Improving Machine Learning Workflows Using the “Normative‐Descriptive‐Prescriptive” Decision Framework

ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decisi...

Full description

Saved in:
Bibliographic Details
Published inApplied AI letters Vol. 6; no. 2
Main Authors Gudigantala, Naveen, Pradhan, Manaranjan, Vemprala, Naga
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2025
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems. This paper introduces a “normative‐descriptive‐prescriptive” framework to analyze decision‐making processes within machine learning (ML) workflows, aiming to maximize business value. By identifying discrepancies between ideal practices and actual decisions, the framework reveals common pitfalls such as data bias, misaligned metrics, and inadequate validation, ultimately guiding practitioners toward building higher‐quality and more ethical ML systems.
AbstractList ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems.
ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems. This paper introduces a “normative‐descriptive‐prescriptive” framework to analyze decision‐making processes within machine learning (ML) workflows, aiming to maximize business value. By identifying discrepancies between ideal practices and actual decisions, the framework reveals common pitfalls such as data bias, misaligned metrics, and inadequate validation, ultimately guiding practitioners toward building higher‐quality and more ethical ML systems.
To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems.
Author Vemprala, Naga
Pradhan, Manaranjan
Gudigantala, Naveen
Author_xml – sequence: 1
  givenname: Naveen
  orcidid: 0000-0002-5231-8980
  surname: Gudigantala
  fullname: Gudigantala, Naveen
  organization: University of Portland
– sequence: 2
  givenname: Manaranjan
  surname: Pradhan
  fullname: Pradhan, Manaranjan
  organization: Indian Institute of Management, Bangalore
– sequence: 3
  givenname: Naga
  orcidid: 0000-0002-8141-3274
  surname: Vemprala
  fullname: Vemprala, Naga
  email: naga.vemprala@gmail.com
  organization: University of Portland
BookMark eNp1kE1OwzAQRi1UJEqpxBGyZJNiO3ESL6uWQqXws6BiaTnOpHVJ4squWnXXI3AAuFxPQkIrxIbVzDd6etJ8l6hTmxoQuiZ4QDCmt1KXdEBIcoa6NEq4zxhnnT_7Beo7t8QNGpAgikgX1dNqZc1G13PvUaqFrsFLQdq6PbwZ-16UZuu8mWvzegHeYf_5ZGwl13oDh_3HGJyyenVKL_Zv_PLGoLTTpvYmVlawbXRX6LyQpYP-afbQbHL3Onrw0-f76WiY-oqGQeJnSUSVYjgOIpxlkGVRkBeEUMxZHkkWS0UTxoo8aUbBm38ylSgOCaNBTAnHQQ9Nj97cyKVYWV1JuxNGavFzMHYupF1rVYJgEOYSQs5z4CGWkrMMBzGOI56BAk4a183RpaxxzkLx6yNYtLWLtnbR1N6g_hHd6hJ2_3JiOE1py38DOfKKQw
Cites_doi 10.1016/j.ijinfomgt.2014.02.007
10.1145/3465416.3483305
10.1146/annurev.psych.52.1.581
10.1145/3474023
10.1017/9781108653985
10.1108/BPMJ-10-2019-0411
10.1145/3292500.3330744
10.1145/3485128
10.1145/3411764.3445518
10.1002/bdm.382
10.1111/risa.12354
10.1609/aimag.v36i1.2564
10.1016/j.jtte.2020.07.004
10.1145/1864708.1864770
10.1145/3035918.3054782
10.1016/j.im.2020.103434
10.1109/ACCESS.2020.2976513
10.1145/1958824.1958906
10.18653/v1/2021.findings-acl.84
10.1109/ACCESS.2023.3262138
10.1145/3370082
10.1145/3453444
10.1109/INFOTEH.2019.8717766
10.1002/aaai.12076
10.1145/2594473.2594474
10.14778/2994509.2994518
10.1126/science.1248506
10.1109/TSE.2017.2659062
10.1145/3292500.3330658
10.1017/CBO9780511598951.003
10.1109/TCAD.2017.2760517
10.1007/s10796-023-10460-z
10.1353/pbm.2019.0012
10.1007/s10796-018-9846-7
10.1007/s10796-023-10406-5
10.1007/s10796-019-09928-8
10.1109/MIS.2009.36
10.1109/TPAMI.2022.3204236
10.1145/3287560.3287567
10.1111/j.1745-6924.2009.01142.x
10.1016/j.patter.2022.100476
10.1016/j.jpdc.2014.03.004
10.1371/journal.pone.0224365
10.1016/j.jbusres.2022.01.076
10.1155/2021/8387680
10.1609/aaai.v31i1.11139
10.5210/fm.v19i7.5333
10.1147/JRD.2019.2935966
10.1007/s10796-021-10186-w
10.1109/TPAMI.2021.3051276
10.3389/fdata.2020.00018
10.1002/9780470752937.ch1
10.1016/j.canlet.2019.12.014
10.1109/ICDE.2014.6816764
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/ail2.118
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2689-5595
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5e4dae499de940aa95b0370769bece91
10_1002_ail2_118
AIL2118
Genre perspective
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c2438-b862cc507360bbebb63df112095d6a57ac2855fd8285f9000bc8c9e8523721903
IEDL.DBID 24P
ISSN 2689-5595
IngestDate Wed Aug 27 01:24:07 EDT 2025
Thu Jul 03 08:33:28 EDT 2025
Fri Jun 13 09:31:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2438-b862cc507360bbebb63df112095d6a57ac2855fd8285f9000bc8c9e8523721903
ORCID 0000-0002-5231-8980
0000-0002-8141-3274
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fail2.118
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_5e4dae499de940aa95b0370769bece91
crossref_primary_10_1002_ail2_118
wiley_primary_10_1002_ail2_118_AIL2118
PublicationCentury 2000
PublicationDate June 2025
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Applied AI letters
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2015; 35
2015; 36
2019; 10
2019; 57
2017; 44
2019; 14
2019; 17
2022; 24
2020; 8
2020; 7
2017; 31
2023; 25
2020; 3
2019; 62
1979; 69
2017; 37
2019; 63
2019; 21
2014; 15
2014; 19
2024; 26
2001; 14
1947
2001; 52
2021; 2021
2019; 7
2009; 24
2021; 43
2023; 11
2011
2010
1998
2022; 45
2004
2018; 20
2021; 58
2022; 144
1988; 1
2012; 90
2021; 54
2023; 44
2023; 2812
2020; 471
2022; 3
2021
2020
2017; 10
2019
2020; 26
2014
2022; 10
2022; 55
2009; 4
2014; 74
2014; 34
2016; 9
2014; 343
Spinks C. N. (e_1_2_8_36_1) 2019; 57
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Dmitry N. (e_1_2_8_74_1) 2022; 10
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Shapira Z. (e_1_2_8_28_1) 1998
Spradlin D. (e_1_2_8_46_1) 2012; 90
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
Géron A. (e_1_2_8_79_1) 2019
Neumann J. V. (e_1_2_8_30_1) 1947
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
Kahneman D. (e_1_2_8_33_1) 2011
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
Snyder J. (e_1_2_8_58_1) 2019; 17
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Gudivada V. (e_1_2_8_57_1) 2017; 10
e_1_2_8_72_1
Dremliuga R. I. (e_1_2_8_76_1) 2019; 7
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Thomke S. (e_1_2_8_40_1) 2012; 90
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Simon H. A. (e_1_2_8_29_1) 1979; 69
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_82_1
Namiot D. (e_1_2_8_80_1) 2023
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Laato S. (e_1_2_8_51_1) 2023; 25
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2011
– start-page: 533
  year: 2011
  end-page: 542
– volume: 21
  start-page: 735
  year: 2019
  end-page: 742
  article-title: Leveraging Data Analytics for Behavioral Research
  publication-title: Information Systems Frontiers
– volume: 55
  start-page: 1
  issue: 2
  year: 2022
  end-page: 96
  article-title: Tackling Climate Change With Machine Learning
  publication-title: ACM Computing Surveys (CSUR)
– volume: 55
  start-page: 1
  issue: 6
  year: 2022
  end-page: 29
  article-title: Challenges in Deploying Machine Learning: A Survey of Case Studies
  publication-title: ACM Computing Surveys
– volume: 62
  start-page: 237
  issue: 2
  year: 2019
  end-page: 256
  article-title: Three Problems With Big Data and Artificial Intelligence in Medicine
  publication-title: Perspectives in Biology and Medicine
– volume: 26
  start-page: 1
  year: 2024
  end-page: 15
  article-title: Artificial Intelligence Capability and Firm Performance: A Sustainable Development Perspective by the Mediating Role of Data‐Driven Culture
  publication-title: Information Systems Frontiers
– start-page: 1927
  year: 2019
  end-page: 1935
– volume: 31
  issue: 1
  year: 2017
  article-title: Why Teaching Ethics to AI Practitioners is Important
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 20
  start-page: 185
  year: 2018
  end-page: 194
  article-title: Big Data & Analytics for Societal Impact: Recent Research and Trends
  publication-title: Information Systems Frontiers
– start-page: 1294
  year: 2014
  end-page: 1297
– start-page: 1
  year: 2021
  end-page: 15
– volume: 54
  start-page: 1
  issue: 5
  year: 2021
  end-page: 39
  article-title: Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges
  publication-title: ACM Computing Surveys (CSUR)
– volume: 8
  start-page: 40573
  year: 2020
  end-page: 40598
  article-title: Resource‐Constrained Machine Learning for ADAS: A Systematic Review
  publication-title: IEEE Access
– volume: 7
  start-page: 775
  issue: 6
  year: 2020
  end-page: 790
  article-title: Machine Learning Applied to Road Safety Modeling: A Systematic Literature Review
  publication-title: Journal of Traffic and Transportation Engineering (English Edition)
– volume: 1
  start-page: 9
  year: 1988
  end-page: 32
– volume: 2812
  issue: 1
  year: 2023
– volume: 25
  start-page: 1
  year: 2023
  end-page: 9
  article-title: Responsible Digital Transformation for a Sustainable Society
  publication-title: Information Systems Frontiers
– volume: 45
  start-page: 5782
  issue: 5
  year: 2022
  end-page: 5799
  article-title: Explainability in Graph Neural Networks: A Taxonomic Survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 26
  start-page: 1893
  issue: 7
  year: 2020
  end-page: 1924
  article-title: Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI‐Based Transformation Projects
  publication-title: Business Process Management Journal
– volume: 34
  start-page: 387
  issue: 3
  year: 2014
  end-page: 394
  article-title: Data Quality Management, Data Usage Experience and Acquisition Intention of Big Data Analytics
  publication-title: International Journal of Information Management
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  end-page: 10
  article-title: A Survey on Concept Drift
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 52
  start-page: 581
  issue: 1
  year: 2001
  end-page: 606
  article-title: Decision Technology
  publication-title: Annual Review of Psychology
– start-page: 1
  year: 2019
  end-page: 5
– start-page: 1
  year: 2021
  end-page: 9
– volume: 4
  start-page: 379
  issue: 4
  year: 2009
  end-page: 383
  article-title: How Can Decision Making Be Improved?
  publication-title: Perspectives on Psychological Science
– volume: 24
  start-page: 1709
  issue: 5
  year: 2022
  end-page: 1734
  article-title: Artificial Intelligence and Business Value: A Literature Review
  publication-title: Information Systems Frontiers
– volume: 2021
  issue: 1
  year: 2021
  article-title: Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning
  publication-title: Computational Intelligence and Neuroscience
– start-page: 293
  year: 2010
  end-page: 296
– volume: 57
  start-page: 925
  year: 2019
  article-title: Contemporary Housing Discrimination: Facebook, Targeted Advertising, and the Fair Housing Act
  publication-title: Housing Law Review
– volume: 63
  start-page: 5‐1
  issue: 4/5
  year: 2019
  end-page: 5‐9
  article-title: Rating AI Systems for Bias to Promote Trustable Applications
  publication-title: IBM Journal of Research and Development
– year: 2019
– volume: 3
  issue: 5
  year: 2022
  article-title: Reliance on Metrics Is a Fundamental Challenge for AI
  publication-title: Patterns
– volume: 10
  start-page: 1
  issue: 4
  year: 2019
  end-page: 23
  article-title: Measuring the Business Value of Recommender Systems
  publication-title: ACM Transactions on Management Information Systems (TMIS)
– volume: 343
  start-page: 1203
  issue: 6176
  year: 2014
  end-page: 1205
  article-title: The Parable of Google Flu: Traps in Big Data Analysis
  publication-title: Science
– volume: 471
  start-page: 61
  year: 2020
  end-page: 71
  article-title: Artificial Intelligence in Cancer Diagnosis and Prognosis: Opportunities and Challenges
  publication-title: Cancer Letters
– volume: 44
  start-page: 1024
  issue: 11
  year: 2017
  end-page: 1038
  article-title: Data Scientists in Software Teams: State of the Art and Challenges
  publication-title: IEEE Transactions on Software Engineering
– volume: 24
  start-page: 8
  issue: 2
  year: 2009
  end-page: 12
  article-title: The Unreasonable Effectiveness of Data
  publication-title: IEEE Intelligent Systems
– volume: 3
  start-page: 18
  year: 2020
  article-title: Theory In, Theory Out: The Uses of Social Theory in Machine Learning for Social Science
  publication-title: Frontiers in Big Data
– volume: 90
  start-page: 84
  issue: 5
  year: 2012
  end-page: 94
  article-title: Six Myths of Product Development
  publication-title: Harvard Business Review
– volume: 17
  start-page: 22
  issue: 6
  year: 2019
  end-page: 29
  article-title: Data Cleansing: An Omission From Data Analytics Coursework
  publication-title: Information Systems Education Journal
– start-page: 1743
  year: 2019
  end-page: 1751
– start-page: 21
  year: 1998
  end-page: 35
– volume: 58
  issue: 3
  year: 2021
  article-title: Artificial Intelligence Capability: Conceptualization, Measurement Calibration, and Empirical Study on Its Impact on Organizational Creativity and Firm Performance
  publication-title: Information & Management
– start-page: 3
  year: 2004
  end-page: 18
– volume: 11
  start-page: 31866
  year: 2023
  end-page: 31879
  article-title: Machine Learning Operations (MLOps): Overview, Definition, and Architecture
  publication-title: IEEE Access
– volume: 35
  start-page: 1230
  issue: 7
  year: 2015
  end-page: 1251
  article-title: Cognitive and Motivational Biases in Decision and Risk Analysis
  publication-title: Risk Analysis
– volume: 43
  start-page: 3037
  issue: 9
  year: 2021
  end-page: 3054
  article-title: AutoML for Multi‐Label Classification: Overview and Empirical Evaluation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 144
  start-page: 93
  year: 2022
  end-page: 106
  article-title: Overcoming the Pitfalls and Perils of Algorithms: A Classification of Machine Learning Biases and Mitigation Methods
  publication-title: Journal of Business Research
– volume: 69
  start-page: 493
  issue: 4
  year: 1979
  end-page: 513
  article-title: Rational Decision Making in Business Organizations
  publication-title: American Economic Review
– volume: 25
  start-page: 929
  issue: 2
  year: 2023
  end-page: 944
  article-title: Trends and Trajectories in the Software Industry: Implications for the Future of Work
  publication-title: Information Systems Frontiers
– volume: 9
  start-page: 993
  issue: 12
  year: 2016
  end-page: 1004
  article-title: Detecting Data Errors: Where Are We and What Needs to Be Done?
  publication-title: Proceedings of the VLDB Endowment
– volume: 90
  start-page: 84
  issue: 9
  year: 2012
  end-page: 93
  article-title: Are You Solving the Right Problem
  publication-title: Harvard Business Review
– volume: 74
  start-page: 2561
  issue: 7
  year: 2014
  end-page: 2573
  article-title: Trends in Big Data Analytics
  publication-title: Journal of Parallel and Distributed Computing
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  end-page: 20
  article-title: Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations
  publication-title: International Journal on Advances in Software
– volume: 14
  issue: 11
  year: 2019
  article-title: Machine Learning Algorithm Validation With a Limited Sample Size
  publication-title: PLoS One
– volume: 37
  start-page: 1667
  issue: 8
  year: 2017
  end-page: 1680
  article-title: Integrating Heuristic and Machine‐Learning Methods for Efficient Virtual Machine Allocation in Data Centers
  publication-title: IEEE Transactions on Computer‐Aided Design of Integrated Circuits and Systems
– volume: 44
  start-page: 1
  issue: 1
  year: 2023
  end-page: 14
  article-title: An AI Decision‐Making Framework for Business Value Maximization
  publication-title: AI Magazine
– volume: 19
  year: 2014
  article-title: Heteromation and Its (Dis)contents: The Invisible Division of Labor Between Humans and Machines
  publication-title: First Monday
– volume: 14
  start-page: 353
  issue: 5
  year: 2001
  end-page: 355
  article-title: The Study of ‘Real’ Decision Making
  publication-title: Journal of Behavioral Decision Making
– year: 2020
– year: 1947
– volume: 10
  start-page: 30
  issue: 5
  year: 2022
  end-page: 34
  article-title: On a Formal Verification of Machine Learning Systems
  publication-title: International Journal of Open Information Technologies
– volume: 36
  start-page: 15
  issue: 1
  year: 2015
  end-page: 24
  article-title: Truth Is a Lie: Crowd Truth and the Seven Myths of Human Annotation
  publication-title: AI Magazine
– start-page: 39
  year: 2019
  end-page: 48
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  article-title: Artificial Intelligence as a Subject of Law: Pros and Cons
  publication-title: Dilemas Contemporáneos: Educación, Política y Valores
– ident: e_1_2_8_70_1
– ident: e_1_2_8_56_1
  doi: 10.1016/j.ijinfomgt.2014.02.007
– ident: e_1_2_8_23_1
  doi: 10.1145/3465416.3483305
– ident: e_1_2_8_26_1
  doi: 10.1146/annurev.psych.52.1.581
– ident: e_1_2_8_84_1
– ident: e_1_2_8_37_1
– ident: e_1_2_8_21_1
  doi: 10.1145/3474023
– volume: 69
  start-page: 493
  issue: 4
  year: 1979
  ident: e_1_2_8_29_1
  article-title: Rational Decision Making in Business Organizations
  publication-title: American Economic Review
– start-page: 21
  volume-title: Debating Rationality: Nonrational Aspects of Organizational Decision Making
  year: 1998
  ident: e_1_2_8_28_1
– ident: e_1_2_8_86_1
  doi: 10.1017/9781108653985
– ident: e_1_2_8_12_1
  doi: 10.1108/BPMJ-10-2019-0411
– ident: e_1_2_8_45_1
  doi: 10.1145/3292500.3330744
– ident: e_1_2_8_7_1
  doi: 10.1145/3485128
– ident: e_1_2_8_9_1
  doi: 10.1145/3411764.3445518
– ident: e_1_2_8_25_1
  doi: 10.1002/bdm.382
– ident: e_1_2_8_59_1
– ident: e_1_2_8_87_1
  doi: 10.1111/risa.12354
– ident: e_1_2_8_64_1
  doi: 10.1609/aimag.v36i1.2564
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jtte.2020.07.004
– ident: e_1_2_8_48_1
  doi: 10.1145/1864708.1864770
– ident: e_1_2_8_82_1
  doi: 10.1145/3035918.3054782
– ident: e_1_2_8_85_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.im.2020.103434
– ident: e_1_2_8_67_1
  doi: 10.1109/ACCESS.2020.2976513
– ident: e_1_2_8_54_1
  doi: 10.1145/1958824.1958906
– ident: e_1_2_8_10_1
– volume: 10
  start-page: 30
  issue: 5
  year: 2022
  ident: e_1_2_8_74_1
  article-title: On a Formal Verification of Machine Learning Systems
  publication-title: International Journal of Open Information Technologies
– ident: e_1_2_8_65_1
  doi: 10.18653/v1/2021.findings-acl.84
– ident: e_1_2_8_20_1
  doi: 10.1109/ACCESS.2023.3262138
– ident: e_1_2_8_18_1
– ident: e_1_2_8_44_1
  doi: 10.1145/3370082
– ident: e_1_2_8_15_1
– volume-title: AIP Conference Proceedings
  year: 2023
  ident: e_1_2_8_80_1
– ident: e_1_2_8_72_1
– volume: 57
  start-page: 925
  year: 2019
  ident: e_1_2_8_36_1
  article-title: Contemporary Housing Discrimination: Facebook, Targeted Advertising, and the Fair Housing Act
  publication-title: Housing Law Review
– volume: 90
  start-page: 84
  issue: 5
  year: 2012
  ident: e_1_2_8_40_1
  article-title: Six Myths of Product Development
  publication-title: Harvard Business Review
– ident: e_1_2_8_77_1
  doi: 10.1145/3453444
– ident: e_1_2_8_4_1
  doi: 10.1109/INFOTEH.2019.8717766
– ident: e_1_2_8_49_1
  doi: 10.1002/aaai.12076
– volume-title: Hands‐on machine learning with Scikit‐Learn, Keras, and TensorFlow
  year: 2019
  ident: e_1_2_8_79_1
– ident: e_1_2_8_83_1
  doi: 10.1145/2594473.2594474
– volume-title: Theory of Games and Economic Behavior
  year: 1947
  ident: e_1_2_8_30_1
– ident: e_1_2_8_60_1
  doi: 10.14778/2994509.2994518
– ident: e_1_2_8_42_1
  doi: 10.1126/science.1248506
– volume: 90
  start-page: 84
  issue: 9
  year: 2012
  ident: e_1_2_8_46_1
  article-title: Are You Solving the Right Problem
  publication-title: Harvard Business Review
– ident: e_1_2_8_81_1
– ident: e_1_2_8_61_1
  doi: 10.1109/TSE.2017.2659062
– ident: e_1_2_8_69_1
  doi: 10.1145/3292500.3330658
– ident: e_1_2_8_31_1
  doi: 10.1017/CBO9780511598951.003
– ident: e_1_2_8_41_1
  doi: 10.1109/TCAD.2017.2760517
– ident: e_1_2_8_13_1
  doi: 10.1007/s10796-023-10460-z
– volume: 25
  start-page: 929
  issue: 2
  year: 2023
  ident: e_1_2_8_51_1
  article-title: Trends and Trajectories in the Software Industry: Implications for the Future of Work
  publication-title: Information Systems Frontiers
– ident: e_1_2_8_62_1
  doi: 10.1353/pbm.2019.0012
– ident: e_1_2_8_6_1
  doi: 10.1007/s10796-018-9846-7
– ident: e_1_2_8_17_1
  doi: 10.1007/s10796-023-10406-5
– ident: e_1_2_8_43_1
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_8_57_1
  article-title: Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations
  publication-title: International Journal on Advances in Software
– ident: e_1_2_8_88_1
  doi: 10.1007/s10796-019-09928-8
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_2_8_76_1
  article-title: Artificial Intelligence as a Subject of Law: Pros and Cons
  publication-title: Dilemas Contemporáneos: Educación, Política y Valores
– volume-title: Thinking, Fast and Slow
  year: 2011
  ident: e_1_2_8_33_1
– ident: e_1_2_8_50_1
  doi: 10.1109/MIS.2009.36
– ident: e_1_2_8_71_1
  doi: 10.1109/TPAMI.2022.3204236
– ident: e_1_2_8_39_1
  doi: 10.1145/3287560.3287567
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1745-6924.2009.01142.x
– ident: e_1_2_8_47_1
– ident: e_1_2_8_63_1
  doi: 10.1016/j.patter.2022.100476
– ident: e_1_2_8_66_1
  doi: 10.1016/j.jpdc.2014.03.004
– ident: e_1_2_8_78_1
  doi: 10.1371/journal.pone.0224365
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jbusres.2022.01.076
– ident: e_1_2_8_27_1
– ident: e_1_2_8_3_1
  doi: 10.1155/2021/8387680
– ident: e_1_2_8_52_1
– ident: e_1_2_8_34_1
  doi: 10.1609/aaai.v31i1.11139
– ident: e_1_2_8_19_1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_53_1
  doi: 10.5210/fm.v19i7.5333
– ident: e_1_2_8_75_1
  doi: 10.1147/JRD.2019.2935966
– ident: e_1_2_8_11_1
  doi: 10.1007/s10796-021-10186-w
– ident: e_1_2_8_8_1
– ident: e_1_2_8_38_1
– volume: 17
  start-page: 22
  issue: 6
  year: 2019
  ident: e_1_2_8_58_1
  article-title: Data Cleansing: An Omission From Data Analytics Coursework
  publication-title: Information Systems Education Journal
– ident: e_1_2_8_73_1
  doi: 10.1109/TPAMI.2021.3051276
– ident: e_1_2_8_22_1
  doi: 10.3389/fdata.2020.00018
– ident: e_1_2_8_16_1
  doi: 10.1002/9780470752937.ch1
– ident: e_1_2_8_68_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.canlet.2019.12.014
– ident: e_1_2_8_55_1
  doi: 10.1109/ICDE.2014.6816764
SSID ssj0002313661
Score 2.2930994
Snippet ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and...
To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment...
ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms artificial intelligence
decision framework
improving ML workflows
machine learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxbeiPKSkRBb1MSxY3ssj6og2olK3SLbcRCoShEUWPsJfAD8XL-Eaycp7YBYWCI5GRzdG_ueE12fg9CptIlkAta3JpEKqOYy0DQOAxVroxIuc-pdInr9pDugN0M2XLD6cj1hpTxwGbgWszRTFnB5ZiUNlZJMhzEH9i1hduvPrROoeQtk6tGLuEQxVJ5abTYkLfUwIrA_iKX642X6l2GpryudDbRWAULcLl9kE63YYgut12YLuFp726iY03_c8w2QFlfaqPfY_fHOR-P3F-w7ADCAOjybfvZLPPpmZ9MP4Jfl_uBHrvHiZ_iFLyunHdype7V20KBzdXfRDSqzhMAQCpuWBmpiDKC7OAm1tloncZZH7mQsyxLFuDJEMJZnTrEud06h2ggjrQAiCiRQhvEuahTjwu4hnHGuo0TBRTg-Q6R1QIITo6jJSGSb6KQOYfpUamKkpfoxSV2YgVWIJjp3sZ0_dyrW_gbkNq1ym_6V2yY685n5dZa0fX0LDFbs_8dsB2iVOHNf_4vlEDUmz6_2CBDHRB_7j-sbnCTYnQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving Machine Learning Workflows Using the “Normative‐Descriptive‐Prescriptive” Decision Framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fail2.118
https://doaj.org/article/5e4dae499de940aa95b0370769bece91
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFA06btz4FsfHEEHcFds0SZPl-BhUnMGFA7MrSZqKIB2Z8bETP8EP0J-bL_EmfcgsBDeBNC2Fm9zknMvNuQgdScslE-DfmkQqoDqRgaZxGKhYG8UTmVNfJaI_4JdDej1ioyqr0t2FKfUhmoCb8wy_XzsHV3p68isaqh4eCTi8WERL7mat080n9LaJrwBuibmXSyVcyACAM6u1Z0NyUn88dxp50f55kOpPmd4aWqngIe6W87mOFmyxgVbr0gu48sRNVDTBANz36ZAWV0qp99jFv_PH8dsU-3wADBAPzz6-BiU6fbWzj09gm-Vu4XsuDeO3-43Pq7o7uFdnbm2hYe_i7uwyqEonBIZQ2MI0EBVjAOvFPNTaas3jLI_cPVmWccUSZYhgLM-cfl3u6oZqI4y0AmgpUEIZxtuoVYwLu4NwliQ64goa4dgNkdbBioQYRU1GIttGh7UJ06dSISMttZBJ6swMHEO00amzbTPuNK39g_HkPq1cJGWWZsoCA8uspKFSkukwTsKES1hnVkZtdOxn5s-_pN2rG-CzYve_L-6hZeLK-fqgyj5qPU9e7AFgjGfd8Yup4xk6tP33ix9Pb9Lo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JihsxEC08k8PMJcssxFkVGHJr3K3WSk6TxXgS2-Rgg2-NpFabgGmHWZLrfEI-IPm5-ZKU1MvgQyCXBvVCg6QnvVeUXgGcaS80V4hvSzOTMCt1YlmeJia3zgipKxarRMzmYrJkn1d8NYB33VmYxh-iD7gFZMT1OgA8BKRH966h5tuGIuLVHjxggsqASsq-9gEWJC65iH6pVCidIHPmnflsSkfdxzvbUXTt32WpcZsZP4aHLT8k582APoGBr4_gUVd7gbRQPIa6jwaQWcyH9KS1Sl2TEACvNtufVyQmBBDkeOTu9ve8oac__N3tL5SbzXIRWyEP4775h3xsC--QcZe6dQLL8afFh0nS1k5IHGW4hllUKs4h2ctFaq23VuRllYWDsrwUhkvjqOK8KoOBXRUKh1qnnPYKdSlqQp3mp7Bfb2v_FEgppc2EwYsK8oZqH3iFpM4wV9LMD-FN14XF98Yio2jMkGkRuhlFhhrC-9C3_fNgah1vbC_XRYuRgntWGo8SrPSapcZobtNcplJonGheZ0N4G0fmn38pzi-mKGjVs_998TUcTBazaTG9mH95Doc01PaNEZYXsH99eeNfIuG4tq_ixPoLxKvULg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA3agrjxLdZnBHE3dCYzySTLai0-anFhpbgZkkxGBGlLrbrtJ_gB-nP9Em8yMy0uBDcDmQcDN_cm51xuzkXoRBgmKIf4ViSQXqRi4ako9D0ZKi1ZLLLIdYm47bDLbnTdo72iqtKehcn1IWYJNxsZbr22AT5Ms_pcNFQ-vxAIeL6IqlYkDzy62njoPnZnGRZALiFzgqmEceEBdKal-qxP6uXnv_YjJ9v_G6a6faa1hlYKgIgb-YyuowXT30CrZfMFXMTiJurP0gH41hVEGlxopT5hmwHPXgYfr9hVBGAAeXg6-erk-PTdTCefwDfz9cKNbCHGfPiNm0XnHdwqa7e2ULd1cX9-6RXNEzxNIljEFFAVrQHthcxXyijFwjQL7ElZmjJJY6kJpzRLrYJdZjuHKs21MByIKZBC4YfbqNIf9M0Owmkcq4BJuHDLb4gwFljERMtIpyQwNXRcmjAZ5hoZSa6GTBJrZmAZvIbOrG1nz62qtbsxGD0lRZAk1ESpNMDBUiMiX0pBlR_GfswEeJoRQQ2dupn58y9J46oNjJbv_vfFI7R012wl7avOzR5aJra3r8uw7KPKePRmDgBwjNVh4Vk_rcnVJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Machine+Learning+Workflows+Using+the+%E2%80%9CNormative%E2%80%90Descriptive%E2%80%90Prescriptive%E2%80%9D+Decision+Framework&rft.jtitle=Applied+AI+letters&rft.au=Gudigantala%2C+Naveen&rft.au=Pradhan%2C+Manaranjan&rft.au=Vemprala%2C+Naga&rft.date=2025-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2689-5595&rft.eissn=2689-5595&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fail2.118&rft.externalDBID=10.1002%252Fail2.118&rft.externalDocID=AIL2118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-5595&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-5595&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-5595&client=summon