A Model‐Based Deep‐Learning Approach to Reconstructing the Highly Articulated Flight Kinematics of Bats

ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data...

Full description

Saved in:
Bibliographic Details
Published inApplied AI letters Vol. 6; no. 2
Main Authors Hu, Yihao, Nnoka, Chi, Müller, Rolf
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2025
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics. An automated flying bat kinematic reconstruction pipeline.
AbstractList Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics.
ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics.
ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics. An automated flying bat kinematic reconstruction pipeline.
Author Hu, Yihao
Nnoka, Chi
Müller, Rolf
Author_xml – sequence: 1
  givenname: Yihao
  orcidid: 0009-0002-8018-4059
  surname: Hu
  fullname: Hu, Yihao
  email: yihao19@vt.edu
  organization: Virginia Tech Blacksburg
– sequence: 2
  givenname: Chi
  surname: Nnoka
  fullname: Nnoka, Chi
  organization: University at Buffalo, The State University of New York
– sequence: 3
  givenname: Rolf
  surname: Müller
  fullname: Müller, Rolf
  organization: Virginia Tech
BookMark eNp1kE1OwzAQRi1UJKAgcQQv2aTYcewmy7RQqChCQrC2_DNuA2lc2alQdxyBM3ISEooQG1bj-fz0NPpO0KDxDSB0TsmIEpJeqqpORzQVB-g4FXmRcF7wwZ_3ETqL8YV0KKNMCHqMXkt87y3Un-8fExXB4iuATbcsQIWmapa43GyCV2aFW48fwfgmtmFr2v6rXQG-rZareofL0FZmW6u2M8zqLmvxXdXAWnVxxN7hiWrjKTp0qo5w9jOH6Hl2_TS9TRYPN_NpuUhMmjGRGJtykhvuqFGFA6KZ1VRz5qgeuzFXNnOWO5sbyqwjwHhhU6GJNoQSxQrNhmi-91qvXuQmVGsVdtKrSn4HPiyl6u-tQeYE7NgUJmeGZhnhiuhcgC5EzotMCNK5LvYuE3yMAdyvjxLZdy77zmXXeYcme_StqmH3LyfL-SLt-S9EPoaF
Cites_doi 10.1038/s41593-018-0209-y
10.1038/s41598-024-60731-1
10.1145/3596711.3596800
10.1007/s11263-023-01756-3
10.1038/s41592‐021‐01106‐6
10.1371/journal.pone.0241489
10.1109/CVPR46437.2021.01572
10.1007/978-981-15-4477-4_30
10.1145/2388676.2388684
10.1007/s11263-023-01819-5
10.1109/ICCVW.2011.6130443
10.1242/jeb.204255
10.1016/j.celrep.2021.109730
10.1162/105474605774785325
10.1109/CVPR52729.2023.02038
10.1109/CVPR46437.2021.01308
10.1201/9780429196522
10.1242/jeb.243974
10.1371/journal.pone.0207613
10.1088/1748-3190/abb78d
10.1109/ICCV48922.2021.01144
10.1007/978-3-030-58523-5_1
10.1109/ICCV.2019.00780
10.1007/978-3-030-58621-8_32
10.1242/jeb.249987
10.1016/j.cub.2015.04.002
10.1007/BF00418147
10.1242/jeb.031203
10.1121/10.0000582
10.1098/rsos.160230
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/ail2.126
DatabaseName Wiley Online Library
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2689-5595
EndPage n/a
ExternalDocumentID oai_doaj_org_article_80ed7c9c83c14405a0b86eb968594660
10_1002_ail2_126
AIL2126
Genre shortCommunication
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1954172; 2419088
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c2436-cd2508c5f1ca9fe0b3db1b53f1b7f75ad4fd5fd8c13df0e359d26b0bc010a39b3
IEDL.DBID DOA
ISSN 2689-5595
IngestDate Wed Aug 27 01:29:37 EDT 2025
Thu Jul 03 08:23:36 EDT 2025
Fri Jun 13 09:31:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2436-cd2508c5f1ca9fe0b3db1b53f1b7f75ad4fd5fd8c13df0e359d26b0bc010a39b3
Notes This work was supported by the National Science Foundation (1954172, 2419088).
Funding
ORCID 0009-0002-8018-4059
OpenAccessLink https://doaj.org/article/80ed7c9c83c14405a0b86eb968594660
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_80ed7c9c83c14405a0b86eb968594660
crossref_primary_10_1002_ail2_126
wiley_primary_10_1002_ail2_126_AIL2126
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Applied AI letters
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References e_1_2_1_7_30_1
Wang J. (e_1_2_1_7_35_1) 2023; 8
e_1_2_1_7_12_1
e_1_2_1_7_13_1
e_1_2_1_7_34_1
e_1_2_1_7_10_1
e_1_2_1_7_33_1
e_1_2_1_7_11_1
e_1_2_1_7_32_1
e_1_2_1_7_27_1
e_1_2_1_7_28_1
e_1_2_1_7_25_1
Anachkova M. (e_1_2_1_7_2_1) 2020
e_1_2_1_7_9_1
e_1_2_1_7_26_1
Yao C.‐H. (e_1_2_1_7_14_1) 2022; 35
e_1_2_1_7_29_1
e_1_2_1_7_4_1
e_1_2_1_7_3_1
e_1_2_1_7_20_1
e_1_2_1_7_8_1
e_1_2_1_7_23_1
e_1_2_1_7_7_1
e_1_2_1_7_24_1
e_1_2_1_7_6_1
e_1_2_1_7_21_1
e_1_2_1_7_5_1
e_1_2_1_7_22_1
e_1_2_1_7_16_1
e_1_2_1_7_17_1
e_1_2_1_7_15_1
e_1_2_1_7_36_1
e_1_2_1_7_18_1
e_1_2_1_7_19_1
Chen Y. (e_1_2_1_7_31_1) 2022
References_xml – ident: e_1_2_1_7_11_1
  doi: 10.1038/s41593-018-0209-y
– ident: e_1_2_1_7_27_1
  doi: 10.1038/s41598-024-60731-1
– ident: e_1_2_1_7_18_1
  doi: 10.1145/3596711.3596800
– ident: e_1_2_1_7_23_1
  doi: 10.1007/s11263-023-01756-3
– ident: e_1_2_1_7_24_1
  doi: 10.1038/s41592‐021‐01106‐6
– ident: e_1_2_1_7_5_1
  doi: 10.1371/journal.pone.0241489
– ident: e_1_2_1_7_13_1
  doi: 10.1109/CVPR46437.2021.01572
– ident: e_1_2_1_7_4_1
  doi: 10.1007/978-981-15-4477-4_30
– ident: e_1_2_1_7_33_1
  doi: 10.1145/2388676.2388684
– ident: e_1_2_1_7_20_1
– volume: 8
  start-page: 1
  issue: 1
  year: 2023
  ident: e_1_2_1_7_35_1
  article-title: Complete 3d human reconstruction from a single incomplete image
  publication-title: Icon
– ident: e_1_2_1_7_21_1
  doi: 10.1007/s11263-023-01819-5
– ident: e_1_2_1_7_6_1
  doi: 10.1109/ICCVW.2011.6130443
– ident: e_1_2_1_7_7_1
  doi: 10.1242/jeb.204255
– ident: e_1_2_1_7_10_1
  doi: 10.1016/j.celrep.2021.109730
– ident: e_1_2_1_7_15_1
  doi: 10.1162/105474605774785325
– ident: e_1_2_1_7_25_1
  doi: 10.1109/CVPR52729.2023.02038
– ident: e_1_2_1_7_30_1
  doi: 10.1109/CVPR46437.2021.01308
– ident: e_1_2_1_7_16_1
  doi: 10.1201/9780429196522
– ident: e_1_2_1_7_28_1
  doi: 10.1242/jeb.243974
– ident: e_1_2_1_7_8_1
  doi: 10.1371/journal.pone.0207613
– ident: e_1_2_1_7_3_1
  doi: 10.1088/1748-3190/abb78d
– ident: e_1_2_1_7_34_1
  doi: 10.1109/ICCV48922.2021.01144
– ident: e_1_2_1_7_12_1
  doi: 10.1007/978-3-030-58523-5_1
– ident: e_1_2_1_7_19_1
  doi: 10.1109/ICCV.2019.00780
– ident: e_1_2_1_7_22_1
  doi: 10.1007/978-3-030-58621-8_32
– volume-title: European Conference on Computer Vision
  year: 2022
  ident: e_1_2_1_7_31_1
– ident: e_1_2_1_7_36_1
  doi: 10.1242/jeb.249987
– ident: e_1_2_1_7_26_1
  doi: 10.1016/j.cub.2015.04.002
– ident: e_1_2_1_7_17_1
  doi: 10.1007/BF00418147
– volume: 35
  start-page: 15296
  year: 2022
  ident: e_1_2_1_7_14_1
  article-title: Lassie: Learning Articulated Shapes From Sparse Image Ensemble via 3D Part Discovery
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_1_7_32_1
  doi: 10.1242/jeb.031203
– ident: e_1_2_1_7_29_1
  doi: 10.1121/10.0000582
– volume-title: Smart Materials, Adaptive Structures and Intelligent Systems
  year: 2020
  ident: e_1_2_1_7_2_1
– ident: e_1_2_1_7_9_1
  doi: 10.1098/rsos.160230
SSID ssj0002313661
Score 2.287223
Snippet ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To...
Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the...
ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms articulated model
bat maneuver
kinematic reconstruction
SummonAdditionalLinks – databaseName: Wiley Online Library
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEMctChcupbzElhYZCfWWkvi1znG3sFpeFYcicYs8toOqrnZRdy_c-Ah8xn6SzjjJoj0gcUychzSOM__x2L9h7AQKbyijicpNi0yhw8hQFcnMKRM8OJBNKubmpxnfqct7fd-uqqS9MA0fYjnhRiMj_a9pgDuYn75CQ93vifheCPOBbdDOWuLmC3W7nF9B3SJNwqUKY8sMhbPu2LO5OO1uXvFGCdq_KlKTlxl9Yh9becgHTX9us7U43WFbXekF3o7EXfZnwKmK2eTf88sQ_VDgZzE-4kGLS33gg5YVzhczTiFmB4rFJpR8nJZ3TJ6a91ABL3zCaEJxOr9CwySM65zPaj50i_keuxud__oxztq6CZkXSprMB9Q11uu68K6sYw4yQAFa1gX06752QdVB18H6QoY6j1KXQRjIwWNs5mQJcp-tT2fTeMC4p7RkBAzLvFUKhTiGI6WGgI4fbFCxx447-1WPDR6jakDIoiIbV2jjHhuSYZftBLROJ2Z_H6p2fFQ2j6HvS2-lp3SzdjlYE6E0VhMBP--xb6lb3nxLNbi4RjdsPr_3wkO2KaiWb1qF84WtYy_ErygwFnCUvqT_MJXMmQ
  priority: 102
  providerName: Wiley-Blackwell
Title A Model‐Based Deep‐Learning Approach to Reconstructing the Highly Articulated Flight Kinematics of Bats
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fail2.126
https://doaj.org/article/80ed7c9c83c14405a0b86eb968594660
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB20Kze-xfooI4i72CTz6GSZakt9VFxY6C7MK6KGttBu3Iif4Df6Jd6ZJFIX4sZNIBnIhHsnnHO4l3MROlWR5q6iCcyNxQEFwAiAFZFAUm60koqUpZjhHR-M6PWYjZdGfbmesNIeuAxcW4TWdHSiBdGuDslkqAS3KuGCOWt0r9YB85bE1LM3cYkIIE_tNhvGbflUxOeR81BYwh9v0_-Tlnpc6W-i9YoQ4rT8kC20YifbaKMetoCrf28HvaTYzS0rPt8_uoA8Bl9aO4ObyiD1EaeVOzheTLETlbU1LCwBycOuoaN4LfdxI7vgDf3CKXN8A0TTG7fO8TTHXbmY76JRv_dwMQiqSQmBjinhgTbAZIRmeaRlkttQEaMixUgeqU7eYdLQ3LDcCB0Rk4eWsMTEXIVKgxqTJFFkDzUm04ndR1i7QqRVIMS0oBSoNwiQhCkDUK-EobaJTur4ZbPSECMrrY_jzMU4gxg3UdcF9nvdWVj7B5DYrEps9ldim-jMp-XXXbL06haAlx_8x26HaC12k319T84RakCG7DHQjYVqodWY3rf8-YLr8K33Bed41QE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOJQLFNqqKVAWCXFzsfeVtTglLVEgCeIAEjfL-zCqiBJUcumtP4HfyC9hZm2n4oDE0V7bK816_H0zs_4G4MhmTlNFE5mb4olEwEiQFYmklNo7W1pRl2Iml3p4Iy9u1e0KnLb_wtT6EMuEG3lG_F6Tg1NC-uS_amj5e8p_ZFyvwrrUvEteyeXVMsGCxEXoqJfKtckTZM6qFZ9N-Ul78ys4iqr9r1lqhJnBR9hs-CHr1Qu6DSthtgNbbe8F1rjiJ7jvMWpjNn3-99RHIPLsVwgPeNDopd6xXiMWzhZzRjFmqxSLQ8j5GO3vmP6t56EOXviEwZQCdTZCy0Qd10c2r1i_XDx-hpvB2fXPYdI0Tkgcl0InziOxMU5VmSvzKqRWeJtZJarMdquuKr2svKq8cZnwVRqEyj3XNrUOg7NS5FZ8gbXZfBa-AnNUlwwW4zJnpEQmjvFIrqxH5LfGy9CBw9Z-xUOtj1HUSsi8IBsXaOMO9Mmwy3FStI4n5n_uisZBCpMG33W5M8JRvVmVqTU62FwbRRL4aQeO47K8OUvROx8jDutv773wAD4MryfjYnx-OdqFDU6NfeOWnD1YwxUJ-8g2FvZ7fKteAEby0AU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIYtKBLiwo4oq5EQt0Bix65zTIGqrOJAEeISxVuFqNoKeuHGI_CMPAkzWYo4IHFMnEUa25l_PM43hBzqyEjMaIJyEyyIwWEEoIp4kMfSGp1rXqZibm5ltxdfPorHalcl_gtT8iGmC244M4rvNU7wsfUnP9DQ_HnAjiMmZ8kcQvJgRM-lD72n3nSFBZQLlwUwlUmVBCCdRU2fDdlJffsvf1Rg-3_L1MLPdJbJYiUQaVr26AqZccNVslQXX6DVXFwjLynFOmaDr4_PNngiS8-cG8NBBUzt07SihdPJiGKQWaNioQlEH8UNHoP38j1Ywgue0BlgpE6vwDQFyPWNjjxt55O3ddLrnN-fdoOqckJgWMxlYCwoG2WEj0yeeBdqbnWkBfeRbvmWyG3srfBWmYhbHzouEsukDrWB6CznieYbpDEcDd0moQYTk05DYGZUHIMUh4AkEdqC69fKxq5JDmr7ZeMSkJGVKGSWoY0zsHGTtNGw03ZEWhcnRq_9rJohmQqdbZnEKG4w4SzyUCvpdCKVQAZ-2CRHRbf8-ZYsvbgGRyy3_nvhPpm_O-tk1xe3V9tkgWFh32JLzg5pQIe4XVAbE71XDatvKljQ_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model%E2%80%90Based+Deep%E2%80%90Learning+Approach+to+Reconstructing+the+Highly+Articulated+Flight+Kinematics+of+Bats&rft.jtitle=Applied+AI+letters&rft.au=Hu%2C+Yihao&rft.au=Nnoka%2C+Chi&rft.au=M%C3%BCller%2C+Rolf&rft.date=2025-04-01&rft.issn=2689-5595&rft.eissn=2689-5595&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1002%2Fail2.126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ail2_126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-5595&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-5595&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-5595&client=summon