSJoGMFlZxbNSiyaceJ94-ibaZwiDNzW5kG1yjRGpW_KiDvda3MyzWQJbBUpurHhtSoe1SJFGxw3smWl9sEfDZpL4v9m54bdh33ePcsK4lEQj8JwuMVuh6iuSE9--Hzo7Lmk4ha0bHdPtMlu5LA70HYNh4lzM_FSlvfZPbu84HODlW02g9UDdufQSOUhu5rzHjF8RAw3iOEOMdwghiNiOCGGj4jhA2I4IebnD4MW7tDCG_w4tHCHFm7Q8ogd7e8t3x0I231D6DCOOoFWMk9DqFRVg050CLShMamTKk2TOihlneqszGJ8qYMAcsi0QleWmhXIrFZoRaLHbAt_FjxhXCmQ0s81qEDHlUxymUUQVkmkcx3pTD1lr93fVpybIivF34T07Ab3Pmd3RyS-YFtdu4GX6EN25U4v4l9-r3bS |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+local+refinement+purely+meshless+scheme+for+time+fractional+nonlinear+Schr%C3%B6dinger+equation+in+irregular+geometry+region&rft.jtitle=Chinese+physics+B&rft.au=Jiang%2C+Tao&rft.au=Jiang%2C+Rong-Rong&rft.au=Huang%2C+Jin-Jing&rft.au=Ding%2C+Jiu&rft.date=2021-02-01&rft.issn=1674-1056&rft.volume=30&rft.issue=2&rft.spage=20202&rft_id=info:doi/10.1088%2F1674-1056%2Fabc0e0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_abc0e0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |