Cerebral AVM segmentation from 3D rotational angiography images by convolutional neural networks

3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience informatics Vol. 3; no. 3; p. 100138
Main Authors Lahlouh, Mounir, Blanc, Raphaël, Piotin, Michel, Szewczyk, Jérôme, Passat, Nicolas, Chenoune, Yasmina
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.09.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM. A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model. The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians. This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.
AbstractList 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM. A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model. The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians. This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.
Background and objective: 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM. Methods: A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model. Results: The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians. Conclusions: This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.
Background and objective: 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM.Methods: A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model.Results: The developed network was able to achieve the segmentation of the vessels and the malformationand significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVMpatients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians.Conclusions: This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.
ArticleNumber 100138
Author Lahlouh, Mounir
Passat, Nicolas
Blanc, Raphaël
Piotin, Michel
Szewczyk, Jérôme
Chenoune, Yasmina
Author_xml – sequence: 1
  givenname: Mounir
  orcidid: 0000-0002-6871-3459
  surname: Lahlouh
  fullname: Lahlouh, Mounir
  email: mounir.lahlouh@esme.fr
  organization: Université de Reims Champagne Ardenne, CReSTIC EA 3804, Reims 51100, France
– sequence: 2
  givenname: Raphaël
  orcidid: 0000-0002-3975-3865
  surname: Blanc
  fullname: Blanc, Raphaël
  email: rblanc@for.paris
  organization: Fondation Ophtalmologique de Rothschild, Interventional Neuroradiology Department, Paris, France
– sequence: 3
  givenname: Michel
  surname: Piotin
  fullname: Piotin, Michel
  email: mpiotin@for.paris
  organization: Fondation Ophtalmologique de Rothschild, Interventional Neuroradiology Department, Paris, France
– sequence: 4
  givenname: Jérôme
  surname: Szewczyk
  fullname: Szewczyk, Jérôme
  email: sz@isir.upmc.fr
  organization: Sorbonne Université, CNRS UMR 7222, Inserm, U1150, ISIR, F-75005, Paris, France
– sequence: 5
  givenname: Nicolas
  surname: Passat
  fullname: Passat, Nicolas
  email: nicolas.passat@univ-reims.fr
  organization: Université de Reims Champagne Ardenne, CReSTIC EA 3804, Reims 51100, France
– sequence: 6
  givenname: Yasmina
  orcidid: 0000-0002-8143-4796
  surname: Chenoune
  fullname: Chenoune, Yasmina
  email: yasmina.chenoune@esme.fr
  organization: ESME Sudria Research Lab, Paris, France
BackLink https://hal.science/hal-04164909$$DView record in HAL
BookMark eNp9UTtPwzAYtBBIPH8BS1aGFr8dDwxVeUpFLMBqXOdzcEljZIei_nvSBiFYmO7T6e50-u4Q7baxBYROCR4TTOT5YtzCRwpjiinrGUxYuYMOqFJ0JGgpd3_d--gk5wXGmJaEMEIP0MsUEsyTbYrJ832RoV5C29kuxLbwKS4LdlmkOBC9xrZ1iHWy76_rIixtDbmYrwsX21VsPr41mzJb6D5jesvHaM_bJsPJNx6hp-urx-ntaPZwczedzEaOclaOQEgiQIP0TFovMQXtuFKEKu2tUIJx4YnSWpfeUuLk3GmlKq-cJ4JrgdkRuhtyq2gX5j319dLaRBvMloipNjZ1wTVguOTeltZxCRWvmJxX4EBQKMERSpXss86GrFfb_Im6nczMhsOcSK6xXpFeywatSzHnBP7HQLDZ7GMWZruP2exjhn1618Xggv4lqwDJZBegdVCFBK7rO4d__V-6pZtv
Cites_doi 10.2307/1932409
10.1016/j.compbiomed.2017.12.011
10.1016/j.neucom.2019.10.035
10.1016/j.compbiomed.2019.103489
10.1037/0033-295X.84.4.327
10.1136/neurintsurg-2020-016450
10.3389/fnins.2019.00097
10.1016/j.isprsjprs.2020.01.013
10.1007/s11547-022-01567-5
10.1016/j.compbiomed.2017.01.012
10.1136/neurintsurg-2014-011402
10.1016/j.ijrobp.2022.07.910
10.1002/mp.13560
10.1117/1.JRS.14.044512
10.1161/01.STR.32.6.1458
ContentType Journal Article
Copyright 2023 The Authors
Attribution - NoDerivatives
Copyright_xml – notice: 2023 The Authors
– notice: Attribution - NoDerivatives
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.neuri.2023.100138
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 2772-5286
ExternalDocumentID oai_doaj_org_article_464fa8ac46ed4d36bdece52e8ec12276
oai_HAL_hal_04164909v1
10_1016_j_neuri_2023_100138
S2772528623000237
GroupedDBID 6I.
AAFTH
AAFWJ
AAXUO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
.1-
.FO
0R~
0SF
AALRI
AAYXX
ADVLN
AFJKZ
AFRHN
AITUG
AJUYK
CITATION
Z5R
1XC
VOOES
ID FETCH-LOGICAL-c2438-e5615e9e6f36af602e9c4771279fa575345f179998fa21c6bc977df7cf1549503
IEDL.DBID DOA
ISSN 2772-5286
IngestDate Tue Oct 22 15:14:11 EDT 2024
Tue Oct 15 15:08:21 EDT 2024
Thu Sep 26 19:19:59 EDT 2024
Fri Feb 23 02:36:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cerebrovascular segmentation
Fully automatic segmentation
3D rotational angiography
Convolutional neural networks
Focal Tversky
convolutional neural networks
fully automatic segmentation
cerebrovascular segmentation
focal Tversky
Language English
License This is an open access article under the CC BY-NC-ND license.
Attribution - NoDerivatives: http://creativecommons.org/licenses/by-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2438-e5615e9e6f36af602e9c4771279fa575345f179998fa21c6bc977df7cf1549503
ORCID 0000-0002-3975-3865
0000-0002-8143-4796
0000-0002-6871-3459
0000-0002-1354-4328
0000-0003-1925-3086
0000-0002-0320-4581
OpenAccessLink https://doaj.org/article/464fa8ac46ed4d36bdece52e8ec12276
ParticipantIDs doaj_primary_oai_doaj_org_article_464fa8ac46ed4d36bdece52e8ec12276
hal_primary_oai_HAL_hal_04164909v1
crossref_primary_10_1016_j_neuri_2023_100138
elsevier_sciencedirect_doi_10_1016_j_neuri_2023_100138
PublicationCentury 2000
PublicationDate September 2023
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Neuroscience informatics
PublicationYear 2023
Publisher Elsevier Masson SAS
Elsevier
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier
References Chenoune, Tankyevych, Li, Piotin, Blanc, Petit (br0060) 2019; 115
Huang, Lin, Tong, Hu, Zhang, Iwamoto, Han, Chen, Wu (br0300) 2020
Bash, Villablanca, Jahan, Duckwiler, Tillis, Kidwell, Saver, Sayre (br0010) 2005; 26
Colombo, Fick, Esposito, Germans, Regli, van Doormaal (br0240) 2022; 127
He, Zhang, Ren, Sun (br0130) 2016
Dolz, Ayed, Desrosiers (br0160) 2018
Ogilvy, Stieg, Awad, Brown, Kondziolka, Rosenwasser, Young, Hademenos (br0040) 2001; 32
Tversky (br0210) 1977; 84
Ronneberger, Fischer, Brox (br0090) 2015
Feddal, Escalard, Delvoye, Fahed, Desilles, Zuber, Redjem, Savatovsky, Ciccio, Smajda, Ben Maacha, Mazighi, Piotin, Blanc (br0030) 2020; 41
Hsu, Ghaffari, Alaraj, Flannery, Zhou, Linninger (br0070) 2017; 82
Dice (br0180) 1945; 26
Zhou, Siddiquee, Tajbakhsh, Liang (br0290) 2018
Kingma, Ba Adam (br0280) 2017
Salehi, Erdogmus, Gholipour (br0220) 2017
Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (br0320) 2018
Babin, Pižurica, Velicki, Matić, Galić, Leventić, Zlokolica, Philips (br0080) 2018; 93
Livne, Rieger, Aydin, Taha, Akay, Kossen, Sobesky, Kelleher, Hildebrand, Frey (br0110) 2019; 13
Soomro, Afifi, Gao, Hellwich, Paul, Zheng (br0190) 2018
Wang, Lei, Tian, Jiang, Zhou, Liu, Dresser, Curran, Shu, Yang (br0250) 2019; 46
Diakogiannis, Waldner, Caccetta, Wu (br0310) 2020; 162
Huang, Liu, Van Der Maaten, Weinberger (br0140) 2017
Brügger, Baumgartner, Konukoglu (br0200) 2019
García, Fang, Liu, Narata, Orlando, Larrabide (br0270) 2022
Ghafoorian, Teuwen, Manniesing, de Leeuw, van Ginneken, Karssemeijer, Platel (br0340) 2018
Baharvahdat, Blanc, Fahed, Pooyan, Mowla, Escalard, Delvoye, Desilles, Redjem, Ciccio, Smajda, Hamdani, Mazighi, Piotin (br0050) 2021; 13
Jégou, Drozdzal, Vazquez, Romero, Bengio (br0150) 2017
Abraham, Khan (br0230) 2019
Tetteh, Efremov, Forkert, Schneider, Kirschke, Weber, Zimmer, Piraud, Menze (br0100) 2018
Delibasoglu, Cetin (br0330) 2020; 14
Blanc, Seiler, Robert, Baharvahdat, Lafarge, Savatovsky, Hodel, Ciccio, Chauvet, Pistocchi, Bartolini, Redjem, Piotin (br0020) 2015; 7
Sanchesa, Meyer, Vigon, Naegel (br0120) 2019
Meng, Sun, Guan, Wang, Zong, Liu (br0170) 2020; 373
You, W, Hong, Lin, Sun, Lu, Chen, Huang, Lee (br0260) 2022; 114
Sanchesa (10.1016/j.neuri.2023.100138_br0120) 2019
Chenoune (10.1016/j.neuri.2023.100138_br0060) 2019; 115
Oktay (10.1016/j.neuri.2023.100138_br0320)
Ghafoorian (10.1016/j.neuri.2023.100138_br0340) 2018
Hsu (10.1016/j.neuri.2023.100138_br0070) 2017; 82
Livne (10.1016/j.neuri.2023.100138_br0110) 2019; 13
Delibasoglu (10.1016/j.neuri.2023.100138_br0330) 2020; 14
Brügger (10.1016/j.neuri.2023.100138_br0200) 2019
Huang (10.1016/j.neuri.2023.100138_br0140) 2017
Babin (10.1016/j.neuri.2023.100138_br0080) 2018; 93
Bash (10.1016/j.neuri.2023.100138_br0010) 2005; 26
Diakogiannis (10.1016/j.neuri.2023.100138_br0310) 2020; 162
Soomro (10.1016/j.neuri.2023.100138_br0190) 2018
Baharvahdat (10.1016/j.neuri.2023.100138_br0050) 2021; 13
Huang (10.1016/j.neuri.2023.100138_br0300) 2020
Feddal (10.1016/j.neuri.2023.100138_br0030) 2020; 41
He (10.1016/j.neuri.2023.100138_br0130) 2016
Zhou (10.1016/j.neuri.2023.100138_br0290)
You (10.1016/j.neuri.2023.100138_br0260) 2022; 114
Blanc (10.1016/j.neuri.2023.100138_br0020) 2015; 7
García (10.1016/j.neuri.2023.100138_br0270)
Colombo (10.1016/j.neuri.2023.100138_br0240) 2022; 127
Tetteh (10.1016/j.neuri.2023.100138_br0100)
Dice (10.1016/j.neuri.2023.100138_br0180) 1945; 26
Tversky (10.1016/j.neuri.2023.100138_br0210) 1977; 84
Salehi (10.1016/j.neuri.2023.100138_br0220) 2017
Jégou (10.1016/j.neuri.2023.100138_br0150) 2017
Kingma (10.1016/j.neuri.2023.100138_br0280)
Dolz (10.1016/j.neuri.2023.100138_br0160) 2018
Wang (10.1016/j.neuri.2023.100138_br0250) 2019; 46
Abraham (10.1016/j.neuri.2023.100138_br0230) 2019
Ogilvy (10.1016/j.neuri.2023.100138_br0040) 2001; 32
Meng (10.1016/j.neuri.2023.100138_br0170) 2020; 373
Ronneberger (10.1016/j.neuri.2023.100138_br0090) 2015
References_xml – start-page: 271
  year: 2018
  end-page: 282
  ident: br0160
  article-title: Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities
  publication-title: Int. MICCAI Brainlesion Workshop
  contributor:
    fullname: Desrosiers
– start-page: 1
  year: 2018
  end-page: 8
  ident: br0190
  article-title: Strided U-Net model: retinal vessels segmentation using Dice loss
  publication-title: Digit. Image Comput. Tech. Appl. DICTA
  contributor:
    fullname: Zheng
– volume: 13
  start-page: 241
  year: 2021
  end-page: 246
  ident: br0050
  article-title: Endovascular treatment as the main approach for Spetzler-Martin grade III brain arteriovenous malformations
  publication-title: J. Neurointerventional Surg.
  contributor:
    fullname: Piotin
– start-page: 429
  year: 2019
  end-page: 437
  ident: br0200
  article-title: A partially reversible U-Net for memory-efficient volumetric image segmentation
  publication-title: Int. Conf. Med. Image Comput. Comput.-Assist. Interv.
  contributor:
    fullname: Konukoglu
– year: 2018
  ident: br0290
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
  contributor:
    fullname: Liang
– year: 2018
  ident: br0100
  article-title: Deepvesselnet: vessel segmentation, centerline prediction, and bifurcation detection in 3-d angiographic volumes
  contributor:
    fullname: Menze
– year: 2017
  ident: br0280
  article-title: A method for stochastic optimization
  contributor:
    fullname: Ba Adam
– start-page: 105742U
  year: 2018
  ident: br0340
  article-title: Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR
  publication-title: Med. Imaging 2018 Image Process.
  contributor:
    fullname: Platel
– volume: 46
  start-page: 3133
  year: 2019
  end-page: 3141
  ident: br0250
  article-title: Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery
  publication-title: Med. Phys.
  contributor:
    fullname: Yang
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: br0180
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  contributor:
    fullname: Dice
– year: 2018
  ident: br0320
  article-title: Attention U-Net: learning where to look for the pancreas
  contributor:
    fullname: Kainz
– volume: 127
  start-page: 1333
  year: 2022
  end-page: 1341
  ident: br0240
  article-title: Segmentation techniques of brain arteriovenous malformations for 3D visualization: a systematic review
  publication-title: Radiol. Med. (Torino)
  contributor:
    fullname: van Doormaal
– volume: 82
  start-page: 29
  year: 2017
  end-page: 39
  ident: br0070
  article-title: Gap-free segmentation of vascular networks with automatic image processing pipeline
  publication-title: Comput. Biol. Med.
  contributor:
    fullname: Linninger
– start-page: 768
  year: 2019
  end-page: 771
  ident: br0120
  article-title: Cerebrovascular network segmentation of MRA images with deep learning
  publication-title: IEEE 16th Int. Symp. Biomed. Imaging ISBI
  contributor:
    fullname: Naegel
– start-page: 1055
  year: 2020
  end-page: 1059
  ident: br0300
  article-title: Unet 3+: a full-scale connected unet for medical image segmentation
  publication-title: IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP
  contributor:
    fullname: Wu
– year: 2022
  ident: br0270
  article-title: A deep learning model for brain vessel segmentation in 3DRA with arteriovenous malformations
  contributor:
    fullname: Larrabide
– volume: 26
  start-page: 1012
  year: 2005
  end-page: 1021
  ident: br0010
  article-title: Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography
  publication-title: Am. J. Neuroradiol.
  contributor:
    fullname: Sayre
– volume: 41
  start-page: 1663
  year: 2020
  end-page: 1669
  ident: br0030
  article-title: Fusion image guidance for supra-aortic vessel catheterization in neurointerventions: a feasibility study
  publication-title: Am. J. Neuroradiol.
  contributor:
    fullname: Blanc
– start-page: 379
  year: 2017
  end-page: 387
  ident: br0220
  article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks
  publication-title: Int. Workshop Mach. Learn. Med. Imaging
  contributor:
    fullname: Gholipour
– start-page: 11
  year: 2017
  end-page: 19
  ident: br0150
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit
  contributor:
    fullname: Bengio
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0130
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
  contributor:
    fullname: Sun
– start-page: 234
  year: 2015
  end-page: 241
  ident: br0090
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Int. Conf. Med. Image Comput. Comput.-Assist. Interv.
  contributor:
    fullname: Brox
– volume: 373
  start-page: 123
  year: 2020
  end-page: 134
  ident: br0170
  article-title: Multiscale dense convolutional neural network for DSA cerebrovascular segmentation
  publication-title: Neurocomputing
  contributor:
    fullname: Liu
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: br0310
  article-title: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  contributor:
    fullname: Wu
– volume: 115
  year: 2019
  ident: br0060
  article-title: Three-dimensional segmentation and symbolic representation of cerebral vessels on 3DRA images of arteriovenous malformations
  publication-title: Comput. Biol. Med.
  contributor:
    fullname: Petit
– volume: 84
  start-page: 327
  year: 1977
  ident: br0210
  article-title: Features of similarity
  publication-title: Psychol. Rev.
  contributor:
    fullname: Tversky
– volume: 93
  start-page: 93
  year: 2018
  end-page: 105
  ident: br0080
  article-title: Skeletonization method for vessel delineation of arteriovenous malformation
  publication-title: Comput. Biol. Med.
  contributor:
    fullname: Philips
– volume: 14
  year: 2020
  ident: br0330
  article-title: Improved U-Nets with inception blocks for building detection
  publication-title: J. Appl. Remote Sens.
  contributor:
    fullname: Cetin
– volume: 32
  start-page: 1458
  year: 2001
  end-page: 1471
  ident: br0040
  article-title: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association
  publication-title: Stroke
  contributor:
    fullname: Hademenos
– volume: 7
  start-page: 841
  year: 2015
  end-page: 847
  ident: br0020
  article-title: Multimodal angiographic assessment of cerebral arteriovenous malformations: a pilot study
  publication-title: J. NeuroInterventional Surg.
  contributor:
    fullname: Piotin
– volume: 114
  start-page: e108
  year: 2022
  ident: br0260
  article-title: Detection and segmentation of arteriovenous malformation lesions using a two-stage deep learning strategy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  contributor:
    fullname: Lee
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: br0140
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
  contributor:
    fullname: Weinberger
– volume: 13
  start-page: 97
  year: 2019
  ident: br0110
  article-title: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Neurosci.
  contributor:
    fullname: Frey
– start-page: 683
  year: 2019
  end-page: 687
  ident: br0230
  article-title: A novel focal Tversky loss function with improved attention U-Net for lesion segmentation
  publication-title: IEEE 16th Int. Symp. Biomed. Imaging ISBI
  contributor:
    fullname: Khan
– start-page: 4700
  year: 2017
  ident: 10.1016/j.neuri.2023.100138_br0140
  article-title: Densely connected convolutional networks
  contributor:
    fullname: Huang
– start-page: 379
  year: 2017
  ident: 10.1016/j.neuri.2023.100138_br0220
  article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks
  contributor:
    fullname: Salehi
– volume: 26
  start-page: 1012
  year: 2005
  ident: 10.1016/j.neuri.2023.100138_br0010
  article-title: Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography
  publication-title: Am. J. Neuroradiol.
  contributor:
    fullname: Bash
– start-page: 105742U
  year: 2018
  ident: 10.1016/j.neuri.2023.100138_br0340
  article-title: Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR
  contributor:
    fullname: Ghafoorian
– volume: 41
  start-page: 1663
  year: 2020
  ident: 10.1016/j.neuri.2023.100138_br0030
  article-title: Fusion image guidance for supra-aortic vessel catheterization in neurointerventions: a feasibility study
  publication-title: Am. J. Neuroradiol.
  contributor:
    fullname: Feddal
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuri.2023.100138_br0180
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
  contributor:
    fullname: Dice
– volume: 93
  start-page: 93
  year: 2018
  ident: 10.1016/j.neuri.2023.100138_br0080
  article-title: Skeletonization method for vessel delineation of arteriovenous malformation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.011
  contributor:
    fullname: Babin
– ident: 10.1016/j.neuri.2023.100138_br0100
  contributor:
    fullname: Tetteh
– ident: 10.1016/j.neuri.2023.100138_br0270
  contributor:
    fullname: García
– start-page: 770
  year: 2016
  ident: 10.1016/j.neuri.2023.100138_br0130
  article-title: Deep residual learning for image recognition
  contributor:
    fullname: He
– ident: 10.1016/j.neuri.2023.100138_br0320
  contributor:
    fullname: Oktay
– start-page: 11
  year: 2017
  ident: 10.1016/j.neuri.2023.100138_br0150
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
  contributor:
    fullname: Jégou
– start-page: 234
  year: 2015
  ident: 10.1016/j.neuri.2023.100138_br0090
  article-title: U-net: convolutional networks for biomedical image segmentation
  contributor:
    fullname: Ronneberger
– start-page: 271
  year: 2018
  ident: 10.1016/j.neuri.2023.100138_br0160
  article-title: Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities
  contributor:
    fullname: Dolz
– volume: 373
  start-page: 123
  year: 2020
  ident: 10.1016/j.neuri.2023.100138_br0170
  article-title: Multiscale dense convolutional neural network for DSA cerebrovascular segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.035
  contributor:
    fullname: Meng
– volume: 115
  year: 2019
  ident: 10.1016/j.neuri.2023.100138_br0060
  article-title: Three-dimensional segmentation and symbolic representation of cerebral vessels on 3DRA images of arteriovenous malformations
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103489
  contributor:
    fullname: Chenoune
– start-page: 429
  year: 2019
  ident: 10.1016/j.neuri.2023.100138_br0200
  article-title: A partially reversible U-Net for memory-efficient volumetric image segmentation
  contributor:
    fullname: Brügger
– volume: 84
  start-page: 327
  year: 1977
  ident: 10.1016/j.neuri.2023.100138_br0210
  article-title: Features of similarity
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.84.4.327
  contributor:
    fullname: Tversky
– ident: 10.1016/j.neuri.2023.100138_br0290
  contributor:
    fullname: Zhou
– volume: 13
  start-page: 241
  year: 2021
  ident: 10.1016/j.neuri.2023.100138_br0050
  article-title: Endovascular treatment as the main approach for Spetzler-Martin grade III brain arteriovenous malformations
  publication-title: J. Neurointerventional Surg.
  doi: 10.1136/neurintsurg-2020-016450
  contributor:
    fullname: Baharvahdat
– volume: 13
  start-page: 97
  year: 2019
  ident: 10.1016/j.neuri.2023.100138_br0110
  article-title: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00097
  contributor:
    fullname: Livne
– start-page: 683
  year: 2019
  ident: 10.1016/j.neuri.2023.100138_br0230
  article-title: A novel focal Tversky loss function with improved attention U-Net for lesion segmentation
  contributor:
    fullname: Abraham
– volume: 162
  start-page: 94
  year: 2020
  ident: 10.1016/j.neuri.2023.100138_br0310
  article-title: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.013
  contributor:
    fullname: Diakogiannis
– volume: 127
  start-page: 1333
  year: 2022
  ident: 10.1016/j.neuri.2023.100138_br0240
  article-title: Segmentation techniques of brain arteriovenous malformations for 3D visualization: a systematic review
  publication-title: Radiol. Med. (Torino)
  doi: 10.1007/s11547-022-01567-5
  contributor:
    fullname: Colombo
– ident: 10.1016/j.neuri.2023.100138_br0280
  contributor:
    fullname: Kingma
– volume: 82
  start-page: 29
  year: 2017
  ident: 10.1016/j.neuri.2023.100138_br0070
  article-title: Gap-free segmentation of vascular networks with automatic image processing pipeline
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.01.012
  contributor:
    fullname: Hsu
– volume: 7
  start-page: 841
  year: 2015
  ident: 10.1016/j.neuri.2023.100138_br0020
  article-title: Multimodal angiographic assessment of cerebral arteriovenous malformations: a pilot study
  publication-title: J. NeuroInterventional Surg.
  doi: 10.1136/neurintsurg-2014-011402
  contributor:
    fullname: Blanc
– volume: 114
  start-page: e108
  year: 2022
  ident: 10.1016/j.neuri.2023.100138_br0260
  article-title: Detection and segmentation of arteriovenous malformation lesions using a two-stage deep learning strategy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2022.07.910
  contributor:
    fullname: You
– volume: 46
  start-page: 3133
  year: 2019
  ident: 10.1016/j.neuri.2023.100138_br0250
  article-title: Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery
  publication-title: Med. Phys.
  doi: 10.1002/mp.13560
  contributor:
    fullname: Wang
– volume: 14
  year: 2020
  ident: 10.1016/j.neuri.2023.100138_br0330
  article-title: Improved U-Nets with inception blocks for building detection
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.044512
  contributor:
    fullname: Delibasoglu
– start-page: 1
  year: 2018
  ident: 10.1016/j.neuri.2023.100138_br0190
  article-title: Strided U-Net model: retinal vessels segmentation using Dice loss
  contributor:
    fullname: Soomro
– start-page: 768
  year: 2019
  ident: 10.1016/j.neuri.2023.100138_br0120
  article-title: Cerebrovascular network segmentation of MRA images with deep learning
  contributor:
    fullname: Sanchesa
– volume: 32
  start-page: 1458
  year: 2001
  ident: 10.1016/j.neuri.2023.100138_br0040
  article-title: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association
  publication-title: Stroke
  doi: 10.1161/01.STR.32.6.1458
  contributor:
    fullname: Ogilvy
– start-page: 1055
  year: 2020
  ident: 10.1016/j.neuri.2023.100138_br0300
  article-title: Unet 3+: a full-scale connected unet for medical image segmentation
  contributor:
    fullname: Huang
SSID ssj0002811312
Score 2.284968
Snippet 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However,...
Background and objective: 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be...
SourceID doaj
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 100138
SubjectTerms 3D rotational angiography
Artificial Intelligence
Cerebrovascular segmentation
Computer Science
Convolutional neural networks
Focal Tversky
Fully automatic segmentation
Image Processing
Medical Imaging
Title Cerebral AVM segmentation from 3D rotational angiography images by convolutional neural networks
URI https://dx.doi.org/10.1016/j.neuri.2023.100138
https://hal.science/hal-04164909
https://doaj.org/article/464fa8ac46ed4d36bdece52e8ec12276
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCbqwXgx_ozzV4jxaLWlFMpx6pbFOE9qdkNKQbdkndmmiRf_dh-UmnnRi5c2IQTIe4T3Pfj4QOiUcsV1zFUEsd5GlGgaKUJEZJXJiMlzbQpPkL1jvQd6M8gGC099OU5YLQ9cG-6CMmpVrjRlpqRlyorSaN-M0QkhvBbbTrKFZGrkt4ySJPVHnQTgI2RbOWskhzy5y4lFDs_d0-FehMjdTlkIS169_0d0Wn5p9ll93OluoPUAGHG7HugmWjLVFlrthyPxbfR0Zabu8BeqPPbxzDyPw22iCrurIzi9xtPJPGz5YVU9D4NINR6OYS2Z4eIDO-p5mIJQx43a_zxBfLaDHrqd-6teFJ5NiDShsHwZgESZEYbZlCnLYmKEppwnhAurAJ2lNLNOB07kVpFEs0IDBiwt19bJtWVxuotWqkll9hDWGUvB7rGGrAfyuFQkZaas5QAKIdEScQudNVaTr7U6hmxoYyPpjSydkWVt5Ba6dJb9ruqkrX0BOFwGh8u_HN5CrPGLDCihjv7Q1PD33k_Aiz8677VvpSuLAZZSEYv3ZP8_hniA1ly_NRXtEK3Mp2_mCLDLvDj20xS-_c_OF8hN63Q
link.rule.ids 230,315,786,790,870,891,2115,27955,27956
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebral+AVM+segmentation+from+3D+rotational+angiography+images+by+convolutional+neural+networks&rft.jtitle=Neuroscience+informatics&rft.au=Lahlouh%2C+Mounir&rft.au=Blanc%2C+Rapha%C3%ABl&rft.au=Piotin%2C+Michel&rft.au=Szewczyk%2C+J%C3%A9r%C3%B4me&rft.date=2023-09-01&rft.pub=Elsevier+Masson+SAS&rft.issn=2772-5286&rft.eissn=2772-5286&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1016%2Fj.neuri.2023.100138&rft.externalDocID=S2772528623000237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-5286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-5286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-5286&client=summon