Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation

Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 28; no. 11; p. 110201
Main Authors Zhang, Zhao, Yang, Xiangyu, Li, Wentao, Li, Biao
Format Journal Article
LanguageEnglish
Published 01.11.2019
Online AccessGet full text

Cover

Loading…
Abstract Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions of KP equation along some parallel orbits at infinity. We derive the mathematical expression of the phase change before and after the collision of a lump wave. At the same time, we give some collision plots to reveal the obvious phase change. Our method proposed to find the trajectory equation of a lump wave can be applied to other (2+1)-dimensional integrable equations. The results expand the understanding of lump, breather, and hybrid solutions in soliton theory.
AbstractList Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions of KP equation along some parallel orbits at infinity. We derive the mathematical expression of the phase change before and after the collision of a lump wave. At the same time, we give some collision plots to reveal the obvious phase change. Our method proposed to find the trajectory equation of a lump wave can be applied to other (2+1)-dimensional integrable equations. The results expand the understanding of lump, breather, and hybrid solutions in soliton theory.
Author Li, Wentao
Li, Biao
Yang, Xiangyu
Zhang, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  surname: Zhang
  fullname: Zhang, Zhao
– sequence: 2
  givenname: Xiangyu
  surname: Yang
  fullname: Yang, Xiangyu
– sequence: 3
  givenname: Wentao
  surname: Li
  fullname: Li, Wentao
– sequence: 4
  givenname: Biao
  surname: Li
  fullname: Li, Biao
BookMark eNp1kD1PwzAQhj0UibawM3oE0VA7jlN3RBVfohIMZY4uyUV15STFdlN14z_AL-SXkLSoAxLTSXfPc3r1Dkivqisk5IKzG86UGvN4EgWcyXgMaRSB6JH-cXVKBs6tGIs5C0WffC0srDDztd1RfN-A13VF64ICNZtyTVMsaosUqpxC4dHSrDZGuw7aar-kRlc42qOjPZRaBL9suS006Ggr08vwml8FuS6x6jww9BnyuvQOm--Pz1f0jQa3bLTRxwBn5KQA4_D8dw7J2_3dYvYYzF8enma38yALI-EDqVIhWRTG6XTComkmASZKFSiRoRC5ipVkU5ChypFzAXGh0vYSFiLMWYSRFEPCDn8zWztnsUjWVpdgdwlnSddk0tWWdLUlhyZbJf6jZNrvQ3sL2vwv_gBny3-u
CitedBy_id crossref_primary_10_1007_s12346_024_01163_0
crossref_primary_10_1088_1402_4896_ada207
crossref_primary_10_1007_s11071_020_05611_9
crossref_primary_10_1007_s11071_022_07429_z
crossref_primary_10_1088_1572_9494_ad1a0d
crossref_primary_10_1142_S0217984924502592
crossref_primary_10_2139_ssrn_3951740
crossref_primary_10_1007_s11082_022_03528_8
crossref_primary_10_1088_1674_1056_acb9f2
crossref_primary_10_1016_j_aml_2020_107004
crossref_primary_10_1007_s11071_020_05570_1
crossref_primary_10_1007_s11071_024_10685_w
crossref_primary_10_1016_j_rinp_2023_106516
crossref_primary_10_3390_sym16111469
crossref_primary_10_1016_j_rinp_2023_106759
crossref_primary_10_1088_1674_1056_ac70c0
crossref_primary_10_1007_s11071_022_07827_3
crossref_primary_10_1007_s11071_022_07457_9
crossref_primary_10_1016_j_rinp_2024_107454
crossref_primary_10_1007_s11071_020_05649_9
crossref_primary_10_1007_s11071_022_08191_y
crossref_primary_10_1142_S0217979224500322
crossref_primary_10_1088_1674_1056_acb0c1
crossref_primary_10_1088_1674_1056_abc165
crossref_primary_10_1016_j_cnsns_2022_106555
crossref_primary_10_1140_epjp_s13360_024_05457_9
crossref_primary_10_1088_1674_1056_acd62c
crossref_primary_10_1007_s11071_022_07508_1
crossref_primary_10_1016_j_chaos_2024_114572
crossref_primary_10_1016_j_wavemoti_2024_103455
crossref_primary_10_1088_1402_4896_aceb9c
crossref_primary_10_1088_0256_307X_38_6_060501
crossref_primary_10_1140_epjp_s13360_023_03924_3
crossref_primary_10_1007_s11071_022_07874_w
crossref_primary_10_1088_1674_1056_ab90ea
crossref_primary_10_1088_1674_1056_ab9de0
crossref_primary_10_1088_1402_4896_ad29ce
crossref_primary_10_1007_s11071_022_07215_x
crossref_primary_10_1016_j_aej_2024_11_015
crossref_primary_10_1016_j_aml_2019_106168
crossref_primary_10_3390_computation9030031
crossref_primary_10_1016_j_physleta_2021_127848
crossref_primary_10_1088_1402_4896_ac94a9
crossref_primary_10_1088_1572_9494_abe366
crossref_primary_10_1140_epjp_s13360_023_03801_z
crossref_primary_10_1007_s12346_024_01176_9
crossref_primary_10_3390_sym16070779
crossref_primary_10_1088_1674_1056_abd7e3
crossref_primary_10_1098_rsif_2022_0079
crossref_primary_10_1007_s11071_022_07484_6
crossref_primary_10_1088_0256_307X_37_3_030501
crossref_primary_10_1007_s11071_022_07205_z
crossref_primary_10_1016_j_cnsns_2021_105866
crossref_primary_10_1088_1402_4896_ad98c3
crossref_primary_10_1088_1402_4896_ad0d5d
crossref_primary_10_1007_s11071_022_08126_7
crossref_primary_10_4236_jamp_2024_128169
crossref_primary_10_3390_universe9010055
crossref_primary_10_1140_epjp_s13360_022_02412_4
crossref_primary_10_1080_00207160_2025_2464708
crossref_primary_10_1002_mma_7736
crossref_primary_10_1007_s11071_022_07248_2
crossref_primary_10_1016_j_aml_2022_108408
crossref_primary_10_1007_s11071_022_07662_6
crossref_primary_10_1088_1674_1056_abff31
Cites_doi 10.1088/0256-307X/34/1/010202
10.1088/0253-6102/62/2/12
10.1051/mmnp/2018072
10.1016/j.cnsns.2017.03.021
10.1016/j.aml.2017.12.026
10.1143/JPSJ.61.783
10.1088/1674-1056/27/2/020201
10.1088/1402-4896/ab0056
10.1088/1674-1056/27/12/120201
10.1088/0253-6102/67/5/473
10.1007/s11071-018-4181-6
10.1016/j.physleta.2015.06.061
10.1088/0253-6102/67/6/595
10.1088/0256-307X/36/5/050501
10.1002/mma.5823
10.1143/JPSJ.40.286
10.1063/1.524208
10.1016/j.cnsns.2018.07.038
10.1016/j.camwa.2018.01.049
10.1063/1.523550
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/ab44a3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1088_1674_1056_ab44a3
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAYXX
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFUIB
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
M45
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
ID FETCH-LOGICAL-c243t-58b350426b97049c5aa788fe5e0e33d868509a528de113a6f8be0e2f32d04e453
ISSN 1674-1056
IngestDate Thu Apr 24 23:12:48 EDT 2025
Tue Jul 01 02:55:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-58b350426b97049c5aa788fe5e0e33d868509a528de113a6f8be0e2f32d04e453
ParticipantIDs crossref_primary_10_1088_1674_1056_ab44a3
crossref_citationtrail_10_1088_1674_1056_ab44a3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationYear 2019
References Ma (cpb_28_11_110201bib10) 2015; 379
Satsuma (cpb_28_11_110201bib8) 1979; 20
Huang (cpb_28_11_110201bib17) 2018; 27
Zheng (cpb_28_11_110201bib16) 2018; 27
Qian (cpb_28_11_110201bib19) 2018; 75
Ablowitz (cpb_28_11_110201bib6) 1978; 19
Tian (cpb_28_11_110201bib15) 2014; 62
Liu (cpb_28_11_110201bib1) 2017; 34
Cao (cpb_28_11_110201bib18) 2018; 80
Huang (cpb_28_11_110201bib13) 2017; 67
Zhang (cpb_28_11_110201bib12) 2017; 52
Tajiri (cpb_28_11_110201bib20) 1992; 61
Zhou (cpb_28_11_110201bib14) 2019; 68
Tian (cpb_28_11_110201bib3) 2019; 2019
Li (cpb_28_11_110201bib5) 2019; 36
Song (cpb_28_11_110201bib2) 2019; 14
Chen (cpb_28_11_110201bib4) 2019; 94
Chen (cpb_28_11_110201bib11) 2017; 67
Satsuma (cpb_28_11_110201bib7) 1976; 40
Liu (cpb_28_11_110201bib9) 2018; 92
References_xml – volume: 34
  year: 2017
  ident: cpb_28_11_110201bib1
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/34/1/010202
– volume: 62
  start-page: 245
  year: 2014
  ident: cpb_28_11_110201bib15
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/62/2/12
– volume: 14
  start-page: 301
  year: 2019
  ident: cpb_28_11_110201bib2
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/2018072
– volume: 52
  start-page: 24
  year: 2017
  ident: cpb_28_11_110201bib12
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.03.021
– volume: 80
  start-page: 27
  year: 2018
  ident: cpb_28_11_110201bib18
  publication-title: Applied Math. Lett.
  doi: 10.1016/j.aml.2017.12.026
– volume: 61
  start-page: 783
  year: 1992
  ident: cpb_28_11_110201bib20
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.61.783
– volume: 27
  year: 2018
  ident: cpb_28_11_110201bib17
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/2/020201
– volume: 94
  year: 2019
  ident: cpb_28_11_110201bib4
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab0056
– volume: 27
  year: 2018
  ident: cpb_28_11_110201bib16
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/12/120201
– volume: 67
  start-page: 473
  year: 2017
  ident: cpb_28_11_110201bib13
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/67/5/473
– volume: 92
  start-page: 2061
  year: 2018
  ident: cpb_28_11_110201bib9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4181-6
– volume: 379
  start-page: 1975
  year: 2015
  ident: cpb_28_11_110201bib10
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.06.061
– volume: 67
  start-page: 595
  year: 2017
  ident: cpb_28_11_110201bib11
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/67/6/595
– volume: 36
  year: 2019
  ident: cpb_28_11_110201bib5
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/36/5/050501
– volume: 2019
  start-page: 1
  year: 2019
  ident: cpb_28_11_110201bib3
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.5823
– volume: 40
  start-page: 286
  year: 1976
  ident: cpb_28_11_110201bib7
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.40.286
– volume: 20
  start-page: 1496
  year: 1979
  ident: cpb_28_11_110201bib8
  publication-title: J. Math. Phys.
  doi: 10.1063/1.524208
– volume: 68
  start-page: 56
  year: 2019
  ident: cpb_28_11_110201bib14
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.07.038
– volume: 75
  start-page: 3317
  year: 2018
  ident: cpb_28_11_110201bib19
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2018.01.049
– volume: 19
  start-page: 2180
  year: 1978
  ident: cpb_28_11_110201bib6
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523550
SSID ssj0061023
Score 2.451858
Snippet Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 110201
Title Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuFU_R8pAPIFGlYTd2nDhHWoEqELCHVuwtsmMHFpUN7GaLyon_AD-BX8YvYWzHTnhUolyiaNaZRDuf5uXxDEL3tdJ8UrEklrkSpql2EoukUjE4y5pIIrSwO6YvXmYHR-mzGZuNRt8HVUvrVj6qPv_1XMn_SBVoIFdzSvYckg1MgQD3IF-4goTh-m8yXop3Nut-GumP6-D8iQg0jinBAofU7Q64SeBG5vYoucu-uh6j-3axL-KUS-cSRp-EaUdb2_EbnDwge6DxiliZWQCuj0f0XKjmfQuG1ddL0KluT-Zi9fZkfjwPHzT0fs2wbr3SXTpl1U98DmlruGmCIupoM0Dwm9N1KB2y9QevTc178yttb95RuixGUnTH-XrFm-UpmATXZNxrZsKHCEwGehacFuIe_8MEgNo02QjPz9g6maaC9gbPb_L_ZgdDdaLdl-e8NDxKw6N0HC6giwSCEXtM9NXU2_vMNL8wYb1_Y7cZDhzGgTZ2HAbOz8CLObyCNrvwAz92WLqKRnpxDV2aOnlcR996RGEvQNzUWGADEuwQhQEo2CIKB0RhgyhsELVrl-7aRR5N2KIJw8P4IYmSnSGOcMDRjy9fhwgKH3ADHT19crh_EHdzO-KKpLSNGZeUmdhcFjkEoBUTIue81kxPNKWKZxy8VMEIVzpJqMhqLuEXUlOiJqlOGb2JNhbNQt9CWIL7KISuWTUpUpUnsqaprKXUCiKHomZbaOz_0LLqmtqb2SrH5VlC3EI74YkPrqHLmWu3z7H2Nrrc4_oO2miXa30X_NVW3rNw-QneOJX4
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+equation+of+a+lump+before+and+after+collision+with+line%2C+lump%2C+and+breather+waves+for+%282%2B1%29-dimensional+Kadomtsev%E2%80%93Petviashvili+equation&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Zhao&rft.au=Yang%2C+Xiangyu&rft.au=Li%2C+Wentao&rft.au=Li%2C+Biao&rft.date=2019-11-01&rft.issn=1674-1056&rft.volume=28&rft.issue=11&rft.spage=110201&rft_id=info:doi/10.1088%2F1674-1056%2Fab44a3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ab44a3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon