A model for flow through discontinuities in the tight junction of the endothelial intercellular cleft
A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution o...
Saved in:
Published in | Bulletin of mathematical biology Vol. 56; no. 4; pp. 723 - 741 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer
01.07.1994
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8240 1522-9602 |
DOI | 10.1007/BF02460718 |
Cover
Loading…
Abstract | A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement. |
---|---|
AbstractList | A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement.A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement. A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible assumptions the problem of calculating the flow in the cleft, in either the presence or the absence of a fibre matrix, reduces to the solution of Laplace's equation in a two-dimensional domain. For an idealized geometry representing a discontinuity between two semi-infinite tight junction regions, a general analytic solution is found by means of conformal mappings. The model geometry, unlike those assumed in previous studies, allows the tight junction regions to be out of alignment with each other, and even to overlap, modelling flow through a tortuous, rather than a direct, pathway. Useful asymptotic approximations for the flow rate are derived when the discontinuity is either very small or very large. For small discontinuities, the predicted flow rate is much greater than a naïve estimate based on uniform parallel flow through the discontinuity. For the special case where the tight junction regions are aligned with each other, comparison of our results with those of an approximate treatment due to Tsay et al. [Chem. Engng Commun. 82, 67-102 (1989)] shows generally very close agreement. |
Author | Parker, K. H. Wang, W. Phillips, C. G. |
Author_xml | – sequence: 1 givenname: C. G. surname: Phillips fullname: Phillips, C. G. – sequence: 2 givenname: K. H. surname: Parker fullname: Parker, K. H. – sequence: 3 givenname: W. surname: Wang fullname: Wang, W. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4086661$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/8054892$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UFLHTEQB_Agin3P9uK9kEPxIKydze5mk6OVagsPvNjzkk0mvkheYpMsxW9vrA8LxdNA_r-EzMyaHIYYkJDTFi5agPHrt2tgPYexFQdk1Q6MNZIDOyQrAMkawXr4QNY5P0DFspPH5FjA0AvJVgQv6S4a9NTGRK2Pf2jZprjcb6lxWcdQXFhccZipCzVCWtz9ttCHJejiYqDR_j3FYGKt3ilfYcGk0fvFq0S1R1s-kiOrfMZP-3pCfl1_v7v60Wxub35eXW4azfquNK0aQEk9M9CSIzKuW8QejOGGCTlKbmYcun6UVlol565TQnE5cy2EMtjZ7oScvb77mOLvBXOZdrWL-hUVMC55Gjnvh6EbK_y8h8u8QzM9JrdT6Wnaz6XmX_a5ylp5m1TQLr-xHgTnvK3s_JXpFHNOaN9EC9PLaqZ_q6kY_sPaFfUyxZKU8-9deQYispD9 |
CODEN | BMTBAP |
CitedBy_id | crossref_primary_10_1152_physrev_1999_79_3_703 crossref_primary_10_1017_S0022112008000530 crossref_primary_10_1152_ajpheart_1998_274_6_H1885 |
Cites_doi | 10.1016/0026-2862(92)90104-W 10.1002/jemt.1060190305 10.3233/BIR-1988-251-240 10.1016/S0022-5320(83)90115-6 10.1113/jphysiol.1993.sp019722 10.1016/S0022-5320(84)90177-1 10.1016/0026-2862(80)90024-2 10.1017/CBO9781139172189 10.1017/S0022112091002318 10.1080/00986448908940635 |
ContentType | Journal Article |
Copyright | 1994 INIST-CNRS |
Copyright_xml | – notice: 1994 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/BF02460718 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1522-9602 |
EndPage | 741 |
ExternalDocumentID | 8054892 4086661 10_1007_BF02460718 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | --- --K --Z -Y2 -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAPKM AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYWO AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACSTC ACZOJ ADBBV ADFGL ADHIR ADHKG ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGII AIGIU AIIXL AILAN AITGF AITUG AIXLP AJBLW AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMVHM AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M1P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R2- R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM IQODW -52 -5D -5G -BR -EM -~C 3V. 88A AACTN ADINQ CGR CUY CVF ECM EIF GQ6 M0L NPM PKN Z7U Z83 7X8 |
ID | FETCH-LOGICAL-c243t-1a50a9cb20c96ee26c1ee40dd6d289796dbe53479f9fa9b33a8a69b6c88ade3f3 |
ISSN | 0092-8240 |
IngestDate | Tue Aug 05 10:46:03 EDT 2025 Wed Feb 19 01:25:25 EST 2025 Mon Jul 21 09:13:56 EDT 2025 Thu Apr 24 22:52:43 EDT 2025 Wed Aug 13 03:17:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Flux Discontinuity Tight junction Mathematical model Modeling Endothelium |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-1a50a9cb20c96ee26c1ee40dd6d289796dbe53479f9fa9b33a8a69b6c88ade3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 8054892 |
PQID | 76645537 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_76645537 pubmed_primary_8054892 pascalfrancis_primary_4086661 crossref_primary_10_1007_BF02460718 crossref_citationtrail_10_1007_BF02460718 |
PublicationCentury | 1900 |
PublicationDate | 1994-07-01 |
PublicationDateYYYYMMDD | 1994-07-01 |
PublicationDate_xml | – month: 07 year: 1994 text: 1994-07-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: United States |
PublicationTitle | Bulletin of mathematical biology |
PublicationTitleAlternate | Bull Math Biol |
PublicationYear | 1994 |
Publisher | Springer |
Publisher_xml | – name: Springer |
References | S. L. Wissig (BF02460718_CR17) 1979; 463 R. Y. Tsay (BF02460718_CR13) 1991; 226 R. H. Adamson (BF02460718_CR1) 1993; 466 C. C. Michel (BF02460718_CR9) 1984 I. S. Gradshteyn (BF02460718_CR7) 1980 B. J. Ward (BF02460718_CR15) 1988; 252 F. E. Curry (BF02460718_CR4) 1980; 20 I. N. Sneddon (BF02460718_CR12) 1966 E. J. Hinch (BF02460718_CR8) 1991 A. Silberberg (BF02460718_CR11) 1988; 25 J. A. Firth (BF02460718_CR5) 1983; 85 K. H. Parker (BF02460718_CR10) 1993; 466 M. Bundgaard (BF02460718_CR3) 1984; 88 J. Frøkjaer-Jensen (BF02460718_CR6) 1991; 19 G. K. Batchelor (BF02460718_CR2) 1967 R. Tsay (BF02460718_CR14) 1989; 82 S. Weinbaum (BF02460718_CR16) 1992; 44 1795183 - J Electron Microsc Tech. 1991 Nov;19(3):291-304 6545375 - J Ultrastruct Res. 1984 Jul;88(1):1-17 1640881 - Microvasc Res. 1992 Jul;44(1):85-111 6663671 - J Ultrastruct Res. 1983 Oct;85(1):45-57 7412590 - Microvasc Res. 1980 Jul;20(1):96-9 2837330 - Cell Tissue Res. 1988 Apr;252(1):57-66 89785 - Acta Physiol Scand Suppl. 1979;463:33-44 3196827 - Biorheology. 1988;25(1-2):303-18 8410696 - J Physiol. 1993 Jul;466:303-27 |
References_xml | – start-page: 222 volume-title: An Introduction to Fluid Dynamics year: 1967 ident: BF02460718_CR2 – volume: 44 start-page: 85 year: 1992 ident: BF02460718_CR16 publication-title: Microvasc. Res. doi: 10.1016/0026-2862(92)90104-W – volume: 19 start-page: 291 year: 1991 ident: BF02460718_CR6 publication-title: J. Electron Microsc. Tech. doi: 10.1002/jemt.1060190305 – volume: 25 start-page: 303 year: 1988 ident: BF02460718_CR11 publication-title: Biorheology doi: 10.3233/BIR-1988-251-240 – volume: 85 start-page: 45 year: 1983 ident: BF02460718_CR5 publication-title: J. ultrastruct. Res. doi: 10.1016/S0022-5320(83)90115-6 – volume-title: Mixed Boundary Value Problems in Potential Theory year: 1966 ident: BF02460718_CR12 – volume: 252 start-page: 57 year: 1988 ident: BF02460718_CR15 publication-title: Cell Tiss. Res. – volume: 466 start-page: 303 year: 1993 ident: BF02460718_CR1 publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.1993.sp019722 – volume: 466 start-page: 322 year: 1993 ident: BF02460718_CR10 publication-title: J. Physiol. (Lond.) – volume: 88 start-page: 1 year: 1984 ident: BF02460718_CR3 publication-title: J. ultrastruct. Res. doi: 10.1016/S0022-5320(84)90177-1 – volume-title: Table of Integrals, Series, and Products year: 1980 ident: BF02460718_CR7 – volume-title: American Handbook of Physiology year: 1984 ident: BF02460718_CR9 – volume: 20 start-page: 96 year: 1980 ident: BF02460718_CR4 publication-title: Microvasc. Res. doi: 10.1016/0026-2862(80)90024-2 – volume-title: Perturbation Methods year: 1991 ident: BF02460718_CR8 doi: 10.1017/CBO9781139172189 – volume: 463 start-page: 33 year: 1979 ident: BF02460718_CR17 publication-title: Acta physiol. scand., Suppl. – volume: 226 start-page: 125 year: 1991 ident: BF02460718_CR13 publication-title: J. Fluid Mech. doi: 10.1017/S0022112091002318 – volume: 82 start-page: 67 year: 1989 ident: BF02460718_CR14 publication-title: Chem. Engng Commun. doi: 10.1080/00986448908940635 – reference: 89785 - Acta Physiol Scand Suppl. 1979;463:33-44 – reference: 1640881 - Microvasc Res. 1992 Jul;44(1):85-111 – reference: 6663671 - J Ultrastruct Res. 1983 Oct;85(1):45-57 – reference: 2837330 - Cell Tissue Res. 1988 Apr;252(1):57-66 – reference: 1795183 - J Electron Microsc Tech. 1991 Nov;19(3):291-304 – reference: 7412590 - Microvasc Res. 1980 Jul;20(1):96-9 – reference: 3196827 - Biorheology. 1988;25(1-2):303-18 – reference: 8410696 - J Physiol. 1993 Jul;466:303-27 – reference: 6545375 - J Ultrastruct Res. 1984 Jul;88(1):1-17 |
SSID | ssj0007939 |
Score | 1.4343077 |
Snippet | A mathematical model for steady flow through a discontinuity in the tight junction of an endothelial intercellular cleft is presented. Subject to plausible... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 723 |
SubjectTerms | Animals Biological and medical sciences Capillary Permeability Endothelium, Vascular - physiology Fundamental and applied biological sciences. Psychology General aspects Intercellular Junctions - physiology Mathematics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Biological |
Title | A model for flow through discontinuities in the tight junction of the endothelial intercellular cleft |
URI | https://www.ncbi.nlm.nih.gov/pubmed/8054892 https://www.proquest.com/docview/76645537 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA6yh6CI6OnhqqcBfRHp0k3bpHksh7K4nMhxx_q2pGkCytI93O7D3V_vTJL-Ok_88VKWbNoumW8nmWTm-wh5y2WumVEqYmKOEmZWRgqr0Qxn2opKaKmwOPn0M19cpJ--ZoODdldd0pQzfX1rXcn_WBXawK5YJfsPlu0eCg3wGewLV7AwXP_KxoUXsnGpgnaD4nBBdQdrbbeoAbF3hKltMmODkfj77zCVtetEl9JRV1iGtXHyHTjOuJnvslPhdXZMgRTIut2pfEf4CvcFLqfO0S5wk-CLSws8mQ30u4qzpU-9WM76sohV4QunVv0WhOcSFsMtiHYLcuhnJfhZ5omYWj_rCcQDntKB0xS-4jjMv8ITYf3i2uM2YZ2lyImX9xNYe2h_Y17rsg1TCNs4hsgHDGIJNiEHxfJstewmbHBRPkoKP3rMYhteN1q3PLhUOxhc67VPfh-cuEXK-SPyMEQXtPBQeUzumPqQ3PV6o1eH5P5pZ7PdE2IK6uBDAT4U4UMDfOgN-NBvNXxlqIMPbeFDt9a1DuBDR_ChDj5PycXHD-cniyiobkSapUkTzVUWK6lLFmvJjWFcz41JY1Qeg-BcSF6VJsP6YyutkmWSqFxxWXKd56oyiU2OyKTe1uYZoWUMXTLk90l0anKRc52pCpxCaa2Fpe2UvGvHdK0DJT0qo2zWLZl2P_5T8qbre-mJWG7tdTwyTdc1YGBKXremWoMfxQFRtdnud2vBeZpliZiSI2_B7tYcoppcsud_ePQLcq__b7wkk-bH3hzDgrUpXwXA_QSaXJlV |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+flow+through+discontinuities+in+the+tight+junction+of+the+endothelial+intercellular+cleft&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=PHILLIPS%2C+C.+G&rft.au=PARKER%2C+K.+H&rft.au=WANG%2C+W&rft.date=1994-07-01&rft.pub=Springer&rft.issn=0092-8240&rft.volume=56&rft.issue=4&rft.spage=723&rft.epage=741&rft_id=info:doi/10.1007%2FBF02460718&rft.externalDBID=n%2Fa&rft.externalDocID=4086661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |