A model for flow through discontinuities in the tight junction of the endothelial intercellular cleft

A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution o...

Full description

Saved in:
Bibliographic Details
Published inBulletin of mathematical biology Vol. 56; no. 4; pp. 723 - 741
Main Authors Phillips, C. G., Parker, K. H., Wang, W.
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.07.1994
Subjects
Online AccessGet full text
ISSN0092-8240
1522-9602
DOI10.1007/BF02460718

Cover

Loading…
Abstract A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement.
AbstractList A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement.A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement.
A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement.
Author Parker, K. H.
Wang, W.
Phillips, C. G.
Author_xml – sequence: 1
  givenname: C. G.
  surname: Phillips
  fullname: Phillips, C. G.
– sequence: 2
  givenname: K. H.
  surname: Parker
  fullname: Parker, K. H.
– sequence: 3
  givenname: W.
  surname: Wang
  fullname: Wang, W.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4086661$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/8054892$$D View this record in MEDLINE/PubMed
BookMark eNpt0UFLHTEQB_Agin3P9uK9kEPxIKydze5mk6OVagsPvNjzkk0mvkheYpMsxW9vrA8LxdNA_r-EzMyaHIYYkJDTFi5agPHrt2tgPYexFQdk1Q6MNZIDOyQrAMkawXr4QNY5P0DFspPH5FjA0AvJVgQv6S4a9NTGRK2Pf2jZprjcb6lxWcdQXFhccZipCzVCWtz9ttCHJejiYqDR_j3FYGKt3ilfYcGk0fvFq0S1R1s-kiOrfMZP-3pCfl1_v7v60Wxub35eXW4azfquNK0aQEk9M9CSIzKuW8QejOGGCTlKbmYcun6UVlol565TQnE5cy2EMtjZ7oScvb77mOLvBXOZdrWL-hUVMC55Gjnvh6EbK_y8h8u8QzM9JrdT6Wnaz6XmX_a5ylp5m1TQLr-xHgTnvK3s_JXpFHNOaN9EC9PLaqZ_q6kY_sPaFfUyxZKU8-9deQYispD9
CODEN BMTBAP
CitedBy_id crossref_primary_10_1152_physrev_1999_79_3_703
crossref_primary_10_1017_S0022112008000530
crossref_primary_10_1152_ajpheart_1998_274_6_H1885
Cites_doi 10.1016/0026-2862(92)90104-W
10.1002/jemt.1060190305
10.3233/BIR-1988-251-240
10.1016/S0022-5320(83)90115-6
10.1113/jphysiol.1993.sp019722
10.1016/S0022-5320(84)90177-1
10.1016/0026-2862(80)90024-2
10.1017/CBO9781139172189
10.1017/S0022112091002318
10.1080/00986448908940635
ContentType Journal Article
Copyright 1994 INIST-CNRS
Copyright_xml – notice: 1994 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/BF02460718
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1522-9602
EndPage 741
ExternalDocumentID 8054892
4086661
10_1007_BF02460718
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
--K
--Z
-Y2
-~X
.86
.GJ
.VR
06D
0R~
0VY
199
1B1
1N0
1RT
1~5
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3O-
4.4
406
408
40D
40E
4G.
53G
5GY
5RE
5VS
67Z
6J9
6NX
7-5
71M
78A
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALCJ
AALRI
AANZL
AAPKM
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYWO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMAC
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACRPL
ACSTC
ACZOJ
ADBBV
ADFGL
ADHIR
ADHKG
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHHHB
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGII
AIGIU
AIIXL
AILAN
AITGF
AITUG
AIXLP
AJBLW
AJRNO
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMVHM
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DM4
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FIRID
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-2
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLV
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KDC
KOV
L6V
LG5
LK8
LLZTM
LW8
M1P
M4Y
M7P
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O-L
O9-
O93
O9G
O9I
O9J
OZT
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R2-
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAB
SAP
SCLPG
SDD
SDH
SDM
SEW
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSZ
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WUQ
XPP
XSW
YLTOR
Z45
ZGI
ZMT
ZMTXR
ZWQNP
ZXP
~A9
~EX
~KM
IQODW
-52
-5D
-5G
-BR
-EM
-~C
3V.
88A
AACTN
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
M0L
NPM
PKN
Z7U
Z83
7X8
ID FETCH-LOGICAL-c243t-1a50a9cb20c96ee26c1ee40dd6d289796dbe53479f9fa9b33a8a69b6c88ade3f3
ISSN 0092-8240
IngestDate Tue Aug 05 10:46:03 EDT 2025
Wed Feb 19 01:25:25 EST 2025
Mon Jul 21 09:13:56 EDT 2025
Thu Apr 24 22:52:43 EDT 2025
Wed Aug 13 03:17:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Flux
Discontinuity
Tight junction
Mathematical model
Modeling
Endothelium
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-1a50a9cb20c96ee26c1ee40dd6d289796dbe53479f9fa9b33a8a69b6c88ade3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 8054892
PQID 76645537
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_76645537
pubmed_primary_8054892
pascalfrancis_primary_4086661
crossref_primary_10_1007_BF02460718
crossref_citationtrail_10_1007_BF02460718
PublicationCentury 1900
PublicationDate 1994-07-01
PublicationDateYYYYMMDD 1994-07-01
PublicationDate_xml – month: 07
  year: 1994
  text: 1994-07-01
  day: 01
PublicationDecade 1990
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: United States
PublicationTitle Bulletin of mathematical biology
PublicationTitleAlternate Bull Math Biol
PublicationYear 1994
Publisher Springer
Publisher_xml – name: Springer
References S. L. Wissig (BF02460718_CR17) 1979; 463
R. Y. Tsay (BF02460718_CR13) 1991; 226
R. H. Adamson (BF02460718_CR1) 1993; 466
C. C. Michel (BF02460718_CR9) 1984
I. S. Gradshteyn (BF02460718_CR7) 1980
B. J. Ward (BF02460718_CR15) 1988; 252
F. E. Curry (BF02460718_CR4) 1980; 20
I. N. Sneddon (BF02460718_CR12) 1966
E. J. Hinch (BF02460718_CR8) 1991
A. Silberberg (BF02460718_CR11) 1988; 25
J. A. Firth (BF02460718_CR5) 1983; 85
K. H. Parker (BF02460718_CR10) 1993; 466
M. Bundgaard (BF02460718_CR3) 1984; 88
J. Frøkjaer-Jensen (BF02460718_CR6) 1991; 19
G. K. Batchelor (BF02460718_CR2) 1967
R. Tsay (BF02460718_CR14) 1989; 82
S. Weinbaum (BF02460718_CR16) 1992; 44
1795183 - J Electron Microsc Tech. 1991 Nov;19(3):291-304
6545375 - J Ultrastruct Res. 1984 Jul;88(1):1-17
1640881 - Microvasc Res. 1992 Jul;44(1):85-111
6663671 - J Ultrastruct Res. 1983 Oct;85(1):45-57
7412590 - Microvasc Res. 1980 Jul;20(1):96-9
2837330 - Cell Tissue Res. 1988 Apr;252(1):57-66
89785 - Acta Physiol Scand Suppl. 1979;463:33-44
3196827 - Biorheology. 1988;25(1-2):303-18
8410696 - J Physiol. 1993 Jul;466:303-27
References_xml – start-page: 222
  volume-title: An Introduction to Fluid Dynamics
  year: 1967
  ident: BF02460718_CR2
– volume: 44
  start-page: 85
  year: 1992
  ident: BF02460718_CR16
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(92)90104-W
– volume: 19
  start-page: 291
  year: 1991
  ident: BF02460718_CR6
  publication-title: J. Electron Microsc. Tech.
  doi: 10.1002/jemt.1060190305
– volume: 25
  start-page: 303
  year: 1988
  ident: BF02460718_CR11
  publication-title: Biorheology
  doi: 10.3233/BIR-1988-251-240
– volume: 85
  start-page: 45
  year: 1983
  ident: BF02460718_CR5
  publication-title: J. ultrastruct. Res.
  doi: 10.1016/S0022-5320(83)90115-6
– volume-title: Mixed Boundary Value Problems in Potential Theory
  year: 1966
  ident: BF02460718_CR12
– volume: 252
  start-page: 57
  year: 1988
  ident: BF02460718_CR15
  publication-title: Cell Tiss. Res.
– volume: 466
  start-page: 303
  year: 1993
  ident: BF02460718_CR1
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.1993.sp019722
– volume: 466
  start-page: 322
  year: 1993
  ident: BF02460718_CR10
  publication-title: J. Physiol. (Lond.)
– volume: 88
  start-page: 1
  year: 1984
  ident: BF02460718_CR3
  publication-title: J. ultrastruct. Res.
  doi: 10.1016/S0022-5320(84)90177-1
– volume-title: Table of Integrals, Series, and Products
  year: 1980
  ident: BF02460718_CR7
– volume-title: American Handbook of Physiology
  year: 1984
  ident: BF02460718_CR9
– volume: 20
  start-page: 96
  year: 1980
  ident: BF02460718_CR4
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(80)90024-2
– volume-title: Perturbation Methods
  year: 1991
  ident: BF02460718_CR8
  doi: 10.1017/CBO9781139172189
– volume: 463
  start-page: 33
  year: 1979
  ident: BF02460718_CR17
  publication-title: Acta physiol. scand., Suppl.
– volume: 226
  start-page: 125
  year: 1991
  ident: BF02460718_CR13
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112091002318
– volume: 82
  start-page: 67
  year: 1989
  ident: BF02460718_CR14
  publication-title: Chem. Engng Commun.
  doi: 10.1080/00986448908940635
– reference: 89785 - Acta Physiol Scand Suppl. 1979;463:33-44
– reference: 1640881 - Microvasc Res. 1992 Jul;44(1):85-111
– reference: 6663671 - J Ultrastruct Res. 1983 Oct;85(1):45-57
– reference: 2837330 - Cell Tissue Res. 1988 Apr;252(1):57-66
– reference: 1795183 - J Electron Microsc Tech. 1991 Nov;19(3):291-304
– reference: 7412590 - Microvasc Res. 1980 Jul;20(1):96-9
– reference: 3196827 - Biorheology. 1988;25(1-2):303-18
– reference: 8410696 - J Physiol. 1993 Jul;466:303-27
– reference: 6545375 - J Ultrastruct Res. 1984 Jul;88(1):1-17
SSID ssj0007939
Score 1.4343077
Snippet A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 723
SubjectTerms Animals
Biological and medical sciences
Capillary Permeability
Endothelium, Vascular - physiology
Fundamental and applied biological sciences. Psychology
General aspects
Intercellular Junctions - physiology
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Biological
Title A model for flow through discontinuities in the tight junction of the endothelial intercellular cleft
URI https://www.ncbi.nlm.nih.gov/pubmed/8054892
https://www.proquest.com/docview/76645537
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA6yh6CI6OnhqqcBfRHp0k3bpHksh7K4nMhxx_q2pGkCytI93O7D3V_vTJL-Ok_88VKWbNoumW8nmWTm-wh5y2WumVEqYmKOEmZWRgqr0Qxn2opKaKmwOPn0M19cpJ--ZoODdldd0pQzfX1rXcn_WBXawK5YJfsPlu0eCg3wGewLV7AwXP_KxoUXsnGpgnaD4nBBdQdrbbeoAbF3hKltMmODkfj77zCVtetEl9JRV1iGtXHyHTjOuJnvslPhdXZMgRTIut2pfEf4CvcFLqfO0S5wk-CLSws8mQ30u4qzpU-9WM76sohV4QunVv0WhOcSFsMtiHYLcuhnJfhZ5omYWj_rCcQDntKB0xS-4jjMv8ITYf3i2uM2YZ2lyImX9xNYe2h_Y17rsg1TCNs4hsgHDGIJNiEHxfJstewmbHBRPkoKP3rMYhteN1q3PLhUOxhc67VPfh-cuEXK-SPyMEQXtPBQeUzumPqQ3PV6o1eH5P5pZ7PdE2IK6uBDAT4U4UMDfOgN-NBvNXxlqIMPbeFDt9a1DuBDR_ChDj5PycXHD-cniyiobkSapUkTzVUWK6lLFmvJjWFcz41JY1Qeg-BcSF6VJsP6YyutkmWSqFxxWXKd56oyiU2OyKTe1uYZoWUMXTLk90l0anKRc52pCpxCaa2Fpe2UvGvHdK0DJT0qo2zWLZl2P_5T8qbre-mJWG7tdTwyTdc1YGBKXremWoMfxQFRtdnud2vBeZpliZiSI2_B7tYcoppcsud_ePQLcq__b7wkk-bH3hzDgrUpXwXA_QSaXJlV
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+flow+through+discontinuities+in+the+tight+junction+of+the+endothelial+intercellular+cleft&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=PHILLIPS%2C+C.+G&rft.au=PARKER%2C+K.+H&rft.au=WANG%2C+W&rft.date=1994-07-01&rft.pub=Springer&rft.issn=0092-8240&rft.volume=56&rft.issue=4&rft.spage=723&rft.epage=741&rft_id=info:doi/10.1007%2FBF02460718&rft.externalDBID=n%2Fa&rft.externalDocID=4086661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon