Improved YOLOv3 model with feature map cropping for multi-scale road object detection

Road object detection is an essential and imperative step for driving intelligent vehicles. Generally, road objects, such as vehicles and pedestrians, present the characteristic of multi-scale and uncertain distribution which puts a high demand on the detection algorithm. Therefore, this paper propo...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 4; p. 45406
Main Authors Shen, Lingzhi, Tao, Hongfeng, Ni, Yuanzhi, Wang, Yue, Stojanovic, Vladimir
Format Journal Article
LanguageEnglish
Published 01.04.2023
Online AccessGet full text

Cover

Loading…
Abstract Road object detection is an essential and imperative step for driving intelligent vehicles. Generally, road objects, such as vehicles and pedestrians, present the characteristic of multi-scale and uncertain distribution which puts a high demand on the detection algorithm. Therefore, this paper proposes a YOLOv3 (You Only Look Once v3)-based method aimed at enhancing the capability of cross-scale detection and focusing on the valuable area. The proposed method fills an urgent need for multi-scale detection, and its individual components will be useful in road object detection. The K-means-GIoU algorithm is designed to generate a priori boxes whose shapes are close to real boxes. This greatly reduces the complexity of training, paving the way for fast convergence. Then, a detection branch is added to detect small targets, and a feature map cropping module is introduced into the newly added detection branch to remove the areas with high probability of background targets and easy-to-detect targets, and the cropped areas of the feature map are filled with a value of 0. Further, a channel attention module and spatial attention module are added to strengthen the network’s attention to major regions. The experiment results on the KITTI dataset show that the proposed method maintains a fast detection speed and increases the mAP (mean average precision) value by as much as 2.86 % compared with YOLOv3-ultralytics, and especially improves the detection performance for small-scale objects.
AbstractList Road object detection is an essential and imperative step for driving intelligent vehicles. Generally, road objects, such as vehicles and pedestrians, present the characteristic of multi-scale and uncertain distribution which puts a high demand on the detection algorithm. Therefore, this paper proposes a YOLOv3 (You Only Look Once v3)-based method aimed at enhancing the capability of cross-scale detection and focusing on the valuable area. The proposed method fills an urgent need for multi-scale detection, and its individual components will be useful in road object detection. The K-means-GIoU algorithm is designed to generate a priori boxes whose shapes are close to real boxes. This greatly reduces the complexity of training, paving the way for fast convergence. Then, a detection branch is added to detect small targets, and a feature map cropping module is introduced into the newly added detection branch to remove the areas with high probability of background targets and easy-to-detect targets, and the cropped areas of the feature map are filled with a value of 0. Further, a channel attention module and spatial attention module are added to strengthen the network’s attention to major regions. The experiment results on the KITTI dataset show that the proposed method maintains a fast detection speed and increases the mAP (mean average precision) value by as much as 2.86 % compared with YOLOv3-ultralytics, and especially improves the detection performance for small-scale objects.
Author Ni, Yuanzhi
Wang, Yue
Tao, Hongfeng
Stojanovic, Vladimir
Shen, Lingzhi
Author_xml – sequence: 1
  givenname: Lingzhi
  surname: Shen
  fullname: Shen, Lingzhi
– sequence: 2
  givenname: Hongfeng
  orcidid: 0000-0001-5279-2458
  surname: Tao
  fullname: Tao, Hongfeng
– sequence: 3
  givenname: Yuanzhi
  surname: Ni
  fullname: Ni, Yuanzhi
– sequence: 4
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
– sequence: 5
  givenname: Vladimir
  orcidid: 0000-0002-6005-2086
  surname: Stojanovic
  fullname: Stojanovic, Vladimir
BookMark eNp1kM9LwzAYhoNMcJvePeYfqH5J2iY9yvDHYLCLO3gqafJFM9qmpNnE_96ViQfB0wsvPC8vz4LM-tAjIbcM7hgodc9EybKyAHavTQOyuCDz32pG5lAVMgMuxBVZjOMeACRU1Zzs1t0QwxEtfdtutkdBu2CxpZ8-fVCHOh0i0k4P1MQwDL5_py5E2h3a5LPR6BZpDNrS0OzRJGoxncKH_ppcOt2OePOTS7J7enxdvWSb7fN69bDJDM9FygR3uZQcEJjV3IjCSuMMZ0qaQqkCQedGVdg0srE5GM2dklXJmS6rSgBKsSTlefd0bxwjutr4pKcHKWrf1gzqSU49magnE_VZzgmEP-AQfafj1__IN8jOab0
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106488
crossref_primary_10_1088_1361_6501_ad8a80
crossref_primary_10_1016_j_dsp_2023_104283
crossref_primary_10_3390_app13063576
crossref_primary_10_1109_TITS_2024_3389945
crossref_primary_10_1016_j_engappai_2024_108700
crossref_primary_10_1007_s40747_023_01076_6
crossref_primary_10_1016_j_eswa_2024_123619
crossref_primary_10_1016_j_engappai_2023_106406
crossref_primary_10_1088_1361_6501_ace20a
crossref_primary_10_1007_s40747_023_01117_0
crossref_primary_10_1007_s40747_023_01152_x
crossref_primary_10_1007_s11554_025_01651_9
crossref_primary_10_1007_s00521_023_08741_4
crossref_primary_10_1016_j_patrec_2024_08_007
crossref_primary_10_1007_s00138_024_01611_6
crossref_primary_10_1016_j_dsp_2024_104798
crossref_primary_10_1016_j_engappai_2023_106656
crossref_primary_10_1016_j_engappai_2023_107508
crossref_primary_10_1088_1361_6501_ad9856
crossref_primary_10_1007_s40747_024_01448_6
crossref_primary_10_1016_j_measurement_2024_114617
crossref_primary_10_1007_s40747_023_01167_4
crossref_primary_10_3390_e26080645
crossref_primary_10_1088_1361_6501_ad7d29
crossref_primary_10_1088_1402_4896_ad6e3b
crossref_primary_10_1016_j_neucom_2024_127862
crossref_primary_10_1088_1361_6501_ad6bae
crossref_primary_10_1007_s40747_023_01102_7
crossref_primary_10_1016_j_patrec_2023_08_017
crossref_primary_10_1016_j_eswa_2023_123067
crossref_primary_10_1016_j_patrec_2024_06_027
crossref_primary_10_1016_j_ins_2023_119862
crossref_primary_10_1088_1361_6501_ad6fc2
crossref_primary_10_1007_s40747_024_01412_4
crossref_primary_10_1007_s40747_023_01079_3
crossref_primary_10_1007_s40747_023_01224_y
crossref_primary_10_1007_s40747_024_01439_7
crossref_primary_10_1007_s10846_023_01831_4
crossref_primary_10_1016_j_neunet_2024_106231
crossref_primary_10_1109_ACCESS_2023_3317251
crossref_primary_10_1016_j_eswa_2023_121893
crossref_primary_10_1007_s40747_023_01158_5
crossref_primary_10_1007_s40747_024_01769_6
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1007_s00521_025_11153_1
crossref_primary_10_1016_j_measurement_2024_114313
crossref_primary_10_1016_j_patcog_2023_109990
crossref_primary_10_1016_j_knosys_2024_111614
crossref_primary_10_1016_j_patcog_2023_109631
crossref_primary_10_3390_biomimetics8060458
crossref_primary_10_1016_j_conengprac_2023_105786
crossref_primary_10_1007_s40747_023_01299_7
crossref_primary_10_1016_j_neucom_2025_129844
crossref_primary_10_2139_ssrn_5082217
crossref_primary_10_1016_j_neucom_2023_126655
crossref_primary_10_37391_ijeer_110443
crossref_primary_10_1007_s40747_024_01503_2
crossref_primary_10_1007_s00034_024_02633_1
crossref_primary_10_1007_s00521_023_09134_3
crossref_primary_10_1007_s00521_023_09195_4
crossref_primary_10_1016_j_patrec_2023_10_009
crossref_primary_10_3390_electronics12204272
crossref_primary_10_3390_rs15153863
crossref_primary_10_1007_s00371_024_03642_6
crossref_primary_10_1016_j_engappai_2023_106720
crossref_primary_10_1016_j_measurement_2024_114386
crossref_primary_10_1038_s41598_023_43458_3
crossref_primary_10_1088_1361_6501_ad3f3a
crossref_primary_10_3390_s25010214
crossref_primary_10_1007_s40747_024_01415_1
crossref_primary_10_1016_j_eswa_2024_123935
crossref_primary_10_1016_j_measurement_2023_113459
crossref_primary_10_1038_s41598_024_76577_6
crossref_primary_10_1007_s40747_023_01111_6
crossref_primary_10_1016_j_eswa_2023_121638
crossref_primary_10_1007_s40747_023_01176_3
crossref_primary_10_3390_ijgi12110457
crossref_primary_10_1088_1361_6501_ad688b
crossref_primary_10_1088_1361_6501_ad50f6
crossref_primary_10_1016_j_engappai_2024_108070
crossref_primary_10_1016_j_eswa_2024_124178
crossref_primary_10_1016_j_ins_2023_119458
crossref_primary_10_1016_j_ins_2023_119851
crossref_primary_10_1016_j_ins_2023_119972
crossref_primary_10_1007_s40747_023_01278_y
crossref_primary_10_1088_1361_6501_ad6024
crossref_primary_10_1088_1361_6501_ada4c8
crossref_primary_10_1007_s10845_024_02478_0
crossref_primary_10_1016_j_eswa_2024_124171
crossref_primary_10_1007_s00138_023_01453_8
crossref_primary_10_1016_j_engappai_2024_109150
crossref_primary_10_1007_s10845_023_02176_3
crossref_primary_10_1007_s40747_023_01241_x
crossref_primary_10_1016_j_jclepro_2024_144425
crossref_primary_10_1007_s00371_024_03705_8
crossref_primary_10_1088_1361_6501_ad0690
crossref_primary_10_1007_s40747_023_01055_x
crossref_primary_10_1007_s40747_023_01207_z
crossref_primary_10_1016_j_patrec_2024_02_012
crossref_primary_10_1007_s10846_023_01912_4
crossref_primary_10_3390_s24072302
crossref_primary_10_1016_j_neucom_2024_127433
crossref_primary_10_1016_j_ins_2023_119143
crossref_primary_10_1016_j_ins_2024_120420
crossref_primary_10_1016_j_engappai_2023_106390
crossref_primary_10_1016_j_ins_2024_120703
crossref_primary_10_1007_s40747_023_01294_y
crossref_primary_10_1016_j_enganabound_2024_03_019
crossref_primary_10_1016_j_knosys_2023_110786
crossref_primary_10_3390_rs16101760
crossref_primary_10_1016_j_dsp_2024_104492
crossref_primary_10_1088_1361_6501_ad3296
crossref_primary_10_1016_j_engappai_2023_107767
crossref_primary_10_1109_TASE_2024_3376712
crossref_primary_10_1007_s10846_023_02033_8
crossref_primary_10_1007_s10846_023_02037_4
crossref_primary_10_1007_s40747_023_01311_0
crossref_primary_10_1016_j_neucom_2024_127685
crossref_primary_10_1007_s40747_023_01096_2
crossref_primary_10_1007_s40747_024_01350_1
crossref_primary_10_1007_s40747_023_01187_0
crossref_primary_10_1016_j_patcog_2023_109957
crossref_primary_10_1016_j_ins_2023_119155
Cites_doi 10.1016/j.physa.2016.01.034
10.1109/TPAMI.2016.2577031
10.1016/j.compag.2019.01.012
10.1109/TNNLS.2018.2876865
10.1109/TNNLS.2021.3128968
10.1080/10298436.2020.1714047
10.1016/j.renene.2022.04.046
10.1109/ACCESS.2019.2922479
10.1177/0278364913491297
10.1016/j.ijleo.2022.169061
10.1109/TITS.2020.2991039
10.1007/s41095-019-0149-9
10.1088/1361-6501/ac6663
10.1088/1361-6501/ac0ca8
10.1109/JAS.2020.1003021
10.1016/j.asoc.2021.107846
10.1109/TPAMI.2018.2858826
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/acb075
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_acb075
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-32f47720e01da2c35d7cfc2187c5885e0a4c89ebb7bd40ca2f879621a69930e73
ISSN 0957-0233
IngestDate Thu Apr 24 23:03:38 EDT 2025
Tue Jul 01 03:54:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-32f47720e01da2c35d7cfc2187c5885e0a4c89ebb7bd40ca2f879621a69930e73
ORCID 0000-0002-6005-2086
0000-0001-5279-2458
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_acb075
crossref_primary_10_1088_1361_6501_acb075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Qin (mstacb075bib27) 2019; vol 33
Zhao (mstacb075bib29) 2020
Girshick (mstacb075bib9) 2015
Wang (mstacb075bib14) 2022
Borji (mstacb075bib6) 2019; 5
Panigrahi (mstacb075bib20) 2022; 260
Huang (mstacb075bib19) 2022; 33
Wang (mstacb075bib1) 2022
Zhao (mstacb075bib7) 2019; 30
Tommaso (mstacb075bib15) 2022; 193
Lang (mstacb075bib28) 2019
Li (mstacb075bib2) 2021; 22
Kerner Boris (mstacb075bib4) 2016; 450
Lin (mstacb075bib21) 2020; 42
Rezatofighi (mstacb075bib24) 2019
Du (mstacb075bib16) 2020; 22
Ma (mstacb075bib3) 2020; 7
Tang (mstacb075bib18) 2021; 32
Girshick (mstacb075bib8) 2014
Redmon (mstacb075bib12) 2016
Wang (mstacb075bib23) 2021; 112
Bochkovskiy (mstacb075bib26) 2020
Zou (mstacb075bib5) 2019
Redmon (mstacb075bib10) 2016
Kim (mstacb075bib22) 2019; 7
Geiger (mstacb075bib25) 2013; 32
Ren (mstacb075bib11) 2017; 39
Redmon (mstacb075bib13) 2018
Tian (mstacb075bib17) 2019; 157
References_xml – volume: 450
  start-page: 700
  year: 2016
  ident: mstacb075bib4
  article-title: Failure of classical traffic flow theories: stochastic highway capacity and automatic driving
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.01.034
– volume: 39
  start-page: 1137
  year: 2017
  ident: mstacb075bib11
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 157
  start-page: 417
  year: 2019
  ident: mstacb075bib17
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.012
– volume: 30
  start-page: 3212
  year: 2019
  ident: mstacb075bib7
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– start-page: pp 779
  year: 2016
  ident: mstacb075bib10
  article-title: You only look once: unified, real-time object detection
– volume: vol 33
  start-page: pp 8851
  year: 2019
  ident: mstacb075bib27
  article-title: MonoGRNet: a geometric reasoning network for monocular 3D object localization
– year: 2022
  ident: mstacb075bib1
  article-title: A review of vehicle detection techniques for intelligent vehicles
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3128968
– start-page: pp 12697
  year: 2019
  ident: mstacb075bib28
  article-title: PointPillars: fast encoders for object detection from point clouds
– year: 2020
  ident: mstacb075bib26
  article-title: YOLOv4: optimal speed and accuracy of object detection
– volume: 22
  start-page: 1659
  year: 2020
  ident: mstacb075bib16
  article-title: Pavement distress detection and classification based on YOLO network
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2020.1714047
– start-page: pp 1
  year: 2018
  ident: mstacb075bib13
  article-title: YOLOv3: an incremental improvement
– volume: 193
  start-page: 941
  year: 2022
  ident: mstacb075bib15
  article-title: A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.04.046
– volume: 7
  start-page: 78311
  year: 2019
  ident: mstacb075bib22
  article-title: Multi-scale detector for accurate vehicle detection in traffic surveillance data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922479
– start-page: pp 580
  year: 2014
  ident: mstacb075bib8
  article-title: Rich feature hiearchies for accurate object detection and semantic segmentation
– volume: 32
  start-page: 1231
  year: 2013
  ident: mstacb075bib25
  article-title: Vision meets robotics: The KITTI dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– volume: 260
  year: 2022
  ident: mstacb075bib20
  article-title: MS-ML-SNYOLOv3: a robust lightweight modification of SqueezeNet based YOLOv3 for pedestrian detection
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169061
– volume: 22
  start-page: 6297
  year: 2021
  ident: mstacb075bib2
  article-title: A theoretical foundation of intelligence testing and its application for intelligent vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2991039
– year: 2019
  ident: mstacb075bib5
  article-title: Object detection in 20 years: a survey
– volume: 5
  start-page: 117
  year: 2019
  ident: mstacb075bib6
  article-title: Salient object detection: a survey
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-019-0149-9
– start-page: pp 779
  year: 2016
  ident: mstacb075bib12
  article-title: YOLO9000: better, faster, stronger
– start-page: pp 1440
  year: 2015
  ident: mstacb075bib9
  article-title: Fast R-CNN
– start-page: pp 658
  year: 2019
  ident: mstacb075bib24
  article-title: Generalized intersection over union: a metric and a loss for bounding box regression
– volume: 33
  year: 2022
  ident: mstacb075bib19
  article-title: Lightweight edge-attention network for surface-defect detection of rubber seal rings
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac6663
– year: 2022
  ident: mstacb075bib14
  article-title: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
– volume: 32
  year: 2021
  ident: mstacb075bib18
  article-title: A strip steel surface defect detection method based on attention mechanism and multi-scale maxpooling
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac0ca8
– volume: 7
  start-page: 315
  year: 2020
  ident: mstacb075bib3
  article-title: Artificial intelligence applications in the development of autonomous vehicles: a survey
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003021
– start-page: pp 93
  year: 2020
  ident: mstacb075bib29
  article-title: Vehicle detection based on improved Yolov3 algorithm
– volume: 112
  year: 2021
  ident: mstacb075bib23
  article-title: An advanced YOLOv3 method for small-scale road object detection
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2021.107846
– volume: 42
  start-page: 318
  year: 2020
  ident: mstacb075bib21
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
SSID ssj0007099
Score 2.6710856
Snippet Road object detection is an essential and imperative step for driving intelligent vehicles. Generally, road objects, such as vehicles and pedestrians, present...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 45406
Title Improved YOLOv3 model with feature map cropping for multi-scale road object detection
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZpx6CXsnYb7X6hww4tRossy5Z9HGMjjHUptGHtydiS3BU2JzTODmV__J5-2NG6FtZeTDDKI_b78vTp03tPCL1lAkg0k4zIgqWE64SRgqaUNFUcSxVnSjRmR_foazaZ8c9n6dlo9DusLunqd_L61rqSh3gV7oFfTZXsPTw7GIUb8Bn8C1fwMFz_y8dOEQDKeD79Mv2VuGNtnLTaaNuxM_pZLSJzSteiz5i0GYRkCa4xqYWViua1kWIipTubldWGdPVorSBGfQGQwUr3jyB_4qs8YG17cf39ci0IWCl2Mm8vGu0nSbsLYkP_Cojpeuw3L12fr3SoRbAkSGHpRUVB4L4LWdqF1CSLCfDAOIy5XsC8DAUFG0BNQ8Ds1tAO4dCoDL01M4fJmrpjV_7uo31jfhuyDu1-e56XxkZpbJTOwgZ6xGCRYcs_p8fDPC5o4Ts1umfym9xgYTz8irGzEJCagJ2cPkHbflmB3zuM7KCRbnfRY5veK5e7aMeH8CU-8H3GD5-iWQ8f7OCDLXywgQ_28MEAH9zDBwN8cAAfbOCDHXzwAJ9naPbp4-mHCfGnbBDJeNKRhDUcnp5qGquKySRVQjYSmJ-QaZ6nmlZc5oWua1ErTmXFmlzA3zuuMqC2VIvkOdps563eQzjPgP2ZtOQ0bXgBY5XKYEHOeQbL4krwfTTuX1MpfQt6cxLKj_Iu1-yjw-EbC9d-5c6xL-4x9iXaWuP3Fdrsrlb6NbDLrn5jQfAHcTh1HQ
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+YOLOv3+model+with+feature+map+cropping+for+multi-scale+road+object+detection&rft.jtitle=Measurement+science+%26+technology&rft.au=Shen%2C+Lingzhi&rft.au=Tao%2C+Hongfeng&rft.au=Ni%2C+Yuanzhi&rft.au=Wang%2C+Yue&rft.date=2023-04-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=4&rft.spage=45406&rft_id=info:doi/10.1088%2F1361-6501%2Facb075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acb075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon