Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation
Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions...
Saved in:
Published in | Chinese physics B Vol. 28; no. 11; p. 110201 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.11.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions of KP equation along some parallel orbits at infinity. We derive the mathematical expression of the phase change before and after the collision of a lump wave. At the same time, we give some collision plots to reveal the obvious phase change. Our method proposed to find the trajectory equation of a lump wave can be applied to other (2+1)-dimensional integrable equations. The results expand the understanding of lump, breather, and hybrid solutions in soliton theory. |
---|---|
AbstractList | Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions of KP equation along some parallel orbits at infinity. We derive the mathematical expression of the phase change before and after the collision of a lump wave. At the same time, we give some collision plots to reveal the obvious phase change. Our method proposed to find the trajectory equation of a lump wave can be applied to other (2+1)-dimensional integrable equations. The results expand the understanding of lump, breather, and hybrid solutions in soliton theory. |
Author | Li, Wentao Li, Biao Yang, Xiangyu Zhang, Zhao |
Author_xml | – sequence: 1 givenname: Zhao surname: Zhang fullname: Zhang, Zhao – sequence: 2 givenname: Xiangyu surname: Yang fullname: Yang, Xiangyu – sequence: 3 givenname: Wentao surname: Li fullname: Li, Wentao – sequence: 4 givenname: Biao surname: Li fullname: Li, Biao |
BookMark | eNp1kD1PwzAQhj0UibawM3oE0VA7jlN3RBVfohIMZY4uyUV15STFdlN14z_AL-SXkLSoAxLTSXfPc3r1Dkivqisk5IKzG86UGvN4EgWcyXgMaRSB6JH-cXVKBs6tGIs5C0WffC0srDDztd1RfN-A13VF64ICNZtyTVMsaosUqpxC4dHSrDZGuw7aar-kRlc42qOjPZRaBL9suS006Ggr08vwml8FuS6x6jww9BnyuvQOm--Pz1f0jQa3bLTRxwBn5KQA4_D8dw7J2_3dYvYYzF8enma38yALI-EDqVIhWRTG6XTComkmASZKFSiRoRC5ipVkU5ChypFzAXGh0vYSFiLMWYSRFEPCDn8zWztnsUjWVpdgdwlnSddk0tWWdLUlhyZbJf6jZNrvQ3sL2vwv_gBny3-u |
CitedBy_id | crossref_primary_10_1007_s12346_024_01163_0 crossref_primary_10_1088_1402_4896_ada207 crossref_primary_10_1007_s11071_020_05611_9 crossref_primary_10_1007_s11071_022_07429_z crossref_primary_10_1088_1572_9494_ad1a0d crossref_primary_10_1142_S0217984924502592 crossref_primary_10_2139_ssrn_3951740 crossref_primary_10_1007_s11082_022_03528_8 crossref_primary_10_1088_1674_1056_acb9f2 crossref_primary_10_1016_j_aml_2020_107004 crossref_primary_10_1007_s11071_020_05570_1 crossref_primary_10_1007_s11071_024_10685_w crossref_primary_10_1016_j_rinp_2023_106516 crossref_primary_10_3390_sym16111469 crossref_primary_10_1016_j_rinp_2023_106759 crossref_primary_10_1088_1674_1056_ac70c0 crossref_primary_10_1007_s11071_022_07827_3 crossref_primary_10_1007_s11071_022_07457_9 crossref_primary_10_1016_j_rinp_2024_107454 crossref_primary_10_1007_s11071_020_05649_9 crossref_primary_10_1007_s11071_022_08191_y crossref_primary_10_1142_S0217979224500322 crossref_primary_10_1088_1674_1056_acb0c1 crossref_primary_10_1088_1674_1056_abc165 crossref_primary_10_1016_j_cnsns_2022_106555 crossref_primary_10_1140_epjp_s13360_024_05457_9 crossref_primary_10_1088_1674_1056_acd62c crossref_primary_10_1007_s11071_022_07508_1 crossref_primary_10_1016_j_chaos_2024_114572 crossref_primary_10_1016_j_wavemoti_2024_103455 crossref_primary_10_1088_1402_4896_aceb9c crossref_primary_10_1088_0256_307X_38_6_060501 crossref_primary_10_1140_epjp_s13360_023_03924_3 crossref_primary_10_1007_s11071_022_07874_w crossref_primary_10_1088_1674_1056_ab90ea crossref_primary_10_1088_1674_1056_ab9de0 crossref_primary_10_1088_1402_4896_ad29ce crossref_primary_10_1007_s11071_022_07215_x crossref_primary_10_1016_j_aej_2024_11_015 crossref_primary_10_1016_j_aml_2019_106168 crossref_primary_10_3390_computation9030031 crossref_primary_10_1016_j_physleta_2021_127848 crossref_primary_10_1088_1402_4896_ac94a9 crossref_primary_10_1088_1572_9494_abe366 crossref_primary_10_1140_epjp_s13360_023_03801_z crossref_primary_10_1007_s12346_024_01176_9 crossref_primary_10_3390_sym16070779 crossref_primary_10_1088_1674_1056_abd7e3 crossref_primary_10_1098_rsif_2022_0079 crossref_primary_10_1007_s11071_022_07484_6 crossref_primary_10_1088_0256_307X_37_3_030501 crossref_primary_10_1007_s11071_022_07205_z crossref_primary_10_1016_j_cnsns_2021_105866 crossref_primary_10_1088_1402_4896_ad98c3 crossref_primary_10_1088_1402_4896_ad0d5d crossref_primary_10_1007_s11071_022_08126_7 crossref_primary_10_4236_jamp_2024_128169 crossref_primary_10_3390_universe9010055 crossref_primary_10_1140_epjp_s13360_022_02412_4 crossref_primary_10_1080_00207160_2025_2464708 crossref_primary_10_1002_mma_7736 crossref_primary_10_1007_s11071_022_07248_2 crossref_primary_10_1016_j_aml_2022_108408 crossref_primary_10_1007_s11071_022_07662_6 crossref_primary_10_1088_1674_1056_abff31 |
Cites_doi | 10.1088/0256-307X/34/1/010202 10.1088/0253-6102/62/2/12 10.1051/mmnp/2018072 10.1016/j.cnsns.2017.03.021 10.1016/j.aml.2017.12.026 10.1143/JPSJ.61.783 10.1088/1674-1056/27/2/020201 10.1088/1402-4896/ab0056 10.1088/1674-1056/27/12/120201 10.1088/0253-6102/67/5/473 10.1007/s11071-018-4181-6 10.1016/j.physleta.2015.06.061 10.1088/0253-6102/67/6/595 10.1088/0256-307X/36/5/050501 10.1002/mma.5823 10.1143/JPSJ.40.286 10.1063/1.524208 10.1016/j.cnsns.2018.07.038 10.1016/j.camwa.2018.01.049 10.1063/1.523550 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/ab44a3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1088_1674_1056_ab44a3 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFUIB AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 IJHAN IOP IZVLO KOT M45 N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 |
ID | FETCH-LOGICAL-c243t-58b350426b97049c5aa788fe5e0e33d868509a528de113a6f8be0e2f32d04e453 |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 23:12:48 EDT 2025 Tue Jul 01 02:55:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-58b350426b97049c5aa788fe5e0e33d868509a528de113a6f8be0e2f32d04e453 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_ab44a3 crossref_citationtrail_10_1088_1674_1056_ab44a3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationYear | 2019 |
References | Ma (cpb_28_11_110201bib10) 2015; 379 Satsuma (cpb_28_11_110201bib8) 1979; 20 Huang (cpb_28_11_110201bib17) 2018; 27 Zheng (cpb_28_11_110201bib16) 2018; 27 Qian (cpb_28_11_110201bib19) 2018; 75 Ablowitz (cpb_28_11_110201bib6) 1978; 19 Tian (cpb_28_11_110201bib15) 2014; 62 Liu (cpb_28_11_110201bib1) 2017; 34 Cao (cpb_28_11_110201bib18) 2018; 80 Huang (cpb_28_11_110201bib13) 2017; 67 Zhang (cpb_28_11_110201bib12) 2017; 52 Tajiri (cpb_28_11_110201bib20) 1992; 61 Zhou (cpb_28_11_110201bib14) 2019; 68 Tian (cpb_28_11_110201bib3) 2019; 2019 Li (cpb_28_11_110201bib5) 2019; 36 Song (cpb_28_11_110201bib2) 2019; 14 Chen (cpb_28_11_110201bib4) 2019; 94 Chen (cpb_28_11_110201bib11) 2017; 67 Satsuma (cpb_28_11_110201bib7) 1976; 40 Liu (cpb_28_11_110201bib9) 2018; 92 |
References_xml | – volume: 34 year: 2017 ident: cpb_28_11_110201bib1 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/34/1/010202 – volume: 62 start-page: 245 year: 2014 ident: cpb_28_11_110201bib15 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/62/2/12 – volume: 14 start-page: 301 year: 2019 ident: cpb_28_11_110201bib2 publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/2018072 – volume: 52 start-page: 24 year: 2017 ident: cpb_28_11_110201bib12 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.03.021 – volume: 80 start-page: 27 year: 2018 ident: cpb_28_11_110201bib18 publication-title: Applied Math. Lett. doi: 10.1016/j.aml.2017.12.026 – volume: 61 start-page: 783 year: 1992 ident: cpb_28_11_110201bib20 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.61.783 – volume: 27 year: 2018 ident: cpb_28_11_110201bib17 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/2/020201 – volume: 94 year: 2019 ident: cpb_28_11_110201bib4 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab0056 – volume: 27 year: 2018 ident: cpb_28_11_110201bib16 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/12/120201 – volume: 67 start-page: 473 year: 2017 ident: cpb_28_11_110201bib13 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/67/5/473 – volume: 92 start-page: 2061 year: 2018 ident: cpb_28_11_110201bib9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4181-6 – volume: 379 start-page: 1975 year: 2015 ident: cpb_28_11_110201bib10 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.06.061 – volume: 67 start-page: 595 year: 2017 ident: cpb_28_11_110201bib11 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/67/6/595 – volume: 36 year: 2019 ident: cpb_28_11_110201bib5 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/36/5/050501 – volume: 2019 start-page: 1 year: 2019 ident: cpb_28_11_110201bib3 publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.5823 – volume: 40 start-page: 286 year: 1976 ident: cpb_28_11_110201bib7 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.40.286 – volume: 20 start-page: 1496 year: 1979 ident: cpb_28_11_110201bib8 publication-title: J. Math. Phys. doi: 10.1063/1.524208 – volume: 68 start-page: 56 year: 2019 ident: cpb_28_11_110201bib14 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.07.038 – volume: 75 start-page: 3317 year: 2018 ident: cpb_28_11_110201bib19 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2018.01.049 – volume: 19 start-page: 2180 year: 1978 ident: cpb_28_11_110201bib6 publication-title: J. Math. Phys. doi: 10.1063/1.523550 |
SSID | ssj0061023 |
Score | 2.451858 |
Snippet | Based on the hybrid solutions to (2+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 110201 |
Title | Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuFU_R8pAPIFGlYTd2nDhHWoEqELCHVuwtsmMHFpUN7GaLyon_AD-BX8YvYWzHTnhUolyiaNaZRDuf5uXxDEL3tdJ8UrEklrkSpql2EoukUjE4y5pIIrSwO6YvXmYHR-mzGZuNRt8HVUvrVj6qPv_1XMn_SBVoIFdzSvYckg1MgQD3IF-4goTh-m8yXop3Nut-GumP6-D8iQg0jinBAofU7Q64SeBG5vYoucu-uh6j-3axL-KUS-cSRp-EaUdb2_EbnDwge6DxiliZWQCuj0f0XKjmfQuG1ddL0KluT-Zi9fZkfjwPHzT0fs2wbr3SXTpl1U98DmlruGmCIupoM0Dwm9N1KB2y9QevTc178yttb95RuixGUnTH-XrFm-UpmATXZNxrZsKHCEwGehacFuIe_8MEgNo02QjPz9g6maaC9gbPb_L_ZgdDdaLdl-e8NDxKw6N0HC6giwSCEXtM9NXU2_vMNL8wYb1_Y7cZDhzGgTZ2HAbOz8CLObyCNrvwAz92WLqKRnpxDV2aOnlcR996RGEvQNzUWGADEuwQhQEo2CIKB0RhgyhsELVrl-7aRR5N2KIJw8P4IYmSnSGOcMDRjy9fhwgKH3ADHT19crh_EHdzO-KKpLSNGZeUmdhcFjkEoBUTIue81kxPNKWKZxy8VMEIVzpJqMhqLuEXUlOiJqlOGb2JNhbNQt9CWIL7KISuWTUpUpUnsqaprKXUCiKHomZbaOz_0LLqmtqb2SrH5VlC3EI74YkPrqHLmWu3z7H2Nrrc4_oO2miXa30X_NVW3rNw-QneOJX4 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+equation+of+a+lump+before+and+after+collision+with+line%2C+lump%2C+and+breather+waves+for+%282%2B1%29-dimensional+Kadomtsev%E2%80%93Petviashvili+equation&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Zhao&rft.au=Yang%2C+Xiangyu&rft.au=Li%2C+Wentao&rft.au=Li%2C+Biao&rft.date=2019-11-01&rft.issn=1674-1056&rft.volume=28&rft.issue=11&rft.spage=110201&rft_id=info:doi/10.1088%2F1674-1056%2Fab44a3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ab44a3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |