A Model‐Based Deep‐Learning Approach to Reconstructing the Highly Articulated Flight Kinematics of Bats
ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data...
Saved in:
Published in | Applied AI letters Vol. 6; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2025
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics.
An automated flying bat kinematic reconstruction pipeline. |
---|---|
AbstractList | Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics. ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics. ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics. An automated flying bat kinematic reconstruction pipeline. |
Author | Hu, Yihao Nnoka, Chi Müller, Rolf |
Author_xml | – sequence: 1 givenname: Yihao orcidid: 0009-0002-8018-4059 surname: Hu fullname: Hu, Yihao email: yihao19@vt.edu organization: Virginia Tech Blacksburg – sequence: 2 givenname: Chi surname: Nnoka fullname: Nnoka, Chi organization: University at Buffalo, The State University of New York – sequence: 3 givenname: Rolf surname: Müller fullname: Müller, Rolf organization: Virginia Tech |
BookMark | eNp1kE1OwzAQRi1UJKAgcQQv2aTYcewmy7RQqChCQrC2_DNuA2lc2alQdxyBM3ISEooQG1bj-fz0NPpO0KDxDSB0TsmIEpJeqqpORzQVB-g4FXmRcF7wwZ_3ETqL8YV0KKNMCHqMXkt87y3Un-8fExXB4iuATbcsQIWmapa43GyCV2aFW48fwfgmtmFr2v6rXQG-rZareofL0FZmW6u2M8zqLmvxXdXAWnVxxN7hiWrjKTp0qo5w9jOH6Hl2_TS9TRYPN_NpuUhMmjGRGJtykhvuqFGFA6KZ1VRz5qgeuzFXNnOWO5sbyqwjwHhhU6GJNoQSxQrNhmi-91qvXuQmVGsVdtKrSn4HPiyl6u-tQeYE7NgUJmeGZhnhiuhcgC5EzotMCNK5LvYuE3yMAdyvjxLZdy77zmXXeYcme_StqmH3LyfL-SLt-S9EPoaF |
Cites_doi | 10.1038/s41593-018-0209-y 10.1038/s41598-024-60731-1 10.1145/3596711.3596800 10.1007/s11263-023-01756-3 10.1038/s41592‐021‐01106‐6 10.1371/journal.pone.0241489 10.1109/CVPR46437.2021.01572 10.1007/978-981-15-4477-4_30 10.1145/2388676.2388684 10.1007/s11263-023-01819-5 10.1109/ICCVW.2011.6130443 10.1242/jeb.204255 10.1016/j.celrep.2021.109730 10.1162/105474605774785325 10.1109/CVPR52729.2023.02038 10.1109/CVPR46437.2021.01308 10.1201/9780429196522 10.1242/jeb.243974 10.1371/journal.pone.0207613 10.1088/1748-3190/abb78d 10.1109/ICCV48922.2021.01144 10.1007/978-3-030-58523-5_1 10.1109/ICCV.2019.00780 10.1007/978-3-030-58621-8_32 10.1242/jeb.249987 10.1016/j.cub.2015.04.002 10.1007/BF00418147 10.1242/jeb.031203 10.1121/10.0000582 10.1098/rsos.160230 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/ail2.126 |
DatabaseName | Wiley Online Library CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2689-5595 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_80ed7c9c83c14405a0b86eb968594660 10_1002_ail2_126 AIL2126 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1954172; 2419088 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO ICD ITC K7- M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-c2436-cd2508c5f1ca9fe0b3db1b53f1b7f75ad4fd5fd8c13df0e359d26b0bc010a39b3 |
IEDL.DBID | DOA |
ISSN | 2689-5595 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Thu Jul 03 08:23:36 EDT 2025 Fri Jun 13 09:31:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2436-cd2508c5f1ca9fe0b3db1b53f1b7f75ad4fd5fd8c13df0e359d26b0bc010a39b3 |
Notes | This work was supported by the National Science Foundation (1954172, 2419088). Funding |
ORCID | 0009-0002-8018-4059 |
OpenAccessLink | https://doaj.org/article/80ed7c9c83c14405a0b86eb968594660 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80ed7c9c83c14405a0b86eb968594660 crossref_primary_10_1002_ail2_126 wiley_primary_10_1002_ail2_126_AIL2126 |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Applied AI letters |
PublicationYear | 2025 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | e_1_2_1_7_30_1 Wang J. (e_1_2_1_7_35_1) 2023; 8 e_1_2_1_7_12_1 e_1_2_1_7_13_1 e_1_2_1_7_34_1 e_1_2_1_7_10_1 e_1_2_1_7_33_1 e_1_2_1_7_11_1 e_1_2_1_7_32_1 e_1_2_1_7_27_1 e_1_2_1_7_28_1 e_1_2_1_7_25_1 Anachkova M. (e_1_2_1_7_2_1) 2020 e_1_2_1_7_9_1 e_1_2_1_7_26_1 Yao C.‐H. (e_1_2_1_7_14_1) 2022; 35 e_1_2_1_7_29_1 e_1_2_1_7_4_1 e_1_2_1_7_3_1 e_1_2_1_7_20_1 e_1_2_1_7_8_1 e_1_2_1_7_23_1 e_1_2_1_7_7_1 e_1_2_1_7_24_1 e_1_2_1_7_6_1 e_1_2_1_7_21_1 e_1_2_1_7_5_1 e_1_2_1_7_22_1 e_1_2_1_7_16_1 e_1_2_1_7_17_1 e_1_2_1_7_15_1 e_1_2_1_7_36_1 e_1_2_1_7_18_1 e_1_2_1_7_19_1 Chen Y. (e_1_2_1_7_31_1) 2022 |
References_xml | – ident: e_1_2_1_7_11_1 doi: 10.1038/s41593-018-0209-y – ident: e_1_2_1_7_27_1 doi: 10.1038/s41598-024-60731-1 – ident: e_1_2_1_7_18_1 doi: 10.1145/3596711.3596800 – ident: e_1_2_1_7_23_1 doi: 10.1007/s11263-023-01756-3 – ident: e_1_2_1_7_24_1 doi: 10.1038/s41592‐021‐01106‐6 – ident: e_1_2_1_7_5_1 doi: 10.1371/journal.pone.0241489 – ident: e_1_2_1_7_13_1 doi: 10.1109/CVPR46437.2021.01572 – ident: e_1_2_1_7_4_1 doi: 10.1007/978-981-15-4477-4_30 – ident: e_1_2_1_7_33_1 doi: 10.1145/2388676.2388684 – ident: e_1_2_1_7_20_1 – volume: 8 start-page: 1 issue: 1 year: 2023 ident: e_1_2_1_7_35_1 article-title: Complete 3d human reconstruction from a single incomplete image publication-title: Icon – ident: e_1_2_1_7_21_1 doi: 10.1007/s11263-023-01819-5 – ident: e_1_2_1_7_6_1 doi: 10.1109/ICCVW.2011.6130443 – ident: e_1_2_1_7_7_1 doi: 10.1242/jeb.204255 – ident: e_1_2_1_7_10_1 doi: 10.1016/j.celrep.2021.109730 – ident: e_1_2_1_7_15_1 doi: 10.1162/105474605774785325 – ident: e_1_2_1_7_25_1 doi: 10.1109/CVPR52729.2023.02038 – ident: e_1_2_1_7_30_1 doi: 10.1109/CVPR46437.2021.01308 – ident: e_1_2_1_7_16_1 doi: 10.1201/9780429196522 – ident: e_1_2_1_7_28_1 doi: 10.1242/jeb.243974 – ident: e_1_2_1_7_8_1 doi: 10.1371/journal.pone.0207613 – ident: e_1_2_1_7_3_1 doi: 10.1088/1748-3190/abb78d – ident: e_1_2_1_7_34_1 doi: 10.1109/ICCV48922.2021.01144 – ident: e_1_2_1_7_12_1 doi: 10.1007/978-3-030-58523-5_1 – ident: e_1_2_1_7_19_1 doi: 10.1109/ICCV.2019.00780 – ident: e_1_2_1_7_22_1 doi: 10.1007/978-3-030-58621-8_32 – volume-title: European Conference on Computer Vision year: 2022 ident: e_1_2_1_7_31_1 – ident: e_1_2_1_7_36_1 doi: 10.1242/jeb.249987 – ident: e_1_2_1_7_26_1 doi: 10.1016/j.cub.2015.04.002 – ident: e_1_2_1_7_17_1 doi: 10.1007/BF00418147 – volume: 35 start-page: 15296 year: 2022 ident: e_1_2_1_7_14_1 article-title: Lassie: Learning Articulated Shapes From Sparse Image Ensemble via 3D Part Discovery publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_1_7_32_1 doi: 10.1242/jeb.031203 – ident: e_1_2_1_7_29_1 doi: 10.1121/10.0000582 – volume-title: Smart Materials, Adaptive Structures and Intelligent Systems year: 2020 ident: e_1_2_1_7_2_1 – ident: e_1_2_1_7_9_1 doi: 10.1098/rsos.160230 |
SSID | ssj0002313661 |
Score | 2.287223 |
Snippet | ABSTRACT
Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To... Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the... ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | articulated model bat maneuver kinematic reconstruction |
SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEMctChcupbzElhYZCfWWkvi1znG3sFpeFYcicYs8toOqrnZRdy_c-Ah8xn6SzjjJoj0gcUychzSOM__x2L9h7AQKbyijicpNi0yhw8hQFcnMKRM8OJBNKubmpxnfqct7fd-uqqS9MA0fYjnhRiMj_a9pgDuYn75CQ93vifheCPOBbdDOWuLmC3W7nF9B3SJNwqUKY8sMhbPu2LO5OO1uXvFGCdq_KlKTlxl9Yh9becgHTX9us7U43WFbXekF3o7EXfZnwKmK2eTf88sQ_VDgZzE-4kGLS33gg5YVzhczTiFmB4rFJpR8nJZ3TJ6a91ABL3zCaEJxOr9CwySM65zPaj50i_keuxud__oxztq6CZkXSprMB9Q11uu68K6sYw4yQAFa1gX06752QdVB18H6QoY6j1KXQRjIwWNs5mQJcp-tT2fTeMC4p7RkBAzLvFUKhTiGI6WGgI4fbFCxx447-1WPDR6jakDIoiIbV2jjHhuSYZftBLROJ2Z_H6p2fFQ2j6HvS2-lp3SzdjlYE6E0VhMBP--xb6lb3nxLNbi4RjdsPr_3wkO2KaiWb1qF84WtYy_ErygwFnCUvqT_MJXMmQ priority: 102 providerName: Wiley-Blackwell |
Title | A Model‐Based Deep‐Learning Approach to Reconstructing the Highly Articulated Flight Kinematics of Bats |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fail2.126 https://doaj.org/article/80ed7c9c83c14405a0b86eb968594660 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB20Kze-xfooI4i72CTz6GSZakt9VFxY6C7MK6KGttBu3Iif4Df6Jd6ZJFIX4sZNIBnIhHsnnHO4l3MROlWR5q6iCcyNxQEFwAiAFZFAUm60koqUpZjhHR-M6PWYjZdGfbmesNIeuAxcW4TWdHSiBdGuDslkqAS3KuGCOWt0r9YB85bE1LM3cYkIIE_tNhvGbflUxOeR81BYwh9v0_-Tlnpc6W-i9YoQ4rT8kC20YifbaKMetoCrf28HvaTYzS0rPt8_uoA8Bl9aO4ObyiD1EaeVOzheTLETlbU1LCwBycOuoaN4LfdxI7vgDf3CKXN8A0TTG7fO8TTHXbmY76JRv_dwMQiqSQmBjinhgTbAZIRmeaRlkttQEaMixUgeqU7eYdLQ3LDcCB0Rk4eWsMTEXIVKgxqTJFFkDzUm04ndR1i7QqRVIMS0oBSoNwiQhCkDUK-EobaJTur4ZbPSECMrrY_jzMU4gxg3UdcF9nvdWVj7B5DYrEps9ldim-jMp-XXXbL06haAlx_8x26HaC12k319T84RakCG7DHQjYVqodWY3rf8-YLr8K33Bed41QE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOJQLFNqqKVAWCXFzsfeVtTglLVEgCeIAEjfL-zCqiBJUcumtP4HfyC9hZm2n4oDE0V7bK816_H0zs_4G4MhmTlNFE5mb4olEwEiQFYmklNo7W1pRl2Iml3p4Iy9u1e0KnLb_wtT6EMuEG3lG_F6Tg1NC-uS_amj5e8p_ZFyvwrrUvEteyeXVMsGCxEXoqJfKtckTZM6qFZ9N-Ul78ys4iqr9r1lqhJnBR9hs-CHr1Qu6DSthtgNbbe8F1rjiJ7jvMWpjNn3-99RHIPLsVwgPeNDopd6xXiMWzhZzRjFmqxSLQ8j5GO3vmP6t56EOXviEwZQCdTZCy0Qd10c2r1i_XDx-hpvB2fXPYdI0Tkgcl0InziOxMU5VmSvzKqRWeJtZJarMdquuKr2svKq8cZnwVRqEyj3XNrUOg7NS5FZ8gbXZfBa-AnNUlwwW4zJnpEQmjvFIrqxH5LfGy9CBw9Z-xUOtj1HUSsi8IBsXaOMO9Mmwy3FStI4n5n_uisZBCpMG33W5M8JRvVmVqTU62FwbRRL4aQeO47K8OUvROx8jDutv773wAD4MryfjYnx-OdqFDU6NfeOWnD1YwxUJ-8g2FvZ7fKteAEby0AU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIYtKBLiwo4oq5EQt0Bix65zTIGqrOJAEeISxVuFqNoKeuHGI_CMPAkzWYo4IHFMnEUa25l_PM43hBzqyEjMaIJyEyyIwWEEoIp4kMfSGp1rXqZibm5ltxdfPorHalcl_gtT8iGmC244M4rvNU7wsfUnP9DQ_HnAjiMmZ8kcQvJgRM-lD72n3nSFBZQLlwUwlUmVBCCdRU2fDdlJffsvf1Rg-3_L1MLPdJbJYiUQaVr26AqZccNVslQXX6DVXFwjLynFOmaDr4_PNngiS8-cG8NBBUzt07SihdPJiGKQWaNioQlEH8UNHoP38j1Ywgue0BlgpE6vwDQFyPWNjjxt55O3ddLrnN-fdoOqckJgWMxlYCwoG2WEj0yeeBdqbnWkBfeRbvmWyG3srfBWmYhbHzouEsukDrWB6CznieYbpDEcDd0moQYTk05DYGZUHIMUh4AkEdqC69fKxq5JDmr7ZeMSkJGVKGSWoY0zsHGTtNGw03ZEWhcnRq_9rJohmQqdbZnEKG4w4SzyUCvpdCKVQAZ-2CRHRbf8-ZYsvbgGRyy3_nvhPpm_O-tk1xe3V9tkgWFh32JLzg5pQIe4XVAbE71XDatvKljQ_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model%E2%80%90Based+Deep%E2%80%90Learning+Approach+to+Reconstructing+the+Highly+Articulated+Flight+Kinematics+of+Bats&rft.jtitle=Applied+AI+letters&rft.au=Hu%2C+Yihao&rft.au=Nnoka%2C+Chi&rft.au=M%C3%BCller%2C+Rolf&rft.date=2025-04-01&rft.issn=2689-5595&rft.eissn=2689-5595&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1002%2Fail2.126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ail2_126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-5595&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-5595&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-5595&client=summon |