Improving Machine Learning Workflows Using the “Normative‐Descriptive‐Prescriptive” Decision Framework
ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decisi...
Saved in:
Published in | Applied AI letters Vol. 6; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2025
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems.
This paper introduces a “normative‐descriptive‐prescriptive” framework to analyze decision‐making processes within machine learning (ML) workflows, aiming to maximize business value. By identifying discrepancies between ideal practices and actual decisions, the framework reveals common pitfalls such as data bias, misaligned metrics, and inadequate validation, ultimately guiding practitioners toward building higher‐quality and more ethical ML systems. |
---|---|
AbstractList | ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems. ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems. This paper introduces a “normative‐descriptive‐prescriptive” framework to analyze decision‐making processes within machine learning (ML) workflows, aiming to maximize business value. By identifying discrepancies between ideal practices and actual decisions, the framework reveals common pitfalls such as data bias, misaligned metrics, and inadequate validation, ultimately guiding practitioners toward building higher‐quality and more ethical ML systems. To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment of ML systems is crucial. While prior research primarily focused on technical aspects, important issues related to improving decision‐making across ML workflows have been overlooked. This paper introduces a “normative‐descriptive‐prescriptive” decision framework to address this gap. Normative guidelines outline best practices, descriptive dimensions describe actual decision‐making, and prescriptive elements provide recommendations to bridge gaps. The three‐step framework analyzes decision‐making in key ML pipeline phases, identifying gaps and offering prescriptions for improved model building. Key descriptive findings include rushed problem‐solving with convenient data, use of inaccurate success metrics, underestimation of downstream impacts, limited roles of subject matter experts, use of non‐representative data samples, prioritization of prediction over explanation, lack of formal verification processes, and challenges in monitoring production models. The paper highlights biases, incentive issues, and systematic disconnects in decision‐making across the ML pipeline as contributors to descriptive shortcomings. Practitioners can use the framework to pinpoint gaps, develop prescriptive interventions, and build higher quality, ethical, and legally compliant ML systems. |
Author | Vemprala, Naga Pradhan, Manaranjan Gudigantala, Naveen |
Author_xml | – sequence: 1 givenname: Naveen orcidid: 0000-0002-5231-8980 surname: Gudigantala fullname: Gudigantala, Naveen organization: University of Portland – sequence: 2 givenname: Manaranjan surname: Pradhan fullname: Pradhan, Manaranjan organization: Indian Institute of Management, Bangalore – sequence: 3 givenname: Naga orcidid: 0000-0002-8141-3274 surname: Vemprala fullname: Vemprala, Naga email: naga.vemprala@gmail.com organization: University of Portland |
BookMark | eNp1kE1OwzAQRi1UJEqpxBGyZJNiO3ESL6uWQqXws6BiaTnOpHVJ4squWnXXI3AAuFxPQkIrxIbVzDd6etJ8l6hTmxoQuiZ4QDCmt1KXdEBIcoa6NEq4zxhnnT_7Beo7t8QNGpAgikgX1dNqZc1G13PvUaqFrsFLQdq6PbwZ-16UZuu8mWvzegHeYf_5ZGwl13oDh_3HGJyyenVKL_Zv_PLGoLTTpvYmVlawbXRX6LyQpYP-afbQbHL3Onrw0-f76WiY-oqGQeJnSUSVYjgOIpxlkGVRkBeEUMxZHkkWS0UTxoo8aUbBm38ylSgOCaNBTAnHQQ9Nj97cyKVYWV1JuxNGavFzMHYupF1rVYJgEOYSQs5z4CGWkrMMBzGOI56BAk4a183RpaxxzkLx6yNYtLWLtnbR1N6g_hHd6hJ2_3JiOE1py38DOfKKQw |
Cites_doi | 10.1016/j.ijinfomgt.2014.02.007 10.1145/3465416.3483305 10.1146/annurev.psych.52.1.581 10.1145/3474023 10.1017/9781108653985 10.1108/BPMJ-10-2019-0411 10.1145/3292500.3330744 10.1145/3485128 10.1145/3411764.3445518 10.1002/bdm.382 10.1111/risa.12354 10.1609/aimag.v36i1.2564 10.1016/j.jtte.2020.07.004 10.1145/1864708.1864770 10.1145/3035918.3054782 10.1016/j.im.2020.103434 10.1109/ACCESS.2020.2976513 10.1145/1958824.1958906 10.18653/v1/2021.findings-acl.84 10.1109/ACCESS.2023.3262138 10.1145/3370082 10.1145/3453444 10.1109/INFOTEH.2019.8717766 10.1002/aaai.12076 10.1145/2594473.2594474 10.14778/2994509.2994518 10.1126/science.1248506 10.1109/TSE.2017.2659062 10.1145/3292500.3330658 10.1017/CBO9780511598951.003 10.1109/TCAD.2017.2760517 10.1007/s10796-023-10460-z 10.1353/pbm.2019.0012 10.1007/s10796-018-9846-7 10.1007/s10796-023-10406-5 10.1007/s10796-019-09928-8 10.1109/MIS.2009.36 10.1109/TPAMI.2022.3204236 10.1145/3287560.3287567 10.1111/j.1745-6924.2009.01142.x 10.1016/j.patter.2022.100476 10.1016/j.jpdc.2014.03.004 10.1371/journal.pone.0224365 10.1016/j.jbusres.2022.01.076 10.1155/2021/8387680 10.1609/aaai.v31i1.11139 10.5210/fm.v19i7.5333 10.1147/JRD.2019.2935966 10.1007/s10796-021-10186-w 10.1109/TPAMI.2021.3051276 10.3389/fdata.2020.00018 10.1002/9780470752937.ch1 10.1016/j.canlet.2019.12.014 10.1109/ICDE.2014.6816764 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/ail2.118 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2689-5595 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_5e4dae499de940aa95b0370769bece91 10_1002_ail2_118 AIL2118 |
Genre | perspective |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO ICD ITC K7- M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-c2438-b862cc507360bbebb63df112095d6a57ac2855fd8285f9000bc8c9e8523721903 |
IEDL.DBID | 24P |
ISSN | 2689-5595 |
IngestDate | Wed Aug 27 01:24:07 EDT 2025 Thu Jul 03 08:33:28 EDT 2025 Fri Jun 13 09:31:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2438-b862cc507360bbebb63df112095d6a57ac2855fd8285f9000bc8c9e8523721903 |
ORCID | 0000-0002-5231-8980 0000-0002-8141-3274 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fail2.118 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e4dae499de940aa95b0370769bece91 crossref_primary_10_1002_ail2_118 wiley_primary_10_1002_ail2_118_AIL2118 |
PublicationCentury | 2000 |
PublicationDate | June 2025 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Applied AI letters |
PublicationYear | 2025 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | 2015; 35 2015; 36 2019; 10 2019; 57 2017; 44 2019; 14 2019; 17 2022; 24 2020; 8 2020; 7 2017; 31 2023; 25 2020; 3 2019; 62 1979; 69 2017; 37 2019; 63 2019; 21 2014; 15 2014; 19 2024; 26 2001; 14 1947 2001; 52 2021; 2021 2019; 7 2009; 24 2021; 43 2023; 11 2011 2010 1998 2022; 45 2004 2018; 20 2021; 58 2022; 144 1988; 1 2012; 90 2021; 54 2023; 44 2023; 2812 2020; 471 2022; 3 2021 2020 2017; 10 2019 2020; 26 2014 2022; 10 2022; 55 2009; 4 2014; 74 2014; 34 2016; 9 2014; 343 Spinks C. N. (e_1_2_8_36_1) 2019; 57 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Dmitry N. (e_1_2_8_74_1) 2022; 10 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 Shapira Z. (e_1_2_8_28_1) 1998 Spradlin D. (e_1_2_8_46_1) 2012; 90 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 Géron A. (e_1_2_8_79_1) 2019 Neumann J. V. (e_1_2_8_30_1) 1947 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 Kahneman D. (e_1_2_8_33_1) 2011 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_70_1 Snyder J. (e_1_2_8_58_1) 2019; 17 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Gudivada V. (e_1_2_8_57_1) 2017; 10 e_1_2_8_72_1 Dremliuga R. I. (e_1_2_8_76_1) 2019; 7 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Thomke S. (e_1_2_8_40_1) 2012; 90 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Simon H. A. (e_1_2_8_29_1) 1979; 69 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_82_1 Namiot D. (e_1_2_8_80_1) 2023 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Laato S. (e_1_2_8_51_1) 2023; 25 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – year: 2011 – start-page: 533 year: 2011 end-page: 542 – volume: 21 start-page: 735 year: 2019 end-page: 742 article-title: Leveraging Data Analytics for Behavioral Research publication-title: Information Systems Frontiers – volume: 55 start-page: 1 issue: 2 year: 2022 end-page: 96 article-title: Tackling Climate Change With Machine Learning publication-title: ACM Computing Surveys (CSUR) – volume: 55 start-page: 1 issue: 6 year: 2022 end-page: 29 article-title: Challenges in Deploying Machine Learning: A Survey of Case Studies publication-title: ACM Computing Surveys – volume: 62 start-page: 237 issue: 2 year: 2019 end-page: 256 article-title: Three Problems With Big Data and Artificial Intelligence in Medicine publication-title: Perspectives in Biology and Medicine – volume: 26 start-page: 1 year: 2024 end-page: 15 article-title: Artificial Intelligence Capability and Firm Performance: A Sustainable Development Perspective by the Mediating Role of Data‐Driven Culture publication-title: Information Systems Frontiers – start-page: 1927 year: 2019 end-page: 1935 – volume: 31 issue: 1 year: 2017 article-title: Why Teaching Ethics to AI Practitioners is Important publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 20 start-page: 185 year: 2018 end-page: 194 article-title: Big Data & Analytics for Societal Impact: Recent Research and Trends publication-title: Information Systems Frontiers – start-page: 1294 year: 2014 end-page: 1297 – start-page: 1 year: 2021 end-page: 15 – volume: 54 start-page: 1 issue: 5 year: 2021 end-page: 39 article-title: Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges publication-title: ACM Computing Surveys (CSUR) – volume: 8 start-page: 40573 year: 2020 end-page: 40598 article-title: Resource‐Constrained Machine Learning for ADAS: A Systematic Review publication-title: IEEE Access – volume: 7 start-page: 775 issue: 6 year: 2020 end-page: 790 article-title: Machine Learning Applied to Road Safety Modeling: A Systematic Literature Review publication-title: Journal of Traffic and Transportation Engineering (English Edition) – volume: 1 start-page: 9 year: 1988 end-page: 32 – volume: 2812 issue: 1 year: 2023 – volume: 25 start-page: 1 year: 2023 end-page: 9 article-title: Responsible Digital Transformation for a Sustainable Society publication-title: Information Systems Frontiers – volume: 45 start-page: 5782 issue: 5 year: 2022 end-page: 5799 article-title: Explainability in Graph Neural Networks: A Taxonomic Survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 26 start-page: 1893 issue: 7 year: 2020 end-page: 1924 article-title: Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI‐Based Transformation Projects publication-title: Business Process Management Journal – volume: 34 start-page: 387 issue: 3 year: 2014 end-page: 394 article-title: Data Quality Management, Data Usage Experience and Acquisition Intention of Big Data Analytics publication-title: International Journal of Information Management – volume: 15 start-page: 1 issue: 1 year: 2014 end-page: 10 article-title: A Survey on Concept Drift publication-title: ACM SIGKDD Explorations Newsletter – volume: 52 start-page: 581 issue: 1 year: 2001 end-page: 606 article-title: Decision Technology publication-title: Annual Review of Psychology – start-page: 1 year: 2019 end-page: 5 – start-page: 1 year: 2021 end-page: 9 – volume: 4 start-page: 379 issue: 4 year: 2009 end-page: 383 article-title: How Can Decision Making Be Improved? publication-title: Perspectives on Psychological Science – volume: 24 start-page: 1709 issue: 5 year: 2022 end-page: 1734 article-title: Artificial Intelligence and Business Value: A Literature Review publication-title: Information Systems Frontiers – volume: 2021 issue: 1 year: 2021 article-title: Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning publication-title: Computational Intelligence and Neuroscience – start-page: 293 year: 2010 end-page: 296 – volume: 57 start-page: 925 year: 2019 article-title: Contemporary Housing Discrimination: Facebook, Targeted Advertising, and the Fair Housing Act publication-title: Housing Law Review – volume: 63 start-page: 5‐1 issue: 4/5 year: 2019 end-page: 5‐9 article-title: Rating AI Systems for Bias to Promote Trustable Applications publication-title: IBM Journal of Research and Development – year: 2019 – volume: 3 issue: 5 year: 2022 article-title: Reliance on Metrics Is a Fundamental Challenge for AI publication-title: Patterns – volume: 10 start-page: 1 issue: 4 year: 2019 end-page: 23 article-title: Measuring the Business Value of Recommender Systems publication-title: ACM Transactions on Management Information Systems (TMIS) – volume: 343 start-page: 1203 issue: 6176 year: 2014 end-page: 1205 article-title: The Parable of Google Flu: Traps in Big Data Analysis publication-title: Science – volume: 471 start-page: 61 year: 2020 end-page: 71 article-title: Artificial Intelligence in Cancer Diagnosis and Prognosis: Opportunities and Challenges publication-title: Cancer Letters – volume: 44 start-page: 1024 issue: 11 year: 2017 end-page: 1038 article-title: Data Scientists in Software Teams: State of the Art and Challenges publication-title: IEEE Transactions on Software Engineering – volume: 24 start-page: 8 issue: 2 year: 2009 end-page: 12 article-title: The Unreasonable Effectiveness of Data publication-title: IEEE Intelligent Systems – volume: 3 start-page: 18 year: 2020 article-title: Theory In, Theory Out: The Uses of Social Theory in Machine Learning for Social Science publication-title: Frontiers in Big Data – volume: 90 start-page: 84 issue: 5 year: 2012 end-page: 94 article-title: Six Myths of Product Development publication-title: Harvard Business Review – volume: 17 start-page: 22 issue: 6 year: 2019 end-page: 29 article-title: Data Cleansing: An Omission From Data Analytics Coursework publication-title: Information Systems Education Journal – start-page: 1743 year: 2019 end-page: 1751 – start-page: 21 year: 1998 end-page: 35 – volume: 58 issue: 3 year: 2021 article-title: Artificial Intelligence Capability: Conceptualization, Measurement Calibration, and Empirical Study on Its Impact on Organizational Creativity and Firm Performance publication-title: Information & Management – start-page: 3 year: 2004 end-page: 18 – volume: 11 start-page: 31866 year: 2023 end-page: 31879 article-title: Machine Learning Operations (MLOps): Overview, Definition, and Architecture publication-title: IEEE Access – volume: 35 start-page: 1230 issue: 7 year: 2015 end-page: 1251 article-title: Cognitive and Motivational Biases in Decision and Risk Analysis publication-title: Risk Analysis – volume: 43 start-page: 3037 issue: 9 year: 2021 end-page: 3054 article-title: AutoML for Multi‐Label Classification: Overview and Empirical Evaluation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 144 start-page: 93 year: 2022 end-page: 106 article-title: Overcoming the Pitfalls and Perils of Algorithms: A Classification of Machine Learning Biases and Mitigation Methods publication-title: Journal of Business Research – volume: 69 start-page: 493 issue: 4 year: 1979 end-page: 513 article-title: Rational Decision Making in Business Organizations publication-title: American Economic Review – volume: 25 start-page: 929 issue: 2 year: 2023 end-page: 944 article-title: Trends and Trajectories in the Software Industry: Implications for the Future of Work publication-title: Information Systems Frontiers – volume: 9 start-page: 993 issue: 12 year: 2016 end-page: 1004 article-title: Detecting Data Errors: Where Are We and What Needs to Be Done? publication-title: Proceedings of the VLDB Endowment – volume: 90 start-page: 84 issue: 9 year: 2012 end-page: 93 article-title: Are You Solving the Right Problem publication-title: Harvard Business Review – volume: 74 start-page: 2561 issue: 7 year: 2014 end-page: 2573 article-title: Trends in Big Data Analytics publication-title: Journal of Parallel and Distributed Computing – volume: 10 start-page: 1 issue: 1 year: 2017 end-page: 20 article-title: Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations publication-title: International Journal on Advances in Software – volume: 14 issue: 11 year: 2019 article-title: Machine Learning Algorithm Validation With a Limited Sample Size publication-title: PLoS One – volume: 37 start-page: 1667 issue: 8 year: 2017 end-page: 1680 article-title: Integrating Heuristic and Machine‐Learning Methods for Efficient Virtual Machine Allocation in Data Centers publication-title: IEEE Transactions on Computer‐Aided Design of Integrated Circuits and Systems – volume: 44 start-page: 1 issue: 1 year: 2023 end-page: 14 article-title: An AI Decision‐Making Framework for Business Value Maximization publication-title: AI Magazine – volume: 19 year: 2014 article-title: Heteromation and Its (Dis)contents: The Invisible Division of Labor Between Humans and Machines publication-title: First Monday – volume: 14 start-page: 353 issue: 5 year: 2001 end-page: 355 article-title: The Study of ‘Real’ Decision Making publication-title: Journal of Behavioral Decision Making – year: 2020 – year: 1947 – volume: 10 start-page: 30 issue: 5 year: 2022 end-page: 34 article-title: On a Formal Verification of Machine Learning Systems publication-title: International Journal of Open Information Technologies – volume: 36 start-page: 15 issue: 1 year: 2015 end-page: 24 article-title: Truth Is a Lie: Crowd Truth and the Seven Myths of Human Annotation publication-title: AI Magazine – start-page: 39 year: 2019 end-page: 48 – volume: 7 start-page: 1 issue: 1 year: 2019 end-page: 16 article-title: Artificial Intelligence as a Subject of Law: Pros and Cons publication-title: Dilemas Contemporáneos: Educación, Política y Valores – ident: e_1_2_8_70_1 – ident: e_1_2_8_56_1 doi: 10.1016/j.ijinfomgt.2014.02.007 – ident: e_1_2_8_23_1 doi: 10.1145/3465416.3483305 – ident: e_1_2_8_26_1 doi: 10.1146/annurev.psych.52.1.581 – ident: e_1_2_8_84_1 – ident: e_1_2_8_37_1 – ident: e_1_2_8_21_1 doi: 10.1145/3474023 – volume: 69 start-page: 493 issue: 4 year: 1979 ident: e_1_2_8_29_1 article-title: Rational Decision Making in Business Organizations publication-title: American Economic Review – start-page: 21 volume-title: Debating Rationality: Nonrational Aspects of Organizational Decision Making year: 1998 ident: e_1_2_8_28_1 – ident: e_1_2_8_86_1 doi: 10.1017/9781108653985 – ident: e_1_2_8_12_1 doi: 10.1108/BPMJ-10-2019-0411 – ident: e_1_2_8_45_1 doi: 10.1145/3292500.3330744 – ident: e_1_2_8_7_1 doi: 10.1145/3485128 – ident: e_1_2_8_9_1 doi: 10.1145/3411764.3445518 – ident: e_1_2_8_25_1 doi: 10.1002/bdm.382 – ident: e_1_2_8_59_1 – ident: e_1_2_8_87_1 doi: 10.1111/risa.12354 – ident: e_1_2_8_64_1 doi: 10.1609/aimag.v36i1.2564 – ident: e_1_2_8_5_1 doi: 10.1016/j.jtte.2020.07.004 – ident: e_1_2_8_48_1 doi: 10.1145/1864708.1864770 – ident: e_1_2_8_82_1 doi: 10.1145/3035918.3054782 – ident: e_1_2_8_85_1 – ident: e_1_2_8_14_1 doi: 10.1016/j.im.2020.103434 – ident: e_1_2_8_67_1 doi: 10.1109/ACCESS.2020.2976513 – ident: e_1_2_8_54_1 doi: 10.1145/1958824.1958906 – ident: e_1_2_8_10_1 – volume: 10 start-page: 30 issue: 5 year: 2022 ident: e_1_2_8_74_1 article-title: On a Formal Verification of Machine Learning Systems publication-title: International Journal of Open Information Technologies – ident: e_1_2_8_65_1 doi: 10.18653/v1/2021.findings-acl.84 – ident: e_1_2_8_20_1 doi: 10.1109/ACCESS.2023.3262138 – ident: e_1_2_8_18_1 – ident: e_1_2_8_44_1 doi: 10.1145/3370082 – ident: e_1_2_8_15_1 – volume-title: AIP Conference Proceedings year: 2023 ident: e_1_2_8_80_1 – ident: e_1_2_8_72_1 – volume: 57 start-page: 925 year: 2019 ident: e_1_2_8_36_1 article-title: Contemporary Housing Discrimination: Facebook, Targeted Advertising, and the Fair Housing Act publication-title: Housing Law Review – volume: 90 start-page: 84 issue: 5 year: 2012 ident: e_1_2_8_40_1 article-title: Six Myths of Product Development publication-title: Harvard Business Review – ident: e_1_2_8_77_1 doi: 10.1145/3453444 – ident: e_1_2_8_4_1 doi: 10.1109/INFOTEH.2019.8717766 – ident: e_1_2_8_49_1 doi: 10.1002/aaai.12076 – volume-title: Hands‐on machine learning with Scikit‐Learn, Keras, and TensorFlow year: 2019 ident: e_1_2_8_79_1 – ident: e_1_2_8_83_1 doi: 10.1145/2594473.2594474 – volume-title: Theory of Games and Economic Behavior year: 1947 ident: e_1_2_8_30_1 – ident: e_1_2_8_60_1 doi: 10.14778/2994509.2994518 – ident: e_1_2_8_42_1 doi: 10.1126/science.1248506 – volume: 90 start-page: 84 issue: 9 year: 2012 ident: e_1_2_8_46_1 article-title: Are You Solving the Right Problem publication-title: Harvard Business Review – ident: e_1_2_8_81_1 – ident: e_1_2_8_61_1 doi: 10.1109/TSE.2017.2659062 – ident: e_1_2_8_69_1 doi: 10.1145/3292500.3330658 – ident: e_1_2_8_31_1 doi: 10.1017/CBO9780511598951.003 – ident: e_1_2_8_41_1 doi: 10.1109/TCAD.2017.2760517 – ident: e_1_2_8_13_1 doi: 10.1007/s10796-023-10460-z – volume: 25 start-page: 929 issue: 2 year: 2023 ident: e_1_2_8_51_1 article-title: Trends and Trajectories in the Software Industry: Implications for the Future of Work publication-title: Information Systems Frontiers – ident: e_1_2_8_62_1 doi: 10.1353/pbm.2019.0012 – ident: e_1_2_8_6_1 doi: 10.1007/s10796-018-9846-7 – ident: e_1_2_8_17_1 doi: 10.1007/s10796-023-10406-5 – ident: e_1_2_8_43_1 – volume: 10 start-page: 1 issue: 1 year: 2017 ident: e_1_2_8_57_1 article-title: Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations publication-title: International Journal on Advances in Software – ident: e_1_2_8_88_1 doi: 10.1007/s10796-019-09928-8 – volume: 7 start-page: 1 issue: 1 year: 2019 ident: e_1_2_8_76_1 article-title: Artificial Intelligence as a Subject of Law: Pros and Cons publication-title: Dilemas Contemporáneos: Educación, Política y Valores – volume-title: Thinking, Fast and Slow year: 2011 ident: e_1_2_8_33_1 – ident: e_1_2_8_50_1 doi: 10.1109/MIS.2009.36 – ident: e_1_2_8_71_1 doi: 10.1109/TPAMI.2022.3204236 – ident: e_1_2_8_39_1 doi: 10.1145/3287560.3287567 – ident: e_1_2_8_32_1 doi: 10.1111/j.1745-6924.2009.01142.x – ident: e_1_2_8_47_1 – ident: e_1_2_8_63_1 doi: 10.1016/j.patter.2022.100476 – ident: e_1_2_8_66_1 doi: 10.1016/j.jpdc.2014.03.004 – ident: e_1_2_8_78_1 doi: 10.1371/journal.pone.0224365 – ident: e_1_2_8_24_1 doi: 10.1016/j.jbusres.2022.01.076 – ident: e_1_2_8_27_1 – ident: e_1_2_8_3_1 doi: 10.1155/2021/8387680 – ident: e_1_2_8_52_1 – ident: e_1_2_8_34_1 doi: 10.1609/aaai.v31i1.11139 – ident: e_1_2_8_19_1 – ident: e_1_2_8_35_1 – ident: e_1_2_8_53_1 doi: 10.5210/fm.v19i7.5333 – ident: e_1_2_8_75_1 doi: 10.1147/JRD.2019.2935966 – ident: e_1_2_8_11_1 doi: 10.1007/s10796-021-10186-w – ident: e_1_2_8_8_1 – ident: e_1_2_8_38_1 – volume: 17 start-page: 22 issue: 6 year: 2019 ident: e_1_2_8_58_1 article-title: Data Cleansing: An Omission From Data Analytics Coursework publication-title: Information Systems Education Journal – ident: e_1_2_8_73_1 doi: 10.1109/TPAMI.2021.3051276 – ident: e_1_2_8_22_1 doi: 10.3389/fdata.2020.00018 – ident: e_1_2_8_16_1 doi: 10.1002/9780470752937.ch1 – ident: e_1_2_8_68_1 – ident: e_1_2_8_2_1 doi: 10.1016/j.canlet.2019.12.014 – ident: e_1_2_8_55_1 doi: 10.1109/ICDE.2014.6816764 |
SSID | ssj0002313661 |
Score | 2.2930994 |
Snippet | ABSTRACT
To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and... To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and deployment... ABSTRACT To maximize business value from artificial intelligence and machine learning (ML) systems, understanding what leads to the effective development and... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | artificial intelligence decision framework improving ML workflows machine learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxbeiPKSkRBb1MSxY3ssj6og2olK3SLbcRCoShEUWPsJfAD8XL-Eaycp7YBYWCI5GRzdG_ueE12fg9CptIlkAta3JpEKqOYy0DQOAxVroxIuc-pdInr9pDugN0M2XLD6cj1hpTxwGbgWszRTFnB5ZiUNlZJMhzEH9i1hduvPrROoeQtk6tGLuEQxVJ5abTYkLfUwIrA_iKX642X6l2GpryudDbRWAULcLl9kE63YYgut12YLuFp726iY03_c8w2QFlfaqPfY_fHOR-P3F-w7ADCAOjybfvZLPPpmZ9MP4Jfl_uBHrvHiZ_iFLyunHdype7V20KBzdXfRDSqzhMAQCpuWBmpiDKC7OAm1tloncZZH7mQsyxLFuDJEMJZnTrEud06h2ggjrQAiCiRQhvEuahTjwu4hnHGuo0TBRTg-Q6R1QIITo6jJSGSb6KQOYfpUamKkpfoxSV2YgVWIJjp3sZ0_dyrW_gbkNq1ym_6V2yY685n5dZa0fX0LDFbs_8dsB2iVOHNf_4vlEDUmz6_2CBDHRB_7j-sbnCTYnQ priority: 102 providerName: Directory of Open Access Journals |
Title | Improving Machine Learning Workflows Using the “Normative‐Descriptive‐Prescriptive” Decision Framework |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fail2.118 https://doaj.org/article/5e4dae499de940aa95b0370769bece91 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFA06btz4FsfHEEHcFds0SZPl-BhUnMGFA7MrSZqKIB2Z8bETP8EP0J-bL_EmfcgsBDeBNC2Fm9zknMvNuQgdScslE-DfmkQqoDqRgaZxGKhYG8UTmVNfJaI_4JdDej1ioyqr0t2FKfUhmoCb8wy_XzsHV3p68isaqh4eCTi8WERL7mat080n9LaJrwBuibmXSyVcyACAM6u1Z0NyUn88dxp50f55kOpPmd4aWqngIe6W87mOFmyxgVbr0gu48sRNVDTBANz36ZAWV0qp99jFv_PH8dsU-3wADBAPzz6-BiU6fbWzj09gm-Vu4XsuDeO3-43Pq7o7uFdnbm2hYe_i7uwyqEonBIZQ2MI0EBVjAOvFPNTaas3jLI_cPVmWccUSZYhgLM-cfl3u6oZqI4y0AmgpUEIZxtuoVYwLu4NwliQ64goa4dgNkdbBioQYRU1GIttGh7UJ06dSISMttZBJ6swMHEO00amzbTPuNK39g_HkPq1cJGWWZsoCA8uspKFSkukwTsKES1hnVkZtdOxn5s-_pN2rG-CzYve_L-6hZeLK-fqgyj5qPU9e7AFgjGfd8Yup4xk6tP33ix9Pb9Lo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JihsxEC08k8PMJcssxFkVGHJr3K3WSk6TxXgS2-Rgg2-NpFabgGmHWZLrfEI-IPm5-ZKU1MvgQyCXBvVCg6QnvVeUXgGcaS80V4hvSzOTMCt1YlmeJia3zgipKxarRMzmYrJkn1d8NYB33VmYxh-iD7gFZMT1OgA8BKRH966h5tuGIuLVHjxggsqASsq-9gEWJC65iH6pVCidIHPmnflsSkfdxzvbUXTt32WpcZsZP4aHLT8k582APoGBr4_gUVd7gbRQPIa6jwaQWcyH9KS1Sl2TEACvNtufVyQmBBDkeOTu9ve8oac__N3tL5SbzXIRWyEP4775h3xsC--QcZe6dQLL8afFh0nS1k5IHGW4hllUKs4h2ctFaq23VuRllYWDsrwUhkvjqOK8KoOBXRUKh1qnnPYKdSlqQp3mp7Bfb2v_FEgppc2EwYsK8oZqH3iFpM4wV9LMD-FN14XF98Yio2jMkGkRuhlFhhrC-9C3_fNgah1vbC_XRYuRgntWGo8SrPSapcZobtNcplJonGheZ0N4G0fmn38pzi-mKGjVs_998TUcTBazaTG9mH95Doc01PaNEZYXsH99eeNfIuG4tq_ixPoLxKvULg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA3agrjxLdZnBHE3dCYzySTLai0-anFhpbgZkkxGBGlLrbrtJ_gB-nP9Em8yMy0uBDcDmQcDN_cm51xuzkXoRBgmKIf4ViSQXqRi4ako9D0ZKi1ZLLLIdYm47bDLbnTdo72iqtKehcn1IWYJNxsZbr22AT5Ms_pcNFQ-vxAIeL6IqlYkDzy62njoPnZnGRZALiFzgqmEceEBdKal-qxP6uXnv_YjJ9v_G6a6faa1hlYKgIgb-YyuowXT30CrZfMFXMTiJurP0gH41hVEGlxopT5hmwHPXgYfr9hVBGAAeXg6-erk-PTdTCefwDfz9cKNbCHGfPiNm0XnHdwqa7e2ULd1cX9-6RXNEzxNIljEFFAVrQHthcxXyijFwjQL7ElZmjJJY6kJpzRLrYJdZjuHKs21MByIKZBC4YfbqNIf9M0Owmkcq4BJuHDLb4gwFljERMtIpyQwNXRcmjAZ5hoZSa6GTBJrZmAZvIbOrG1nz62qtbsxGD0lRZAk1ESpNMDBUiMiX0pBlR_GfswEeJoRQQ2dupn58y9J46oNjJbv_vfFI7R012wl7avOzR5aJra3r8uw7KPKePRmDgBwjNVh4Vk_rcnVJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Machine+Learning+Workflows+Using+the+%E2%80%9CNormative%E2%80%90Descriptive%E2%80%90Prescriptive%E2%80%9D+Decision+Framework&rft.jtitle=Applied+AI+letters&rft.au=Gudigantala%2C+Naveen&rft.au=Pradhan%2C+Manaranjan&rft.au=Vemprala%2C+Naga&rft.date=2025-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2689-5595&rft.eissn=2689-5595&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fail2.118&rft.externalDBID=10.1002%252Fail2.118&rft.externalDocID=AIL2118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-5595&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-5595&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-5595&client=summon |