The role of the non-linearity in controlling the surface roughness in the one-dimensional Kardar–Parisi–Zhang growth process
We explore linear control of the one-dimensional non-linear Kardar–Parisi–Zhang (KPZ) equation with the goal to understand the effects the control process has on the dynamics and on the stationary state of the resulting stochastic growth kinetics. In linear control, the intrinsic non-linearity of th...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 54; no. 15; p. 154002 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
16.04.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | We explore linear control of the one-dimensional non-linear Kardar–Parisi–Zhang (KPZ) equation with the goal to understand the effects the control process has on the dynamics and on the stationary state of the resulting stochastic growth kinetics. In linear control, the intrinsic non-linearity of the system is maintained at all times. In our protocol, the control is applied to only a small number
n
c
of Fourier modes. The stationary-state roughness is obtained analytically in the small-
n
c
regime with weak non-linear coupling wherein the controlled growth process is found to result in Edwards–Wilkinson dynamics. Furthermore, when the non-linear KPZ coupling is strong, we discern a regime where the controlled dynamics shows scaling in accordance to the KPZ universality class. We perform a detailed numerical analysis to investigate the controlled dynamics subject to weak as well as strong non-linearity. A first-order perturbation theory calculation supports the simulation results in the weak non-linear regime. For strong non-linearity, we find a temporal crossover between KPZ and dispersive growth regimes, with the crossover time scaling with the number
n
c
of controlled Fourier modes. We observe that the height distribution is positively skewed, indicating that as a consequence of the linear control, the surface morphology displays fewer and smaller hills than in the uncontrolled growth process, and that the inherent size-dependent stationary-state roughness provides an upper limit for the roughness of the controlled system. |
---|---|
AbstractList | We explore linear control of the one-dimensional non-linear Kardar–Parisi–Zhang (KPZ) equation with the goal to understand the effects the control process has on the dynamics and on the stationary state of the resulting stochastic growth kinetics. In linear control, the intrinsic non-linearity of the system is maintained at all times. In our protocol, the control is applied to only a small number
n
c
of Fourier modes. The stationary-state roughness is obtained analytically in the small-
n
c
regime with weak non-linear coupling wherein the controlled growth process is found to result in Edwards–Wilkinson dynamics. Furthermore, when the non-linear KPZ coupling is strong, we discern a regime where the controlled dynamics shows scaling in accordance to the KPZ universality class. We perform a detailed numerical analysis to investigate the controlled dynamics subject to weak as well as strong non-linearity. A first-order perturbation theory calculation supports the simulation results in the weak non-linear regime. For strong non-linearity, we find a temporal crossover between KPZ and dispersive growth regimes, with the crossover time scaling with the number
n
c
of controlled Fourier modes. We observe that the height distribution is positively skewed, indicating that as a consequence of the linear control, the surface morphology displays fewer and smaller hills than in the uncontrolled growth process, and that the inherent size-dependent stationary-state roughness provides an upper limit for the roughness of the controlled system. |
Author | Täuber, Uwe C Pleimling, Michel Priyanka |
Author_xml | – sequence: 1 orcidid: 0000-0002-3094-2256 surname: Priyanka fullname: Priyanka – sequence: 2 givenname: Uwe C orcidid: 0000-0001-7854-2254 surname: Täuber fullname: Täuber, Uwe C – sequence: 3 givenname: Michel surname: Pleimling fullname: Pleimling, Michel |
BookMark | eNp1kM1KAzEUhYMo2Fb3LvMCY5NJ5m8pxT8s6KJu3Aw3aaYTmSYlSZHu-g6-oU9iYqULwdU93JzvcHPG6NRYoxC6ouSakrqe0qqgWU1zOgWhqoKdoNFxdXrUlJ2jsffvhBScNPkI7Re9ws4OCtsOh6hjbDZoo8DpsMPaYGlNiIa4W_0Y_NZ1IBO0XfVGeZ9M6SHeky31WhmvrYEBP4Fbgvvaf77ELK-jeOshhqyc_Qg93jgrI32BzjoYvLr8nRP0ene7mD1k8-f7x9nNPJM5ZyFjvKkELHNGlBSyKjvaCSAkzwsJDdAqTkFZWSrCWS0K4CXvZMVUoTgXDS_YBJWHXOms9051rdQBgk6_Az20lLSpxzYV1abS2kOPESR_wI3Ta3C7_5FvwD98kw |
CitedBy_id | crossref_primary_10_1088_1742_5468_ad4af9 |
Cites_doi | 10.1103/physreve.47.1595 10.1103/physreva.16.732 10.1103/physreve.92.022912 10.1021/ie060410h 10.1103/physreve.50.1024 10.1103/physreve.101.022101 10.1063/1.1755425 10.1103/physreve.71.046138 10.1016/j.addma.2020.101283 10.1038/srep00034 10.1088/0305-4470/18/2/005 10.1103/physrevlett.119.030602 10.1116/1.4818423 10.1103/physrevlett.56.889 10.1109/tcst.2003.816405 10.1098/rspa.1982.0056 10.1016/j.addma.2020.101528 10.1016/s0167-2789(99)00175-x 10.1016/j.physd.2017.02.011 10.1016/s0168-583x(02)01436-2 10.1137/0139007 10.1088/1751-8113/43/40/403001 10.1016/0021-9991(91)90238-g 10.1143/ptps.64.346 10.1016/0370-1573(94)00087-j 10.1142/s2010326311300014 10.1007/s10955-015-1282-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1751-8121/abe753 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1751-8121 |
ExternalDocumentID | 10_1088_1751_8121_abe753 |
GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT ADEQX AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN IHE IJHAN IOP IZVLO KOT LAP M45 N5L PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 |
ID | FETCH-LOGICAL-c243t-3497bad230ecbc76f1fba00225ca9a1725cb1366e0438b5a464fc73e5e44b9453 |
ISSN | 1751-8113 |
IngestDate | Thu Apr 24 23:20:39 EDT 2025 Tue Jul 01 02:32:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-3497bad230ecbc76f1fba00225ca9a1725cb1366e0438b5a464fc73e5e44b9453 |
ORCID | 0000-0002-3094-2256 0000-0001-7854-2254 |
ParticipantIDs | crossref_citationtrail_10_1088_1751_8121_abe753 crossref_primary_10_1088_1751_8121_abe753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-16 |
PublicationDateYYYYMMDD | 2021-04-16 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationYear | 2021 |
References | Ueno (aabe753bib25) 2005; 71 Priyanka (aabe753bib24) 2020; 101 Kriecherbauer (aabe753bib15) 2010; 43 Halpin-Healy (aabe753bib14) 2015; 160 Spalart (aabe753bib26) 1991; 96 Corwin (aabe753bib29) 2012; 01 Makeev (aabe753bib2) 2002; 197 Frey (aabe753bib27) 1994; 50 Barabási (aabe753bib6) 1995 Villapún (aabe753bib4) 2020; 36 Gomes (aabe753bib23) 2017; 348 Baer (aabe753bib1) 2013; 31 Li (aabe753bib3) 2020; 34 Kardar (aabe753bib9) 1986; 56 Halpin-Healy (aabe753bib11) 1995; 254 Edwards (aabe753bib18) 1982; 381 Zhang (aabe753bib12) 2011; 1 Elsholz (aabe753bib5) 2004; 84 Bhattacharjee (aabe753bib28) 2007 Forster (aabe753bib17) 1977; 16 Kuramoto (aabe753bib7) 1978; 64 Amar (aabe753bib10) 1993; 47 Fukai (aabe753bib13) 2017; 119 Lou (aabe753bib20) 2003; 11 Family (aabe753bib16) 1985; 18 Sivashinsky (aabe753bib8) 1980; 39 Armaou (aabe753bib19) 2000; 137 Lou (aabe753bib21) 2006; 45 Gomes (aabe753bib22) 2015; 92 |
References_xml | – volume: 47 start-page: 1595 year: 1993 ident: aabe753bib10 publication-title: Phys. Rev. E doi: 10.1103/physreve.47.1595 – volume: 16 start-page: 732 year: 1977 ident: aabe753bib17 publication-title: Phys. Rev. A doi: 10.1103/physreva.16.732 – volume: 92 year: 2015 ident: aabe753bib22 publication-title: Phys. Rev. E doi: 10.1103/physreve.92.022912 – volume: 45 start-page: 7177 year: 2006 ident: aabe753bib21 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060410h – volume: 50 start-page: 1024 year: 1994 ident: aabe753bib27 publication-title: Phys. Rev. E doi: 10.1103/physreve.50.1024 – volume: 101 year: 2020 ident: aabe753bib24 publication-title: Phys. Rev. E doi: 10.1103/physreve.101.022101 – volume: 84 start-page: 4167 year: 2004 ident: aabe753bib5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1755425 – volume: 71 year: 2005 ident: aabe753bib25 publication-title: Phys. Rev. E doi: 10.1103/physreve.71.046138 – volume: 34 year: 2020 ident: aabe753bib3 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101283 – volume: 1 start-page: 34 year: 2011 ident: aabe753bib12 publication-title: Sci. Rep. doi: 10.1038/srep00034 – volume: 18 start-page: L75 year: 1985 ident: aabe753bib16 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/18/2/005 – volume: 119 year: 2017 ident: aabe753bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.119.030602 – volume: 31 year: 2013 ident: aabe753bib1 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4818423 – year: 2007 ident: aabe753bib28 – volume: 56 start-page: 889 year: 1986 ident: aabe753bib9 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.56.889 – volume: 11 start-page: 737 year: 2003 ident: aabe753bib20 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/tcst.2003.816405 – volume: 381 start-page: 17 year: 1982 ident: aabe753bib18 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1982.0056 – volume: 36 year: 2020 ident: aabe753bib4 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101528 – volume: 137 start-page: 49 year: 2000 ident: aabe753bib19 publication-title: PhysicaD doi: 10.1016/s0167-2789(99)00175-x – volume: 348 start-page: 33 year: 2017 ident: aabe753bib23 publication-title: PhysicaD doi: 10.1016/j.physd.2017.02.011 – volume: 197 start-page: 185 year: 2002 ident: aabe753bib2 publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/s0168-583x(02)01436-2 – volume: 39 start-page: 67 year: 1980 ident: aabe753bib8 publication-title: SIAM J. Appl. Math. doi: 10.1137/0139007 – volume: 43 year: 2010 ident: aabe753bib15 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/40/403001 – volume: 96 start-page: 297 year: 1991 ident: aabe753bib26 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90238-g – volume: 64 start-page: 346 year: 1978 ident: aabe753bib7 publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/ptps.64.346 – volume: 254 start-page: 215 year: 1995 ident: aabe753bib11 publication-title: Phys. Rep. doi: 10.1016/0370-1573(94)00087-j – volume: 01 start-page: 1130001 year: 2012 ident: aabe753bib29 publication-title: Random Matrices: Theor. Appl. doi: 10.1142/s2010326311300014 – volume: 160 start-page: 794 year: 2015 ident: aabe753bib14 publication-title: J. Stat. Phys. doi: 10.1007/s10955-015-1282-1 – year: 1995 ident: aabe753bib6 |
SSID | ssj0054092 |
Score | 2.3473852 |
Snippet | We explore linear control of the one-dimensional non-linear Kardar–Parisi–Zhang (KPZ) equation with the goal to understand the effects the control process has... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 154002 |
Title | The role of the non-linearity in controlling the surface roughness in the one-dimensional Kardar–Parisi–Zhang growth process |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiKdYXvKBC6rcNo2dx3GFQAsH6KGV9hbZjr1bUbqrbiK0e9r_wK_h7_BLmPEjDQuVWC5R4jijJPNpZux5EfJaKy64spKJMhGM84liskw4A9VoVJHZOrcuyvdTdrjgH4_E0WDwoxe11DZqpC__mlfyP1yFMeArZsnegLMdURiAc-AvHIHDcPxnHsfwQDQgYSnP0GyU2JFu6CLMXSD6KuZEnbcbKzU-1B6fOCEXwhxP14bVWOjfF-nAHLFabmIkRDrDVoXL7tLtMg-PYQXfnAzPfKrBDivX75ycj4YHPjMoFokNJQp6eZSdkN4sL-T6S6cu5s6Xz1vlwbX4ZrY7u7OVWX5dhbYsPqq1v40xTdAj47Msg-TNRcKKxCemjkx_zKdQR3Hta05HWIqe8AVrcOLSt__UCyBLcYsi0kMFqEwu0q0WjJ7_a8qxC1l0zvqiqJBGhTQqT-EWuT2FFQo2z_jweRaNAHgT14-7-6rgIQcK4-4txp5CzyLqmTbz--Re4BY98AB7QAZm_ZDcmXnOPSJXADOKMKOnlgLD6G8wo8s17cHMTQgwox3McBLeuAYz6mH28-q7BxicOGhRDy0aoPWYLN6_m789ZKFxB9NTnjYs5WWuZA2rW6OVzjObWCXRWhRalhJMZqFVkmaZQTe0EpJn3Oo8NcJwrkou0idkDz7FPCXU2NRqVehJKTMOy3kFCrpIMlmIGqZauU_G8edVOlS1x-Yqq2oXw_bJm-6JM1_RZefcZzeY-5zc3eL6BdlrNq15CQZro145aPwC5U-Xkg |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+non-linearity+in+controlling+the+surface+roughness+in+the+one-dimensional+Kardar%E2%80%93Parisi%E2%80%93Zhang+growth+process&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Priyanka&rft.au=T%C3%A4uber%2C+Uwe+C&rft.au=Pleimling%2C+Michel&rft.date=2021-04-16&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=54&rft.issue=15&rft.spage=154002&rft_id=info:doi/10.1088%2F1751-8121%2Fabe753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1751_8121_abe753 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |