Preparation of Ti3SiC2 MAX phase from Ti, TiC, and SiC by SPS
Ti3SiC2 MAX phase was prepared from Ti, TiC, and SiC using spark plasma sintering. Three sintering temperatures, namely 1450, 1550, and 1600 °C were employed. The effect of the atmosphere, dwell time, and SiC grain size were studied. The prepared samples were subjected to XRD, Vickers hardness, and...
Saved in:
Published in | Ceramics international Vol. 48; no. 19; pp. 28391 - 28395 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8842 1873-3956 |
DOI | 10.1016/j.ceramint.2022.06.149 |
Cover
Loading…
Abstract | Ti3SiC2 MAX phase was prepared from Ti, TiC, and SiC using spark plasma sintering. Three sintering temperatures, namely 1450, 1550, and 1600 °C were employed. The effect of the atmosphere, dwell time, and SiC grain size were studied. The prepared samples were subjected to XRD, Vickers hardness, and SEM analyses. Phase composition of the samples revealed that a maximum MAX phase content of ∼90 wt% is achieved at the sintering temperature of 1550 °C. TiC (∼9 wt%) and small amount of SiC were identified as secondary phases. Values of the Vickers hardness exhibited a steady decrease with an increasing sintering temperature from 704 HV at 1450 °C to 544 HV at 1600 °C due to the reduction of the TiC content in the sample. The porosity of the samples with the highest Ti3SiC2 content reached 5%. The coefficient of thermal expansion fell into the interval from 9.8 to 11 × 10−6 K−1. |
---|---|
AbstractList | Ti3SiC2 MAX phase was prepared from Ti, TiC, and SiC using spark plasma sintering. Three sintering temperatures, namely 1450, 1550, and 1600 °C were employed. The effect of the atmosphere, dwell time, and SiC grain size were studied. The prepared samples were subjected to XRD, Vickers hardness, and SEM analyses. Phase composition of the samples revealed that a maximum MAX phase content of ∼90 wt% is achieved at the sintering temperature of 1550 °C. TiC (∼9 wt%) and small amount of SiC were identified as secondary phases. Values of the Vickers hardness exhibited a steady decrease with an increasing sintering temperature from 704 HV at 1450 °C to 544 HV at 1600 °C due to the reduction of the TiC content in the sample. The porosity of the samples with the highest Ti3SiC2 content reached 5%. The coefficient of thermal expansion fell into the interval from 9.8 to 11 × 10−6 K−1. |
Author | Lukáč, František Veverka, Jakub Csáki, Štefan Chráska, Tomáš |
Author_xml | – sequence: 1 givenname: Štefan orcidid: 0000-0003-2118-9917 surname: Csáki fullname: Csáki, Štefan email: scsaki@ukf.sk organization: The Czech Academy of Sciences, Institute of Plasma Physics, Za Slovankou 1782/3, 182 00, Prague, Czech Republic – sequence: 2 givenname: František surname: Lukáč fullname: Lukáč, František organization: The Czech Academy of Sciences, Institute of Plasma Physics, Za Slovankou 1782/3, 182 00, Prague, Czech Republic – sequence: 3 givenname: Jakub surname: Veverka fullname: Veverka, Jakub organization: The Czech Academy of Sciences, Institute of Plasma Physics, Za Slovankou 1782/3, 182 00, Prague, Czech Republic – sequence: 4 givenname: Tomáš orcidid: 0000-0003-0415-3840 surname: Chráska fullname: Chráska, Tomáš organization: The Czech Academy of Sciences, Institute of Plasma Physics, Za Slovankou 1782/3, 182 00, Prague, Czech Republic |
BookMark | eNqFkF1LwzAUhoNMcJv-BckPWGty8tEGFBzFL5g46ATvQpommLG1Iy3C_r2d0xtvdnE4cDjPyznPBI2atnEIXVOSUkLlzTq1LpptaPoUCEBKZEq5OkNjmmcsYUrIERoTyCDJcw4XaNJ1azKAipMxultGtzPR9KFtcOvxKrAyFIBf5x9492k6h31st8N4NlQxw6ap8bCAqz0ul-UlOvdm07mr3z5F748Pq-I5Wbw9vRTzRWKBQ594QWwmQHjJvc8zKoXhVQY5y7kAZxkBWzkOXMhaKlC5qphXRHAPJmNUKDZFt8dcG9uui85rG_qfm_towkZTog8q9Fr_qdAHFZpIPagYcPkP38WwNXF_Grw_gm547iu4qDsbXGNdHaKzva7bcCriG1Bte0E |
CitedBy_id | crossref_primary_10_1016_j_cattod_2024_114959 crossref_primary_10_1016_j_ijrmhm_2023_106386 crossref_primary_10_1155_2023_1335481 crossref_primary_10_1007_s40843_024_3073_7 crossref_primary_10_1016_j_ceramint_2023_03_218 crossref_primary_10_17073_1683_4518_2023_8_48_53 crossref_primary_10_17073_1683_4518_2024_6_21_27 crossref_primary_10_1016_j_coco_2023_101605 crossref_primary_10_1007_s11148_024_00867_9 crossref_primary_10_1016_j_ceramint_2023_09_088 crossref_primary_10_1016_j_ceramint_2025_03_090 crossref_primary_10_1016_j_jmrt_2024_10_027 crossref_primary_10_1016_j_ceramint_2024_04_232 crossref_primary_10_3390_ma18010157 crossref_primary_10_1016_j_ceramint_2024_07_174 crossref_primary_10_1016_j_flatc_2024_100782 crossref_primary_10_1111_ijac_14289 crossref_primary_10_1016_j_ceramint_2023_07_243 crossref_primary_10_3390_ma15165746 |
Cites_doi | 10.1007/s11148-021-00564-x 10.1107/S0021889887086199 10.1016/j.msea.2007.12.004 10.1111/j.1151-2916.1996.tb08018.x 10.1016/j.ijrmhm.2016.08.003 10.1016/j.jallcom.2019.06.076 10.1016/j.compscitech.2007.06.006 10.1016/j.scriptamat.2006.09.029 10.1016/j.jallcom.2019.03.062 10.1016/j.matchemphys.2021.124625 10.1016/j.ceramint.2019.03.144 10.1016/j.powtec.2022.117319 10.1016/j.ceramint.2021.06.038 10.1016/S0925-8388(99)00003-1 10.1016/j.ceramint.2021.03.064 10.1107/S0365110X67000234 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2022 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2022.06.149 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 28395 |
ExternalDocumentID | 10_1016_j_ceramint_2022_06_149 S0272884222021526 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RNS SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c242t-f50c7525f64ff87165a4b72838452ec302cbe42456d692989b3f9054f2a731593 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Tue Jul 01 04:23:21 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:39:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Dilatometry MAX phase Porosity Sintering SPS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-f50c7525f64ff87165a4b72838452ec302cbe42456d692989b3f9054f2a731593 |
ORCID | 0000-0003-0415-3840 0000-0003-2118-9917 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2022_06_149 crossref_primary_10_1016_j_ceramint_2022_06_149 elsevier_sciencedirect_doi_10_1016_j_ceramint_2022_06_149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Atazadeh, Saeedi Heydari, Baharvandi, Ehsani (bib9) 2016; 61 Kim, Nou, Bae, Choi (bib10) 2021; 47 Rietveld (bib13) 1967; 22 Hill, H.C (bib14) 1987; 20 Zhang, Wu, Wang, Jiang, Chen (bib6) 2008; 68 Du, Yao, Tao, Zhang, Shu, Wang, Zhang (bib11) 2022; 401 Perevislov, Sokolova, Stolyarova (bib12) 2021; 267 Magnus, Rainforth (bib15) 2019; 801 Barsoum, El-Raghy (bib1) 1996; 79 Zhang, Wang, Shi, Jiang, Chen (bib4) 2007; 56 Islak, Ayas (bib7) 2019; 45 Tang, Zhao, Tang, Li, Meng (bib2) 2021; 47 Radhakrishnan, Williams, Akinc (bib3) 1999; 285 Bykova, Semenova, Perevislov, Markov (bib17) 2021; 62 Zhu, Eriksson, Ghafoor, Johansson, Greczynski, Hultman, Rosén, Odén (bib16) 2011; 29 Pourebrahim, Baharvandi, Foratirad, Ehsani (bib8) 2019; 789 Zhang, Wang, Jiang, Chen (bib5) 2008; 487 Barsoum (10.1016/j.ceramint.2022.06.149_bib1) 1996; 79 Atazadeh (10.1016/j.ceramint.2022.06.149_bib9) 2016; 61 Perevislov (10.1016/j.ceramint.2022.06.149_bib12) 2021; 267 Zhang (10.1016/j.ceramint.2022.06.149_bib5) 2008; 487 Hill (10.1016/j.ceramint.2022.06.149_bib14) 1987; 20 Zhu (10.1016/j.ceramint.2022.06.149_bib16) 2011; 29 Rietveld (10.1016/j.ceramint.2022.06.149_bib13) 1967; 22 Zhang (10.1016/j.ceramint.2022.06.149_bib4) 2007; 56 Tang (10.1016/j.ceramint.2022.06.149_bib2) 2021; 47 Radhakrishnan (10.1016/j.ceramint.2022.06.149_bib3) 1999; 285 Pourebrahim (10.1016/j.ceramint.2022.06.149_bib8) 2019; 789 Islak (10.1016/j.ceramint.2022.06.149_bib7) 2019; 45 Kim (10.1016/j.ceramint.2022.06.149_bib10) 2021; 47 Bykova (10.1016/j.ceramint.2022.06.149_bib17) 2021; 62 Du (10.1016/j.ceramint.2022.06.149_bib11) 2022; 401 Zhang (10.1016/j.ceramint.2022.06.149_bib6) 2008; 68 Magnus (10.1016/j.ceramint.2022.06.149_bib15) 2019; 801 |
References_xml | – volume: 61 start-page: 67 year: 2016 end-page: 78 ident: bib9 article-title: Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique publication-title: Int. J. Refract. Met. Hard Mater. – volume: 487 start-page: 137 year: 2008 end-page: 143 ident: bib5 article-title: Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering publication-title: Mater. Sci. Eng. – volume: 401 year: 2022 ident: bib11 article-title: In-situ reactive synthesis porous two-scale lamellar Ti3SiC2 intermetallic compound publication-title: Powder Technol. – volume: 267 year: 2021 ident: bib12 article-title: The Ti3SiC2 max phases as promising materials for high temperature applications: formation under various synthesis conditions publication-title: Mater. Chem. Phys. – volume: 79 start-page: 1953 year: 1996 end-page: 1956 ident: bib1 article-title: Synthesis and characterization of a remarkable ceramic: Ti3SiC2 publication-title: J. Am. Ceram. Soc. – volume: 56 start-page: 241 year: 2007 end-page: 244 ident: bib4 article-title: Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method publication-title: Scripta Mater. – volume: 47 start-page: 17471 year: 2021 end-page: 17475 ident: bib10 article-title: Nano-laminated Ti3SiC2 synthesized by cost-effective semi-melting process publication-title: Ceram. Int. – volume: 22 start-page: 151 year: 1967 end-page: 152 ident: bib13 article-title: Line profiles of neutron powder-diffraction peaks for structure refinement publication-title: Acta Crystallogr. – volume: 285 start-page: 85 year: 1999 end-page: 88 ident: bib3 article-title: Synthesis and high-temperature stability of Ti3SiC2 publication-title: J. Alloys Compd. – volume: 29 year: 2011 ident: bib16 article-title: Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 62 start-page: 89 year: 2021 end-page: 93 ident: bib17 article-title: Influence of synthesis parameters on density and phase composition of materials based on Ti3SiC2 publication-title: Refract. Ind. Ceram. – volume: 68 start-page: 499 year: 2008 end-page: 505 ident: bib6 article-title: Microstructure and properties of Ti3SiC2/SiC nanocomposites fabricated by spark plasma sintering publication-title: Compos. Sci. Technol. – volume: 789 start-page: 313 year: 2019 end-page: 322 ident: bib8 article-title: Low temperature synthesis of high-purity Ti3SiC2 via additional Si through spark plasma sintering publication-title: J. Alloys Compd. – volume: 801 start-page: 208 year: 2019 end-page: 219 ident: bib15 article-title: Influence of sintering environment on the spark plasma sintering of Maxthal 312 (nominally-Ti3SiC2) and the role of powder particle size on densification publication-title: J. Alloys Compd. – volume: 45 start-page: 12297 year: 2019 end-page: 12306 ident: bib7 article-title: Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites publication-title: Ceram. Int. – volume: 20 start-page: 467 year: 1987 end-page: 474 ident: bib14 article-title: Quantitative phase analysis from neutron powder diffraction data using the Rietveld method publication-title: J. Appl. Crystallogr. – volume: 47 start-page: 26293 year: 2021 end-page: 26300 ident: bib2 article-title: Synthesis of Ti3SiC2 from TiC and Si and its toughening mechanism with incorporated carbon fibers publication-title: Ceram. Int. – volume: 29 year: 2011 ident: 10.1016/j.ceramint.2022.06.149_bib16 article-title: Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 62 start-page: 89 year: 2021 ident: 10.1016/j.ceramint.2022.06.149_bib17 article-title: Influence of synthesis parameters on density and phase composition of materials based on Ti3SiC2 publication-title: Refract. Ind. Ceram. doi: 10.1007/s11148-021-00564-x – volume: 20 start-page: 467 year: 1987 ident: 10.1016/j.ceramint.2022.06.149_bib14 article-title: Quantitative phase analysis from neutron powder diffraction data using the Rietveld method publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889887086199 – volume: 487 start-page: 137 year: 2008 ident: 10.1016/j.ceramint.2022.06.149_bib5 article-title: Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2007.12.004 – volume: 79 start-page: 1953 year: 1996 ident: 10.1016/j.ceramint.2022.06.149_bib1 article-title: Synthesis and characterization of a remarkable ceramic: Ti3SiC2 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb08018.x – volume: 61 start-page: 67 year: 2016 ident: 10.1016/j.ceramint.2022.06.149_bib9 article-title: Reviewing the effects of different additives on the synthesis of the Ti3SiC2 MAX phase by mechanical alloying technique publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2016.08.003 – volume: 801 start-page: 208 year: 2019 ident: 10.1016/j.ceramint.2022.06.149_bib15 article-title: Influence of sintering environment on the spark plasma sintering of Maxthal 312 (nominally-Ti3SiC2) and the role of powder particle size on densification publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.076 – volume: 68 start-page: 499 year: 2008 ident: 10.1016/j.ceramint.2022.06.149_bib6 article-title: Microstructure and properties of Ti3SiC2/SiC nanocomposites fabricated by spark plasma sintering publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2007.06.006 – volume: 56 start-page: 241 year: 2007 ident: 10.1016/j.ceramint.2022.06.149_bib4 article-title: Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2006.09.029 – volume: 789 start-page: 313 year: 2019 ident: 10.1016/j.ceramint.2022.06.149_bib8 article-title: Low temperature synthesis of high-purity Ti3SiC2 via additional Si through spark plasma sintering publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.03.062 – volume: 267 year: 2021 ident: 10.1016/j.ceramint.2022.06.149_bib12 article-title: The Ti3SiC2 max phases as promising materials for high temperature applications: formation under various synthesis conditions publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124625 – volume: 45 start-page: 12297 year: 2019 ident: 10.1016/j.ceramint.2022.06.149_bib7 article-title: Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.144 – volume: 401 year: 2022 ident: 10.1016/j.ceramint.2022.06.149_bib11 article-title: In-situ reactive synthesis porous two-scale lamellar Ti3SiC2 intermetallic compound publication-title: Powder Technol. doi: 10.1016/j.powtec.2022.117319 – volume: 47 start-page: 26293 year: 2021 ident: 10.1016/j.ceramint.2022.06.149_bib2 article-title: Synthesis of Ti3SiC2 from TiC and Si and its toughening mechanism with incorporated carbon fibers publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.06.038 – volume: 285 start-page: 85 year: 1999 ident: 10.1016/j.ceramint.2022.06.149_bib3 article-title: Synthesis and high-temperature stability of Ti3SiC2 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00003-1 – volume: 47 start-page: 17471 year: 2021 ident: 10.1016/j.ceramint.2022.06.149_bib10 article-title: Nano-laminated Ti3SiC2 synthesized by cost-effective semi-melting process publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.03.064 – volume: 22 start-page: 151 year: 1967 ident: 10.1016/j.ceramint.2022.06.149_bib13 article-title: Line profiles of neutron powder-diffraction peaks for structure refinement publication-title: Acta Crystallogr. doi: 10.1107/S0365110X67000234 |
SSID | ssj0016940 |
Score | 2.4376523 |
Snippet | Ti3SiC2 MAX phase was prepared from Ti, TiC, and SiC using spark plasma sintering. Three sintering temperatures, namely 1450, 1550, and 1600 °C were employed.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 28391 |
SubjectTerms | Dilatometry MAX phase Porosity Sintering SPS |
Title | Preparation of Ti3SiC2 MAX phase from Ti, TiC, and SiC by SPS |
URI | https://dx.doi.org/10.1016/j.ceramint.2022.06.149 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EmfQUPHOH5Isq2hQzANaUtCwAlkM5YsUYfWCSEduvS39-RHSKGQoYMHCx2Yz9I9pLvvEHowl1VaC27pEDY5dWlmCTcLLE2lIpRJwbgpcB6N_eGMvszZvIWiphbGpFXWur_S6aW2rkfsGk17led2DAGVF4bmCKNszmpotw17Hazp3vc2zcP1Oa3OWQLY-TB7p0p40ZNqnX7khcmp9DzD4-kaTs2_DNSO0RmcoOPaW8T96oNOUUsVZ-hoh0PwHD1O1qri714WeKnxNCdxHnl41J_j1RvYKGwqSGC4C0_UxWmRYZiAxReOJ_EFmg2eptHQqnsiWBKM6cbSzJEB85j2qdYm2GEpFYADCSnzlCSOJ4UqbzMznxt2dUE0B7dMe2lAwHUhl6hdLAt1hbDikoGEnzmpoET4oQJHm0J4Bns6Y1l6jVgDRCJrwnDTt-I9aTLDFkkDYGIATBwfIgl-jeyt3KqizNgrwRuck18_PwG9vkf25h-yt-jQvFW5eXeovVl_qnvwMTaiUy6iDjroP78Oxz_Er81G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb4JAEJ5YPbQ9NH2m9rmHHqUg7CIcejCkRusjJmjijbDLbopp0Rh76L_vrICxSRMPPXBZ-BIysPPYmfkG4Eknq5TivqE83OS0SRODN5OWoaiQDmWCM183OA9HbndK32ZsVoGg7IXRZZWF7s91-kZbFytmIU1zmaZmiAGV7Xn6CGMznNU9gJpmp6JVqLV7_e5om0xwfZoftbRw8yNgp1F4_izkKv5MM11WaduayrOpaTX_slE7dqdzCieFw0ja-TudQUVm53C8QyN4AS_jlcwpvBcZWSgySZ0wDWwybM_I8h3NFNFNJLjcwCtokDhLCD5A-DcJx-ElTDuvk6BrFGMRDIH2dG0oZokWs5lyqVI63mEx5SgKx6PMlsKxbMHlJqGZuL4mWOeO8tEzU3bcctB7ca6gmi0yeQ1E-oIhwk2smFOHu55EX5tihIbbOmFJXAdWCiISBWe4Hl3xEZXFYfOoFGCkBRhZLgYTfh3MLW6Zs2bsRfilnKNf3z9C1b4He_MP7CMcdifDQTTojfq3cKTv5KV6d1Bdr77kPboca_5Q_FI_6LXP9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Ti3SiC2+MAX+phase+from+Ti%2C+TiC%2C+and+SiC+by+SPS&rft.jtitle=Ceramics+international&rft.au=Cs%C3%A1ki%2C+%C5%A0tefan&rft.au=Luk%C3%A1%C4%8D%2C+Franti%C5%A1ek&rft.au=Veverka%2C+Jakub&rft.au=Chr%C3%A1ska%2C+Tom%C3%A1%C5%A1&rft.date=2022-10-01&rft.issn=0272-8842&rft.volume=48&rft.issue=19&rft.spage=28391&rft.epage=28395&rft_id=info:doi/10.1016%2Fj.ceramint.2022.06.149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceramint_2022_06_149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |